
Bachelor Thesis

Cashier-as-a-Service based Webshops
Overview and Steps towards Security Testing

Daniel Hirschberger

Date: 26.09.2016
Supervisors: Prof. Dr. Jörg Schwenk

Dipl.-Ing. Vladislav Mladenov
M. Sc. Christian Mainka

Ruhr-University Bochum, Germany

Chair for Network and Data Security
Prof. Dr. Jörg Schwenk

Homepage: www.nds.rub.de

www.nds.rub.de

i

Erklärung

Ich erkäre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine andere Prüfung
an der Ruhr-Universität Bochum oder einer anderen Hochschule eingereicht habe.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder dem Sinn nach
entnommen sind, habe ich unter Angabe der Quellen kenntlich gemacht. Dies gilt sinngemäß auch
für verwendete Zeichnungen, Skizzen, bildliche Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen Version
übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale Version dieser Arbeit zwecks
Plagiatsprüfung verwendet wird.

Ort, Datum Unterschrift

ii

Acknowledgements

First I would like to thank my parents for enabling me to study at the RUB which is quite a distance
away from my hometown and for their continuous support. Next I would like to thank my study
group and friends for keeping studying and leisure time fun. And finally I would like to thank my
supervisors Jörg Schwenk, Vladislav Mladenov and Christian Mainka for their helpful input.

Contents

List of Figures . iv
List of Tables . v

1. Introduction and Motivation 1

2. Overview 3
2.1. Overview of Webshops . 3
2.2. Overview of Cashiers . 3
2.3. Selection of Webshops and Cashiers . 4

3. Methodology 5

4. Magento’s PayPal’s Express Checkout Integration 7
4.1. Testing Environment . 7
4.2. Protocol Analysis . 8
4.3. Security Analysis . 18

5. Woocommerce’s PayPal Payments Standard Integration 22
5.1. Testing Environment . 22
5.2. Protocol Analysis . 23
5.3. Security Analysis . 29

6. Conclusion 32

A. Appendix 33
A.1. Spreadsheet Excerpt . 35

Bibliography 36

List of Figures

1.1. Overview of SSO and CaaS . 2

4.1. Magento setup with Burp . 8
4.2. PayPal: Message Flow . 9
4.3. PayPal: Reconstructed Message Flow with required parameters 10
4.4. PayPal: Authorization attack . 20

5.1. Woocommerce setup with Burp . 23
5.2. PayPal: Reconstructed Message Flow with required Parameters 24
5.3. PayPal: tampered amount and quantity . 29
5.4. PayPal cart representation . 31

A.1. Spreadsheet Excerpt - Open source solutions ordered by maximum popularity 35

List of Tables

2.1. Columns sorted by type . 4

4.1. SetExpressCheckout - required parameters . 9
4.2. SetExpressCheckout - optional parameters . 11
4.3. SetExpressCheckout - response parameters . 11
4.4. GetExpressCheckoutDetails - parameters . 14
4.5. GetExpressCheckoutDetails - response . 15
4.6. DoExpressCheckoutPayment - required parameters 16
4.7. DoExpressCheckoutPayment - conditional parameters 16
4.8. DoExpressCheckoutPayment - optional parameters 16
4.9. DoExpressCheckoutPayment - response . 17

5.1. Redirect to PayPal - required parameters . 24
5.2. Redirect to PayPal - optional parameters . 25
5.3. PayPal IPN message - parameters . 27

1. Introduction and Motivation

Shortly after the invention of email, if you wanted to have an email account, you had to setup your
own mailserver. Admins soon offered to setup mail addresses for their users which they could use.
The user then had to install a mail client and have it configured to work with the server. After the
user understood how the mail client works, he could use his email account without further help.

Nowadays, if somebody wants to have an email account, he can search the internet for mail
providers and register an account on their own. It is no longer required to undergo the lengthy
process of having an admin setup everything. This is because someone already setup a mail server
and chose to provide users with mail accounts. Setting up a piece of software and providing others
access to it is known as Software-as-a-Service (SaaS).

Lately there is a paradigm shift in the nature of applications. You no longer have to install an
email client to have access to your mail. Many email providers allow you to read, edit and send
mails from an interface on their webpage. This is an outstanding example that shows that whole
applications are being shifted to the server-side. Another example is Google Docs, which provides
an office suite that is accessible from the webbrowser. Rich-clients are no longer needed because
they are superseded by remote services which provide a user interface in the webbrowser.

SaaS is not only used by users but by other applications as well. Developers no longer have
to worry about handling user authentication because of Single-Sign-On (SSO) services or payment
because of Cashier-as-a-Service (CaaS). They can use these services provided by another party and
concentrate on the development of their application.

Nevertheless caution has to be taken in developing an application which uses this services. Even
if the service itself was secure, there is still the possibility that the newly developed application
handles the responses from that service in a wrong way and thus enables attacks which can have
devastating consequences, for example logging in with an account you do not own or having another
user pay for your shopping.

One possibility of logging in via SSO is the Service Provider (SP) -initiated login. An overview
of this process in given in Figure 1.1a. A user wants to use a service from the SP and is redirected
with an AuthenticationTokenRequest to the Identity Provider (IdP). If the user can successfully
authenticate at the IdP, he is redirected with the AuthenticationToken to the SP. The SP recognizes
the AuthenticationToken and can be sure that the user is authenticated. He consumes the token and
logs the user into his service. The typical protocol flow for webshops that use CaaS is demonstrated
in Figure 1.1b. A user is browsing through a webshop and adds items to his cart. Then he clicks

Introduction and Motivation 2

(a) SSO: SP-initiated Login (b) CaaS: High-level Overview

Figure 1.1.: Overview of SSO and CaaS

the checkout button and is redirected with an PaidTokenRequest to the CaaS, where he has to
authenticate. If this succeeds and he authorizes the transaction, he is redirected with the PaidToken
to the webshop. The webshop sees the PaidToken and can be sure that the user paid. With this
knowledge the webshop can finalize the order and begin the shipping process. Throughout this
process the cashier and the webshop have to keep their application states synchronized. If this
would not be happening, an attacker could trick the shop in several ways. In summary the cashier
fulfills the role of the IdP, the webshop the role of the SP and additional steps have to be taken
to keep the applications synchronized. Apart from that, the basic idea of the protocols are quite
identical. Despite being similar there is a huge gap between SSO and CaaS concerning security
research.

For SSO there are many protocols like OpenID / OpenID Connect [10] and SAML [21].
For every cashier that should be supported, the API of that specific cashier has to be implemented.
The APIs differ in large parts from cashier to cashier. If the developer is lucky, there exists an SDK
he can use to make this process easier. If this is not the case, he has to implement every single one
himself. The fact that there is no common API or standardized protocol also means that security
research is much harder.

The latest paper concerning the security of a SSO solution is from 2016 [9]. The latest paper
about CaaS security is from 2011 [23].

It is quite ironic that CaaS is widely used yet barely researched. More so, considering that attacks
on CaaS integrating webshops directly yield money or items.

This thesis is meant to provide a starting ground for the security analysis of CaaS based webshops
and spark further research.

2. Overview

2.1. Overview of Webshops

We begin our collection of webshop software with search queries like open source webshops,
best webshop software, ecommerce software and comparison of webshop software in sev-
eral search engines. Apart from several names of such products, we also found popularity compari-
son sites like BuiltWith [2], Datanyze [6] and Wappalyzer [24]. We extracted the names of webshop
software solutions by browsing through their popularity lists. Luckily we also found a shopping cart
migration service called Cart2Cart [5], which provided us with even more names. After collecting
a huge amount of names into a spreadsheet, we develop the structure of the spreadsheet with the
columns which can be seen in Table 2.1.

We can acquire all of this information by visiting the homepage of the specific webshop and the
usage statistic sites presented earlier.
We calculate the mean and maximum popularity across the statistics sites to gain a definitive cri-
teria we can use when choosing the webshops we wish to analyze. The spreadsheet is by no means
exhaustive and focuses on open-source solutions.

A shortened version of the spreadsheet showing only open source solutions ordered by the max-
imum popularity can be found in A.1.

2.2. Overview of Cashiers

We obviously need cashiers to set up an CaaS-integrating webshop. We will focus on one of the
widely used cashiers, namely PayPal, Amazon Payments or Google Wallet because no prior research
on their protocols has been done and critical flaws in them affect a huge audience. Nevertheless there
exist many small local payment providers in various countries which could face similar problems.
An example of such a payment provider is paydirekt [11] in Germany. For the three big cashiers
we collect information on transaction fees and the possibility of sandbox accounts which ease our
future analysis.

2.3 Selection of Webshops and Cashiers 4

Product Information Popularity Third Party Support and
Comments

Name on BuiltWith Link to supported cashiers/-
payment methods

Link to Webpage on Datanyze Comments
Link to Download on Wappalyzer
Link to Documentation Arithmethic Mean
Open Source Maximum
Link to Source Code
License
Price
Free Trial
Programming Languages

Table 2.1.: Columns sorted by type

2.3. Selection of Webshops and Cashiers

The only hard criteria we have for choosing a webshop is that it is open source and we can host our
own instance of the software. We chose these criteria because we do not want to have unnecessary
costs by using a commercial product and want to set it up on a virtual machine for analysis. From
those which fulfill these conditions, we pick the two with the highest Maximum Popularity from
our spreadsheet. This means we will set up Woocommerce with a maximum popularity of 31% and
Magento which has a maximum popularity of 22%. We notice that the arithmetic mean of the
popularity is not suited for comparison because not every webshop is present on all statistics site
which has a huge effect on the mean.

The only real requirement for the cashier is that we can access developer or sandbox accounts
that let us use the real API in an sandboxed environment. This means that we can do as many
transactions as we like without losing real money and without facing any real consequences.
The cashier we integrate into the webshops is PayPal because it is widely used as evidenced by a
study conducted in 2013 [25] and fulfills our requirements.

3. Methodology

Before we are able to analyze the payment protocols we have to recover the unknown protocol.
The goal is to recover the essential messages of the protocol while skipping unnecessary requests
which for example load javascript or fetch images. For this purpose we developed the following
methodology.

We begin the analysis by checking out a product and completing the whole transaction. Then
we enable the intercept option of the Burp Proxy and begin the checkout process anew. After
each iteration we have to clear the cookies from our browser, otherwise we would obtain a differ-
ent message flow which is not suited for analysis. At first we do not have a representation of the
protocol. We drop the first request we have not yet included in our representation of the protocol.
If the checkout does not work afterwards, we gain the information that this request is essential to
the protocol and add it to our representation of the protocol. Note that a successful checkout is
defined by the automatic completion of the order by the webshop. We repeat this for every request
the client submits during the checkout process while ignoring requests for resources like javascript,
images and the like.
The result of this step is the minimal amount of messages that has to be exchanged for a successful
checkout.

The next step is to test which parameters are needed for the checkout process. Note that we
do not analyze the authentication of the user at the cashier. We repeat the checkout process many
times while stripping one parameter at a time from the request. If the checkout can be successfully
completed, we learn that the parameter is not vital to the checkout and can be left out. As a result
we know which parameters are essential for the checkout process.
In the next step we modify one of the vital parameters at a time and see if the checkout completes
successfully. The result is the list of parameters which are essential to the checkout but can be
manipulated.
The final result is the minimal representation of the protocol with all required parameters.

For the analysis of the protocols we let the Web attacker introduced in [1] slip into different roles
and also use the User Behaviour presented in the paper:

Methodology 6

1) Malicious user The attacker plays the role of a normal user who wishes to buy goods at a
webshop.

2) Malicious shop The attacker plays the role of a seemingly benign shop that sells goods.

3) CSRF - Attacker In addition to the attacker-in-the-browser model we also allow a user to get
tricked into issuing a GET request via phishing.

4. Magento’s PayPal’s Express Checkout
Integration

4.1. Testing Environment

For testing we have a virtual machine running Ubuntu 14.04.4 LTS with Kernel 3.13.0-9 and PHP
5.5.9-1ubuntu4.19 in the NDS Cloud at our disposal. We have set up Magento in version 2.0.7 and
added products with the following names and prices: AES 1€, PKI 2€, SSL 10€.
Furthermore we integrated PayPal Sandbox Accounts which we acquired by registering a private
PayPal account and creating them on developer.paypal.com.

In order to analyze the protocol we have to be able to intercept all messages that are exchanged
between the user, the cashier and the webshop. We chose the Burp Suite [4] as our primary analysis
tool because of its unique capabilities and ease of use. Intercepting the traffic between the user
and the webshop, and the user and the cashier is achieved by routing it through the Burp Proxy
via setting the proxy rules in our browser to localhost:8080. Intercepting the traffic between the
webshop and the cashier and routing it through our local Burp instance is not as easily accomplished.

The basic idea is to proxy the traffic between the webshop and the cashier through a local port
on the virtual machine and then forward this port via SSHs remote port forwarding feature to
our machine on which Burp is running. We create one proxy listener for each port we forward to
distinguish the requests by port.
Luckily Magento provides an option in the admin interface to force API requests which are directed
to PayPal through a proxy. Additionally we have to set the option Enable SSL verification to
No so that Magento does not check the validity of the certificate and we can man-in-the-middle the
connection to PayPal.

We create a proxy listener in Burp which is listening on port 8081 and connect the proxy port on
the virtual machine with our local machine via SSH remote port forwarding by issuing the following
command:

ssh -N -R 8081: localhost :8081 <IP of Virtual Machine >

Figure 4.1 illustrates the finished setup.

developer.paypal.com

4.2 Protocol Analysis 8

Figure 4.1.: Magento setup with Burp
Burp icon taken from [3]

4.2. Protocol Analysis

PayPals developer documentation contains an explanation of the Express Checkout [13]. On this
page is also a graphic which explains the message flow between the merchant server, the user and
the PayPal servers. It is shown in Figure 4.2.

By applying our methodology, we are able to reconstruct the message flow along with the required
parameters which can be seen in Figure 4.3.

4.2.1. Explanation of individual messages

The messages are now explained by stepping through one example checkout process.

Message 1.a The user wants to checkout his cart and clicks on the Checkout with PayPal button.

Message 2.a Magento tells the PayPal NVP API where to redirect the user after authorizing the
transaction via the parameter RETURNURL and requests a token for this transaction.

We learn from the METHOD=SetExpressCheckout that the Express Checkout API is used. The
documentation of this specific method can be found under [19]. We explain the meaning of the
submitted parameters according to the documentation in Table 4.1 and Table 4.2. Parameters
which we suffixed with * are deprecated by a new parameter.

Message 2.b The PayPal NVP API provides Magento with the token.
The explanation of the parameters is again taken from the official documentation found under

[19] and [18]. The meaning of the CORRLEATIONID is taken from [14]. For the explanation see
Table 4.3.

4.2 Protocol Analysis 9

Figure 4.2.: PayPal: Message Flow
picture taken from [13]

METHOD has to be SetExpressCheckout for this message
AMT* total cost for transaction
RETURNURL where to redirect the buyer when he decides to pay with PayPal
CANCELURL where to redirect the buyer after refusing to pay with PayPal
USER, PWD, SIGNATURE API values which have been entered in the Magento configuration
VERSION release number of the API

Table 4.1.: SetExpressCheckout - required parameters

4.2 Protocol Analysis 10

Figure 4.3.: PayPal: Reconstructed Message Flow with required parameters

4.2 Protocol Analysis 11

PAYMENTACTION* can be Sale, Authorization or Order
CURRENCYCODE* 3 character currency code, has to be persistent for

all following API calls when set
INVNUM* invoice or tracking number set by the shop
SOLUTIONTYPE can be Sole or Mark
GIROPAYSUCCESSURL, GIROPAYCANCELURL same as RETURNURL and CANCELURL but for giropay
BANKTXNPENDINGURL RETURNURL for bank transfers
SHIPPINGAMT* total shipping cost for this order
TAXAMT* sum of taxes for this order
NOSHIPPING possible values are 0, 1, 2
ITEMAMT* sum of item costs for this order
L_AMTn* Cost of the item number n
L_NAMEn* name of the item n
L_QTYn* quantity of the item n
BUTTONSOURCE identification code for third party apps to identify

transactions

Table 4.2.: SetExpressCheckout - optional parameters

TOKEN identifier for this transaction, is appended to RETURNURL and CANCELURL, ex-
pires after 3 hours

TIMESTAMP date and time in UTC/GMT format, stating when the API operation has been
carried out

CORRELATIONID unique identifier for this API invocation
ACK indicates success, warnings and errors
VERSION release number of the API
BUILD minor of the API

Table 4.3.: SetExpressCheckout - response parameters

4.2 Protocol Analysis 12

Message 1.b Magento answers with a redirect response containing the token towards PayPal.

Message 3.a The user follows the redirect to PayPal and transmits the token.

GET /cgi -bin/ webscr ?cmd=_express - checkout &token=EC -7 Y8263384F8650924
Host: www. sandbox . paypal .com

Message 3.b PayPal displays a login page and sets multiple cookies.
The most interesting one is x-csrf-jwt. The jwt part tells us that it is a JSON Web Token

(JWT) [20]. Another JWT is also transmitted as x-csrf-jwt header. We decode both JWTs using
[8]. The cookie decodes to the following values:

{
"typ ": "JWT",
"alg ": "HS256"

}
{

"token ": "
VKLiZJmxq3ev3x94aN9CDQyuS472c5WS9iqTnQ16G5Ds8zr5MHoH3crMqcbWU8ac8AYEBawUMc6j

SqwWwts0KikyCVHf1aGKQoi55h24idZ8Mibuv0gfDO2Fzvr2RN4LBNBYMgs -
scFAuBHF91aclCfjnOpSAfxMCAjltuCp7ILnIjL9I2uZUVGZIlS ",

"iat ": 1466945350 ,
"exp ": 1466948950

}

The header token decodes to:

{
"typ ": "JWT",
"alg ": "HS256"

}
{

"token ": " SzA6IOT25bbgXDK -
AofHTtX66b8Dh2KE8SRhYIH17UaI1WUPHvfIYzpM1UtChIkjuCAXqROTtbyuSKnLeS00zTI_CQch

Ag6yfqnbR -
cRZimXwb76NokpyZ1CpljwDEjglLPrEb1VkIAL5ftOQdXSifSk7GsCLgq2jLSoF_7gk5GVgq -
cg8UVwknTkWy ",

"iat ": 1466945350 ,
"exp ": 1466948950

}

We note that the typ, alg, iat and exp have the same values. Interestingly the tokens have
different values. The in-depth analysis of these JWTs is not part of this thesis and all following
JWTs will not be noted in the remaining messages.

Message 4.a The user enters his credentials and clicks on the login button.

4.2 Protocol Analysis 13

Both JWTs are transmitted as part of the request. The JSON part of the request contains the
email and password of the buyer and the token. The calc and csci parameters are not explained
and neither a search in the PayPal documentation nor a internet search yielded results.

Message 4.b PayPal tells the user that the login was successful.
PayPal sets a cookie login_email containing the email of the buyer. The nonce does not appear

in any other messages sent. The buyer_id is the unique payer identification. The value of calc

differs from the one in the previous message. For rlog and server no explanation can be found.
Our guess is that rlog specifies an unique indicator for this transaction in a logfile on the PayPal
servers and that server denotes which PayPal server was used for the transaction.

Message 5.a The browser automatically issues a request to PayPal. Without this request, the
token can not be authorized in a later step. We assume that this request is used to bind the token

to the ID of the account.

/ webapps / hermes /api/batch/ setbuyer
Host: www. sandbox . paypal .com

In the JSON part of the request, we find the three keywords eConsent, buyereligibility and
createCheckoutSession. The latter 2 are bound to this session by the token and are therefore
more interesting for further analysis.

Message 5.b PayPal shows the details of the transaction and requests its authorization.
For each of the keywords mentioned in Message 5.a, the response has an according answer section.

The most interesting one is createCheckoutSession. Under the plan and fundingOptions we
see the amount keyword.

Message 6.a The user authorizes the transaction.
The interesting part is the URI which contains the token:

POST / webapps / hermes /api/ checkout /EC -7 Y8263384F8650924 / session / authorize
Host: www. sandbox . paypal .com

Message 6.b PayPal confirms the authorization.

Message 7.a The browser issues a request to get an overview of the order with the token and
PayerID appended to the RETURNURL Magento provided in Message 2.a.

GET / paypal / express / return /? token=EC -7 Y8263384F8650924 & PayerID = VQAGGS4PDGA8A
Host: cloud.nds.rub.de :8109

4.2 Protocol Analysis 14

METHOD must be GetExpressCheckoutDetails
TOKEN
VERSION release number of the API
USER, PWD, SIGNATURE transmit the API values which have been entered in the configuration
BUTTONSOURCE identification code for third party apps to identify transactions

Table 4.4.: GetExpressCheckoutDetails - parameters

Message 8.a Magento issues a request to the PayPal API to get the transaction details.
The type of the request is GetExpressCheckoutDetails which can be seen by looking at the

method type. The according documentation can be found under [15]. For the explanation of the
parameters see Table 4.4.

Message 8.b PayPal responds with the details.
We explain only values that have not been already explained in Message 2.a and Message 2.b.

All parameters which are deprecated by a new parameter are sent along with the new parameter.
For the explanation see Table 4.5.

Message 7.b Magento answers with a redirect to the review page.

Message 9.a The browser requests the overview page.

Message 9.b Magento serves the overview page.

Message 10.a The user clicks on Place Order.

Message 11.a Magento signals the NVP API to do the transaction.
The final message that the server transmits to the PayPal NVP API is of type DoExpressCheckoutPayment

and is documented in [12].
We only explain values that have not been already explained in Message 2.a, Message 2.b, Message

8.a and Message 8.b. For the explanation of the parameters see Table 4.6, Table 4.7 and Table 4.8.

Message 11.b The PayPal NVP API confirms the transaction. For the explanation see Table 4.9.

Message 10.b Magento sends a redirect to the success page.

Message 12.a The browser requests the success page.

Message 12.b Magento serves the success page.

4.2 Protocol Analysis 15

BILLINGAGREEMENTACCEPTEDSTATUS indicator if the buyer accepted the billing
agreement for recurring payments

CHECKOUTSTATUS indicates checkout status, can be
any of PaymentActionNotInitiated,
PaymentActionFailed,
PaymentActionInProgress,
PaymentActionCompleted

EMAIL buyer email address
PAYERID unique identifier for this account
PAYERSTATUS can be verified or unverified
FIRSTNAME first name of buyer
LASTNAME last name of buyer
COUNTRYCODE two character indicator of country according to

ISO 3166
CURRENCYCODE,
PAYMENTREQUEST_0_CURRENCYCODE
AMT, PAYMENTREQUEST_0_AMT
ITEMAMT, PAYMENTREQUEST_0_ITEMAMT
SHIPPINGAMT,
PAYMENTREQUEST_0_SHIPPINGAMT
HANDLINGAMT,
PAYMENTREQUEST_0_HANDLINGAMT

handling costs for this order

TAXAMT, PAYMENTREQUEST_0_TAXAMT
INVNUM, PAYMENTREQUEST_0_INVNUM
INSURANCEAMT,
PAYMENTREQUEST_0_INSURANCEAMT

insurance costs for shipping

SHIPDISCAMT,
PAYMENTREQUEST_0_SHIPDISCAMT

shipping discount

PAYMENTREQUEST_0_SELLERPAYPALACCOUNTID seller email address
INSURANCEOPTIONOFFERED,
PAYMENTREQUEST_0_INSURANCEOPTIONOFFERED

indicator if insurance is available as checkout
option, can be false or true

ADDRESSTATUS,
PAYMENTREQUEST_0_ADDRESSSTATUS

can be none, Confirmed or Unconfirmed

L_NAMEn, L_PAYMENTREQUEST_0_NAME0
L_QTYn, L_PAYMENTREQUEST_0_QTY0
L_TAXAMT0, L_PAYMENTREQUEST_0_TAXAMT0
L_AMT0, L_PAYMENTREQUEST_0_AMT0
PAYMENTREQUESTINFO_0_ERRORCODE payment error code

Table 4.5.: GetExpressCheckoutDetails - response

4.2 Protocol Analysis 16

METHOD has to be DoExpressCheckoutPayment
TOKEN
PAYERID
AMT
VERSION release number of the API
USER name of user for the API
PWD password for the user of the API
SIGNATURE signature for the user of the API

Table 4.6.: DoExpressCheckoutPayment - required parameters

PAYMENTACTION
CURRENCYCODE if it was used in previous requests
L_NAMEn (required when L_PAYMENTREQUEST_n_ITEMCATEGORYm is passed)
L_QTYn (required when L_PAYMENTREQUEST_n_ITEMCATEGORYm is passed)
L_AMTn (required when L_PAYMENTREQUEST_n_ITEMCATEGORYm is passed)

Table 4.7.: DoExpressCheckoutPayment - conditional parameters

BUTTONSOURCE identification code for third party apps to identify transactions
NOTIFYURL URL for retrieving Instant Payment Notifications (IPN)
RETURNFMFDETAILS flag to indicate if you want to see the results of the Fraud Management

Filters (FMF)
SHIPPINGAMT
TAXAMT
EMAIL buyer email address
FIRSTNAME first name of buyer, Not documented
LASTNAME last name of buyer, Not documented
COUNTRYCODE country of buyer, Not documented
STREET Not documented
ADDROVERRIDE Not documented
ITEMAMT

Table 4.8.: DoExpressCheckoutPayment - optional parameters

4.2 Protocol Analysis 17

TOKEN
SUCCESSPAGEREDIRECTREQUESTED redirect the buyer to sign up for PayPal after

a successful transaction, can be false or true
TRANSACTIONID,
PAYMENTINFO_0_TRANSACTIONID

unique ID for this transaction

TRANSACTIONTYPE,
PAYMENTINFO_0_TRANSACTIONTYPE

can be cart or express-checkout

PAYMENTTYPE, PAYMENTINFO_0_PAYMENTTYPE can be none, echeck or instant
ORDERTIME, PAYMENTINFO_0_ORDERTIME timestamp of the payment
AMT, PAYMENTINFO_0_AMT
FEEAMT, PAYMENTINFO_0_FEEAMT PayPal fee deducted for this transaction
TAXAMT, PAYMENTINFO_0_TAXAMT
CURRENCYCODE,
PAYMENTINFO_0_CURRENCYCODE
PAYMENTSTATUS,
PAYMENTINFO_0_PAYMENTSTATUS

status of the payment

PENDINGREASON,
PAYMENTINFO_0_PENDINGREASON

reason the transaction is pending

REASONCODE, PAYMENTINFO_0_REASONCODE reason for a reversal
PROTECTIONELIGIBILITY,
PAYMENTINFO_0_PROTECTIONELIGIBILITY

indicates if the merchant is protected by Pay-
Pals merchant protection

PAYMENTINFO_0_PROTECTIONELIGIBILITYTYPE kind of protection
INSURANCEOPTIONSELECTED indicates if the buyer chose insurance, can be

true or false
SHIPPINGOPTIONISDEFAULT indicates if the buyer chose the default option,

can be true or false
PAYMENTINFO_n_SECUREMERCHANTACCOUNTID unique PayPal ID of the merchant
PAYMENTINFO_n_ERRORCODE payment error code
PAYMENTINFO_n_ACK specific error message

Table 4.9.: DoExpressCheckoutPayment - response

4.3 Security Analysis 18

4.3. Security Analysis

After analyzing the general protocol structure, we wish to analyze the security of the protocol.
The TOKEN is the parameter which holds the complete payment information and identifies a

finished payment at the shop. This makes it a very interesting target for attacks.
We develop several tests to identify in which ways the token can be attacked.

4.3.1. Test: Token Validity

In this test we determine if the token expires after the transaction has been authorized but the token
was not consumed. The idea is that a malicious shop could bruteforce tokens that are authorized
but have not been claimed by another shop. This can be the case if there is an error within the
order handling at the shop or if the return to the shop via Message 7.a is interrupted. According to
the documentation the token should only be valid for 3 hours [19]. We are successful if the token
is valid for a significantly longer time.

We follow the protocol until Message 11.a and intercept this message. We note the time and after
3 hours and 5 minutes to compensate for timing differences we forward the message. We receive
the following response:

... ACK= Success &...& PAYMENTINFO_0_ACK = Success ...

The ACK=Success part shows that the transaction has been completed successfully. We confirm
this by logging into our sandbox account on sandbox.paypal.com and viewing the transaction
history and notice that the transaction was completed.

Repeating the test after intercepting the message for 4 hours shows that the token is no longer
accepted. This means that the token expires roughly 3-4 hours after it has been issued.

4.3.2. Test: Unauthorized Token

For the next test we try if unauthorized tokens for which the buyer is already set, can be used in
the transaction. After the user logs in with his credentials, the buyer is automatically set for this
token. If we are able to complete the transaction without an authorized token, the protocol would
be fatally flawed because as soon as a user could be tricked to login into his paypal account it could
be completed. This means that a malicious shop does not have to wait for the explicit authorization
simply by having a user logging in to PayPal. For this test we complete one checkout completely
so that we have a valid example of Message 11.a. Then we perform a new checkout until Message
5.b and replace the old token with the token from the new checkout in the Message 11.a we wish
to repeat. If the response contains ACK=SUCCESS we have successfully bypassed the authorization.

PayPal responds with an error message stating that the token can not be used because it is not
authorized.

4.3 Security Analysis 19

4.3.3. Test: Token Swapping

Most attacks from [23] use the idea that the transaction token can be freely exchanged by another
one. Following these ideas we conduct several experiments in which we swap the currently used
token by another. It could for example be possible to put expensive items into a cart but override
the token with another one which was issued for cheap items in the cart, depending on the appli-
cation logic the shop could flag the expensive cart as paid because it received a valid token. This
would obviously incur a financial loss for the shop. For these types of token swapping attacks we
assume the attacker to be a malicious user. We consider these attacks successful if it is possible to
complete the order with a different token than the one which was issued by PayPal for this exact
transaction.

Inserting an old token, with which a transaction has already been completed, into the redirection
location of Message 1.b leads to PayPal showing a page which states that the transaction has
already been completed.

Inserting an old token into Message 7.a in order to bypass the check at PayPal makes Magento
throw an error which states that a wrong PayPal Express Checkout Token was specified.

For the next experiment we complete a checkout process until Message 9.b. Then we edit the
cart and change the amount of the item from 1 to 2. Next we click on the Checkout with PayPal

button which starts the protocol flow a second time. In Message 3.a from the new protocol flow we
insert the authorized token from the previous run. Magento responds with the same error message
as before.

Next, we try to swap the token sent in Message 1.b by another fresh token from another protocol
run. We can advance the protocol until Message 7.a where Magento issues the same error, stating
that a wrong PayPal Express Checkout Token was specified.

From these results we induce that once Magento receives the token in Message 2.b, it binds the
token to the user session internally and expects to receive this exact token. This effectively thwarts
all attacks that require the tokens to be exchangeable.

4.3.4. Test: PayerID Manipulation

For this test we manipulate the PayerID that is sent along with the token in Message 11.a. For
this test we use the malicious shop attacker model in combination with the malicious user attacker
model. By changing the PayerID to the PayerID of another account we hope to charge the customer
with the second PayerID instead of e.g. our own. If this is possible the attacker can repeatedly
authorize tokens for his account but change the PayerID to that of another customer in Message
11.a. This has as consequence that the shop can effectively steal money from accounts that never

4.3 Security Analysis 20

Figure 4.4.: PayPal: Authorization attack

participated in the transaction. We determine if this is successful by inspecting the answer of the
PayPal NVP API.

Fortunately PayPal recognizes the mismatch between the account who authorized the token and
the account which is given as source of the payment. This can be seen in the following response:

TIMESTAMP =2016%2 d09 %2 d25T14 %3 a58 %3 a39Z& CORRELATIONID = e7b89cc4a6c49 &ACK= Failure &
VERSION =72%2 e0&BUILD =25395022& L_ERRORCODE0 =10421& L_SHORTMESSAGE0 =This %20
Express %20 Checkout %20 session %20 belongs %20 to %20a%20 different %20 customer %2e&
L_LONGMESSAGE0=This%20Express%20Checkout%20session%20belongs%20to%20a%20different%20customer
%2e%20%20Token%20value%20mismatch%2e& L_SEVERITYCODE0 =Error

4.3.5. Attack: Authorization not bound to amount

The idea is to check if the authorization the user issues in Message 6.a is bound to the explicit
amount or if the amount itself is not part of the authorization. If the latter is the case then it is
possible for a malicious shop to charge more than the user was willing to pay. After a transaction
the user gets an confirmation email for the order in which the effective transmitted amount is
displayed. Considering that not all users check these confirmation emails for the correct amount,
the attack can go undetected for a long time. An attacker could also choose to charge only slightly
higher prices, e.g. 0.50 - 1€ in order to conceal the attack even better. For this test we complete
the checkout process until Message 11.a. We intercept this message and change the value of the AMT

parameter to 10 because this is the parameter that holds the information about the total amount
when the shop finally executes the transaction. Then we submit the modified message and inspect
the response in Message 11.b. If it contains ACK=SUCCESS and a manual check in the transaction
history of the used sandbox accounts shows the increased amount, the attack is successful.

The attack is successful because we get a response from PayPal which indicates success and the
manual verification in the account also shows that the increased amount was deduced from the
balance.

We visualize the attack in Figure 4.4.

4.3 Security Analysis 21

Original request:

TOKEN=EC -1 RL31436KF794245A & PAYERID = VQAGGS4PDGA8A & PAYMENTACTION =Sale&AMT=1.00&
CURRENCYCODE =EUR& BUTTONSOURCE = Magento_Cart_Community & NOTIFYURL =https %3A%2F%2
Fcloud .nds.rub.de%3 A8109 %2 Fpaypal %2 Fipn %2F& RETURNFMFDETAILS =1& SHIPPINGAMT
=0.00& ITEMAMT =1.00& TAXAMT =0.00& L_NAME0 =AES& L_QTY0 =1& L_AMT0 =1.00& EMAIL=
ssoanonym2 -magento -buyer %40 gmail.com& FIRSTNAME = magento & LASTNAME =buyer&
COUNTRYCODE =DE& STREET =& ADDROVERRIDE =1& METHOD = DoExpressCheckoutPayment & VERSION
=72.0& USER=ssoanonym2 -magento - merchant_api1 .gmail.com&PWD =6 HYBHXX97RZRVAZF &
SIGNATURE = AFcWxV21C7fd0v3bYYYRCpSSRl31AuhJAdthBWjCln7nvDtcTqvVH -sR

Modified request:

TOKEN=EC -1 RL31436KF794245A & PAYERID = VQAGGS4PDGA8A & PAYMENTACTION =Sale&AMT=10.00&
CURRENCYCODE =EUR& BUTTONSOURCE = Magento_Cart_Community & NOTIFYURL =https %3A%2F%2
Fcloud .nds.rub.de%3 A8109 %2 Fpaypal %2 Fipn %2F& RETURNFMFDETAILS =1& SHIPPINGAMT
=0.00& ITEMAMT =1.00& TAXAMT =0.00& L_NAME0 =AES& L_QTY0 =1& L_AMT0 =1.00& EMAIL=
ssoanonym2 -magento -buyer %40 gmail.com& FIRSTNAME = magento & LASTNAME =buyer&
COUNTRYCODE =DE& STREET =& ADDROVERRIDE =1& METHOD = DoExpressCheckoutPayment & VERSION
=72.0& USER=ssoanonym2 -magento - merchant_api1 .gmail.com&PWD =6 HYBHXX97RZRVAZF &
SIGNATURE = AFcWxV21C7fd0v3bYYYRCpSSRl31AuhJAdthBWjCln7nvDtcTqvVH -sR

Countermeasure The best countermeasure is to save the AMT the user authorized along with the
rest of the information on the PayPal servers and check the stored AMT against the AMT that is sent
in Message 11.a. If they do not match the transaction should be aborted because this indicates
that the user authorized an AMT that differs from the one the shop is trying to charge.

We notified PayPal about this vulnerability got the response that security issues in the sandbox
are not eligible for a bugbounty. Nevertheless they seem to have implemented a fix because after
testing the attack once again, we got the following response:

TOKEN=EC%2 d1RL31436KF794245A & SUCCESSPAGEREDIRECTREQUESTED =false& TIMESTAMP =2016%2
d09 %2 d21T10 %3 a54 %3 a56Z& CORRELATIONID =3 fe1bd92a1648 &ACK=Failure& VERSION =72%2 e0&
BUILD =000000& L_ERRORCODE0 =10413& L_SHORTMESSAGE0 = Transaction %20 refused %20
because %20 of %20 an %20 invalid %20 argument %2e%20 See %20 additional %20 error %20
messages %20 for %20 details %2e&
L_LONGMESSAGE0=The%20totals%20of%20the%20cart%20item%20amounts%20do%20not%20match%20order
%20amounts

In particular L_LONGMESSAGE0 states that the total of the cart does not match the total of the
order. This still leaves the question if the production API is vulnerable to the attack. We suspect
that even if it was vulnerable they will have fixed it by now.

5. Woocommerce’s PayPal Payments Standard
Integration

5.1. Testing Environment

The testing environment is the same as for Magento, consisting of the same virtual machine, this
time with Woocommerce 2.6.1 installed. We set a global proxy for outgoing requests by adding the
following lines to wp-config.php which can be found in the root directory of Wordpress:

define (’ WP_PROXY_HOST ’, ’127.0.0.1 ’);
define (’ WP_PROXY_PORT ’, ’8082 ’);

Again we have to disable the SSL verification so that we can man-in-the-middle the connection be-
tween PayPal andWoocommerce. To this end we modify the file /var/www/wp-includes/class-http.php

and change line 197 from true to false:
’sslverify ’ => false ,

We forward the port 8082 by issuing the following command:
ssh -N -R 8082: localhost :8082 <IP of Virtual Machine >

We are not able to intercept Message 6.a because the request is coming from PayPal directly.
To proxy it nevertheless we use a clever trick.

The trick requires us to add the following line to /etc/ssh/sshd_config because SSH does not
forward remote incoming connections per default:

GatewayPorts yes

We restart sshd to enable this option.

For the trick itself we first create a Burp proxy listener on port 8083. Next we modify the port
of the notifyurl in Message 1.b to 40109 which gets forwarded to our VM on port 40000. Finally
we forward port 40000 from the VM to our local Burp instance by issuing the following command:

ssh -N -R 40000: localhost :8083 <IP of Virtual Machine >

After intercepting and tampering with the request we have to forward it to the original destination
at the VM, otherwise Woocommerce will not continue the checkout process.

Figure 5.1 illustrates the finished setup.

5.2 Protocol Analysis 23

Figure 5.1.: Woocommerce setup with Burp
Burp icon taken from [3]

5.2. Protocol Analysis

After noticing in our initial tests thatWoocommerce does not have any information that the payment
has been completed because the checkout process finished even if we do not visit the return-page
of the shop, we concluded that there has to be a mechanism that notifies Woocommerce about the
successful payment. In the settings of the PayPal checkout integration of Woocommerce we found
the following message beneath the Debug Log option:

Log PayPal events , such as IPN requests , inside /var/www/ wordpress /wp - content /
uploads /wc -logs/paypal -8 e798d4985e2806d18016f2d3abaaffa .log

By entering PayPal IPN into our favourite search machine, we quickly found an explanation
[16]. There it also states that 4 messages are exchanged to deliver the payment notification. We
integrate these 4 messages as messages Message 6.a, Message 6.b, Message 7.a and Message 6.a into
our diagram.

By applying our methodology, we are able to reconstruct the message flow along with the required
parameters which can be seen in Figure 5.2.

5.2.1. Explanation of individual messages

The messages are now explained by stepping through one example checkout process.

Message 1.a The user clicks the checkout button after having filled in the billing details which
consist of First Name, Last Name, Email Address, Phone, Country, Address, Postcode and Town,
which are then transmitted to Woocommerce.

5.2 Protocol Analysis 24

Figure 5.2.: PayPal: Reconstructed Message Flow with required Parameters

test_ipn=1 indicates that this message is used for testing and sent to the sandbox
cmd=_cart shopping cart
upload tells PayPal, that a shopping cart from a third party is uploaded
business PayPalID or associated email address of the merchant
item_name_x item name for item x, use 1 to specify name for the whole cart
amount_x amount for item x, use 1 to specify amount for the whole cart
no_note whether the buyer can send a note to the seller or not

Table 5.1.: Redirect to PayPal - required parameters

Message 1.b The server responds with a message which triggers an AJAX redirect to PayPal.
The redirect URL contains all the information needed to complete the checkout, the parameters
are explained in the next message.

Message 2.a The user follows the redirect and sends a request to PayPal. After searching for
no_note on developer.paypal.com we found [7] which explains the meaning of all variables. The
explanation of the individual variables is taken from there and additionally from [16]. For the
explanation see Table 5.1 and Table 5.2.

Message 2.b PayPal responds with a redirect. The parameters of the redirectURL are explained
in the next message.

Message 3.a The user follows the redirect. We are not able to find a documentation for cmd=_flow,
SESSION or dispatch in the PayPal documentation.
We assume that the redirect is made so that PayPal can bind the transaction to a unique identifier.
The occurrence of dispatch with the exact same value in later messages makes it plausible that
this is the parameter the transaction is bound to. Tampering with either one leads to an error and
checkout can not be completed.

Message 3.b PayPal delivers the login page.

developer.paypal.com

5.2 Protocol Analysis 25

quantity_x quantity of item number x, not needed when
used for complete cart

currency_code currency used for the payment, defaults to USD
charset set character encoding for the billing informa-

tion and PayPal Login page
return where to redirect the user after a successful

transaction
rm sets the return method for the return param-

eter, defaults to 0
cancel_return where to redirect the user when the checkout is

canceled
page_style page style for checkout pages
paymentaction indicate if the payment is for a final sale or a

authorization for a final sale
bn identifier for the source of the button click
invoice pass-through variable to identify this order for

the shop application
custom variable which is passed back to the merchant

via the IPN message
notify_url target URL for IPN messages
first_name, last_name, company,
address1, address2, city, state,
zip, country, email, night_phone_b,
day_phone_b

used to fill out the buyer information automat-
ically

no_shipping whether to prompt for a shipping address or
not

item_number pass-through variable to track the order, passed
back on payment completion

Table 5.2.: Redirect to PayPal - optional parameters

5.2 Protocol Analysis 26

Message 4.a The user logs in with his credentials.
dispatch and currentDispatch contain the previous dispatch variable, which is also transmitted
via GET parameter. The value of the SESSION variable is transmitted as currentSession.

Message 4.b PayPal presents the user with a choice of payment options.

Message 5.a The user chooses to use his PayPal Balance for this transaction. dispatch can be
found as part of the POST URL, currentDispatch and dispatch parameter as part of the body.

After this message, no more user interaction is required for the checkout to complete, thus we
leave out the rest of the messages which are submitted to or from the user.

Message 6.a PayPal sends a Instant Payment Notification (IPN) to Woocommerce. The IPN
message for this example checkout contains the parameters which are explained in Table 5.3. They
are explained according to [17].

Message 6.b According to [16], Woocommerce answers with an empty response to advance the
IPN protocol. We are not able to confirm this behavior as we neither saw this message in Burp nor
found evidence for this message in the source code of Woocommerce.

Message 7.a Woocommerce sets cmd=_notify_validate as the first parameter of the message,
adds the contents of Message 6.a and sends it back to PayPal for verification, as evidenced by [16].

The only parameters that are not checked are the following:

• ipn_track_id

• mc_handling1

• mc_shipping1

• tax1

• mc_gross_1

• test_ipn

This means that all the essential parameters we want to tamper with, e.g. quantities and prices,
are protected.

Message 7.b According to [16], PayPal checks if the contents are identical with the contents it
sent in Message 6.a and responds with VERIFIED if this is the case. Otherwise the response is
INVALID.

Woocommerce does some checks on the IPN parameters against the information stored in the order.
Additionally to our methodology we found these conditions by checking the source code of:

5.2 Protocol Analysis 27

mc_gross total amount of the payment before substraction of the transaction
fee

invoice pass-through variable to identify this order for the shop application
protection_eligibility seller protection type
item_numberx Pass-through variable to track the purchase
payer_id unique customer ID
tax amount of tax
payment_date timestamp of the payment
payment_status status of the payment
charset character set
mc_shipping total shipping amount
mc_handling total handling amount
first_name first name of the customer
mc_fee transaction fee
notify_version version number
custom variable which is passed back to the merchant via the IPN message
payer_status whether the payer has verified his account
business PayPalID or associated email address
num_cart number of items in the PayPal shopping cart
mc_handlingx handling amount of item number x
verify_sign Encrypted string used to validate the authenticity of the transaction
payer_email email address of the customer
mc_shippingx shipping amount of item number x
taxx tax amount of item number x
txn_id transaction identifier for this transaction
payment_type type of the payment
last_name last name of the customer
item_namex name of item number x
receiver_email primary email address of the recipient
payment_fee only used for USD
quantityx amount of items number x
receiver_id unique ID of the recipient
txn_type kind of transaction for which the message was sent
mc_gross_x amount of the payment for item number x
mc_currency currency of the payment
residence_country ISO 3166 country code
test_ipn whether this is a test message or not
transaction_subject
payment_gross only used for USD
ipn_track_id only for internal use for PayPal

Table 5.3.: PayPal IPN message - parameters

5.2 Protocol Analysis 28

/var/www/ wordpress /wp - content / plugins / woocommerce / includes / gateways / paypal /
includes /class -wc -gateway -paypal -ipn - handler .php

In particular the following conditions are checked:
The response from PayPal has to be VERIFIED.
txn_type has to be conform with the one specified in the order, in our case this is cart.
mc_currency has to be the same as in the order.
mc_gross which denotes the overall amount of the transaction has to be the same as specified in
the order.
receiver_email has to be the email of the merchant.
If any of these checks fail Woocommerce automatically places the order on hold.

5.3 Security Analysis 29

Figure 5.3.: PayPal: tampered amount and quantity

5.3. Security Analysis

We have already seen that both PayPal and Woocommerce perform various checks on the param-
eters. This means that we cannot tamper with messages Message 6.a, Message 6.b, Message 7.a or
Message 7.b. This limits the scope of our testing to Message 2.a.
We cannot tamper with the parameters cmd, currency_code and business because they are com-
pared against the values txn_type mc_currency, and receiver_email respectively, which are
stored by Woocommerce on a per order basis. The parameter mc_gross is also compared with the
result from the IPN message. We assume that the gross of the total order is calculated by PayPal
by computing the sum of all quantity_x times amount_x for all items x. This assumption leads us
to the first test.

5.3.1. Test: Tampering with quantity and amount

The idea is to change the quantity and amount of the items in Message 2.a in way that the overall
gross stays the same. If the checkout process completes successfully we can use the discrepancy
between which items are shown to the user and which items are bought for further attacks. For
this test we do not need a specific attacker model. We follow the normal checkout process until
Message 2.a and intercept this message. We change the value of the following parameters from

amount_1 =1.00
quantity_1 =1

to:

amount_1 =0.50
quantity_1 =2

The corresponding login page at PayPal is shown in Figure 5.3.
We complete the checkout process and notice that Woocommerce automatically advances the

order. The results of this test can be used in the following attack.

5.3 Security Analysis 30

5.3.2. Attack: Foreign Payment for your Order

The idea of this attack is to let another user pay for your order. For this attack we use the CSRF-
attacker that wants to checkout his cart at the shop and we can trick the user into authorizing the
transaction because the cart is something that he would buy for himself. The attacker follows the
checkout process until Message 2.a and intercepts this message which transmits the information
that is needed for the checkout. He then uses the target of the GET request to construct a link that
points to this exact location. If a user clicks on the link the attacker provided, he will be redirected
to PayPal and see the cart that the attacker wishes to checkout. A sample attacker cart can be
seen in Figure 5.4a. This cart is not very convincing since it shows the items that the attacker
wants to buy. Luckily the item_name_1 is not checked by Woocommerce and we can freely set the
name of the item. In fact we could also add additional items, as long as the individual prices and
amounts are adapted so that the overall gross stays the same.
Assume that the attacker loves cryptography and wants to check out one item of type AES. Further
assume that we have an user who likes chocolate. The attacker can now tamper with section 5.2.1
so that instead of one item of type AES for a price of 1€, the cart will show one item of type
Chocolate 1 for a price of 0.50€ and one item of type Chocolate 2 for a price of another 0.50€.
In the crafting process the attacker changes the following parameters:

item_name_1 = Chocolate +1
quantity_1 =1
amount_1 =0.50

Furthermore he adds the following new parameters:

item_name_2 = Chocolate +2
quantity_2 =1
amount_2 =0.50

To not confuse the user, the attacker also strips out the parameter item_number_1.
As a result the user is presented with the cart that is shown in Figure 5.4b.

The checkout completes successfully because Woocommerce does not check individual items,
amounts and prices but only compares the total amounts of the orders.

Countermeasure An obvious countermeasure for Woocommerce is to check if the items, quantities
and amounts of the order are the same that PayPal transmits in Message 6.a. Should this not be
the case, Woocommerce has to hold the automatic processing of the order and notify PayPal about
the discrepancy of the order. PayPal in turn should revert the transaction immediately. This
countermeasure does not defend against against tricking the user into paying for the exact same
cart that the attacker wants.

5.3 Security Analysis 31

(a) PayPal: attacker cart (b) PayPal: masqueraded attacker cart

Figure 5.4.: PayPal cart representation

6. Conclusion

In this thesis we analyzed the integration of one Cashier-as-Service solution in two different self-
hostable webshops. After collecting information about various webshop solutions, we analyzed
Magentos integration of PayPals Express Checkout and Woocommerces integration of PayPal Pay-
ments Standard. Before the analysis of the underlying protocols we had to recover the protocols.
For this purpose we developed a methodology for the recovery of an unknown protocol. After
having successfully recovered the respective protocols we analyzed them.
The protocols have in common that the critical information about the payment in not transmitted
via the user but via a direct channel between PayPal and the shop. This is an improvement from
the mechanisms of the past in which the user could often tamper with the payment information as
seen in [23].
While Magento and Woocommerce have checks in place to prevent common attacks, we found that
PayPal has a vulnerability in their payment authorization when using the attacker model malicious
shop. The vulnerability made it possible for an malicious shop to deduct an arbitrary amount from
the PayPal account of the victim. We notified PayPal about this issue and got as answer that
vulnerabilities in the sandbox are not eligible for a bugbounty. Although in the mean time they
seem to have implemented a fix.
In the case of Woocommerce we found an attack that lets an attacker change the appearance of the
shopping cart at PayPal. By shaping the appearance to another cart that a victim is likely to buy,
the attacker can let another user pay for his shopping via phishing. The only limitation is that the
total amount of the transaction has to be the same.
These vulnerabilities show that even among the most popular CaaS and webshops there are still
issues regarding a safe implementation. From these results we expect that lesser known shops and
cashiers have even more critical flaws.

Future Work
Please note that the analysis was conducted against PayPals Sandbox API which can differ from

the production API. This means that the malicious shop attack must also be validated against the
real API.
Further research can be conducted by looking into the integration of Magento and Woocommerce
or other webshops with different Cashier-as-a-Service providers, e.g. Amazon. Another topic are
shop-hosting solutions like shopify [22]. Also PayPals authentication and authorization process has
to be researched in detail.

Appendix 34

A.1 Spreadsheet Excerpt 35

A. Appendix

A.1. Spreadsheet Excerpt

N
am

e
L

ic
en

se
P

ro
g

ra
m

m
in

g
 L

an
g

u
ag

e
P

o
p

u
la

ri
ty

 o
n

 d
at

an
yz

e
P

o
p

u
la

ri
ty

 o
n

 b
u

ilt
w

it
h

P
o

p
u

la
ri

ty
 o

n
 w

ap
p

al
yz

er
M

ea
n

M
ax

im
u

m
C

o
m

m
en

ts
W

oo
C

om
m

er
ce

G
P

Lv
3

P
H

P
23

.7
0%

19
.0

0%
31

.0
0%

24
.5

7%
31

.0
0%

W
or

dp
re

ss
-b

as
ed

M
ag

en
to

 C
om

m
un

ity
 E

di
tio

n
O

S
Lv

3.
0

P
H

P
22

.0
0%

14
.0

0%
19

.0
0%

18
.3

3%
22

.0
0%

O
pe

nC
ar

t
G

P
Lv

3
P

H
P

2.
30

%
N

/A
10

.0
0%

4.
10

%
10

.0
0%

P
re

st
aS

ho
p

O
S

Lv
3.

0
P

H
P

5.
60

%
N

/A
10

.0
0%

5.
20

%
10

.0
0%

V
irt

ue
M

ar
t

G
P

Lv
?

P
H

P
4.

30
%

N
/A

N
/A

1.
43

%
4.

30
%

Jo
om

la
!-

ba
se

d
os

C
om

m
er

ce
 O

nl
in

e
M

er
ch

an
t

G
P

Lv
2

P
H

P
2.

40
%

N
/A

3.
00

%
1.

80
%

3.
00

%
X

-C
ar

t (
w

as
 L

ite
C

om
m

er
ce

)
P

H
P

0.
80

%
N

/A
N

/A
0.

27
%

0.
80

%

Z
en

 C
ar

t
G

P
Lv

2
P

H
P

0.
70

%
N

/A
N

/A
0.

23
%

0.
70

%
S

ho
pw

ar
e

D
ua

l l
ic

en
se

 A
G

P
L

v3
 /

P
ro

pr
ie

ta
ry

P
H

P
0.

70
%

N
/A

N
/A

0.
23

%
0.

70
%

no
pC

om
m

er
ce

N
P

Lv
3

(G
P

Lv
3

+
 A

dd
iti

on
s)

A
S

P.
N

E
T,

 .N
E

T,
 C

#
0.

50
%

N
/A

N
/A

0.
17

%
0.

50
%

W
P

 e
-C

om
m

er
ce

G
P

Lv
2

P
H

P
0.

40
%

N
/A

N
/A

0.
13

%
0.

40
%

W
or

dp
re

ss
-b

as
ed

S
pr

ee
 C

om
m

er
ce

N
ew

 B
S

D
 L

ic
en

se
R

ub
y

on
 R

ai
ls

0.
30

%
N

/A
N

/A
0.

10
%

0.
30

%
D

ru
pa

l C
om

m
er

ce
G

P
Lv

2
P

H
P

?
N

/A
N

/A
N

/A
N

/A
N

/A
si

m
pl

eC
ar

t
D

L:
 M

IT
, G

P
L

JS
, H

T
M

L
N

/A
N

/A
N

/A
N

/A
N

/A
S

ho
op

A
G

P
Lv

3
D

ja
ng

o,
 P

yt
ho

n
N

/A
N

/A
N

/A
N

/A
N

/A
B

ro
ad

le
af

C
om

m
er

ce
A

pa
ch

ev
2

S
pr

in
g

F
ra

m
ew

or
k,

 J
av

a
N

/A
N

/A
N

/A
N

/A
N

/A
A

F
C

om
m

er
ce

?
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

to
m

at
o

C
ar

t
G

P
Lv

3
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

no
t u

pd
at

ed
 s

in
ce

 2
01

2
C

ub
eC

ar
t

G
P

Lv
3

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
K

on
aK

ar
t

cu
st

om
 L

ic
en

se
Ja

va
N

/A
N

/A
N

/A
N

/A
N

/A
Ja

da
S

ite
G

P
Lv

3
Ja

va
N

/A
N

/A
N

/A
N

/A
N

/A
no

t u
pd

at
ed

 s
in

ce
 2

01
2

sh
op

iz
er

LG
P

Lv
2.

1
JA

V
A

N
/A

N
/A

N
/A

N
/A

N
/A

S
of

tS
la

te
 C

E
A

pa
ch

ev
2

JA
V

A
N

/A
N

/A
N

/A
N

/A
N

/A
pi

m
co

re
G

P
Lv

3
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

ic
es

ho
p

N
/A

N
/A

N
/A

N
/A

N
/A

Li
ve

C
ar

t
O

S
Lv

3.
0

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
no

t u
pd

at
ed

 s
in

ce
 2

01
1

V
ev

oC
ar

t C
E

C
us

to
m

 L
ic

en
se

, V
ev

oC
ar

t
A

S
P.

N
E

T,
 C

#
N

/A
N

/A
N

/A
N

/A
N

/A
A

ba
nt

eC
ar

t
O

S
Lv

3.
0

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
G

oC
ar

t
O

S
Lv

3.
0

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
G

ra
nd

N
od

e
G

P
Lv

3
+

 n
op

C
om

m
er

ce
 P

ub
lic

 L
ic

en
ce

 3
.0

A
S

P.
N

E
T,

 C
#

N
/A

N
/A

N
/A

N
/A

N
/A

Ye
sC

ar
t

A
pa

ch
ev

2
JA

V
A

N
/A

N
/A

N
/A

N
/A

N
/A

C
ar

t4
2

A
G

P
Lv

3
A

S
P.

N
E

T,
 C

#
N

/A
N

/A
N

/A
N

/A
N

/A
S

ee
m

s
ab

an
do

ne
d

A
ra

st
ta

G
P

Lv
3

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A

V
irt

o
C

om
m

er
ce

A
S

P.
N

E
T,

 C
#

N
/A

N
/A

N
/A

N
/A

N
/A

Lo
ad

ed
 C

om
m

er
ce

G
P

Lv
2

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
S

pr
yk

er
cu

st
om

 L
ic

en
se

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
T

he
lia

LG
P

Lv
3

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
B

at
av

i
G

P
Lv

2
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

no
t u

pd
at

ed
 s

in
ce

 2
01

3
Ji

go
sh

op
G

P
Lv

3
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

W
or

dp
re

ss
-b

as
ed

U
be

rc
ar

t
G

P
Lv

2
P

H
P

N
/A

N
/A

N
/A

N
/A

N
/A

D
ru

pa
l-b

as
ed

R
ok

Q
ui

ck
C

ar
t

G
P

Lv
2

or
 la

te
r

P
H

P
N

/A
N

/A
N

/A
N

/A
N

/A
D

ru
pa

l-b
as

ed

V
C

O
S

L
(O

S
Lv

3
+

 A
dd

iti
on

s)

Figure A.1.: Spreadsheet Excerpt - Open source solutions ordered by maximum popularity

Bibliography

[1] D. Akhawe et al. “Towards a Formal Foundation of Web Security”. In: Proc. 23rd IEEE
Computer Security Foundations Symp. July 2010, pp. 290–304. doi: 10.1109/CSF.2010.27.

[2] BuiltWith Technology Lookup. url: https : / / trends . builtwith . com / shop (visited on
2016-05-08).

[3] Burp Icon. url: http://forum.portswigger.net/thread/1188/icon-make-burp-pretty-
dock (visited on 2016-09-22).

[4] Burp Suite. url: https://portswigger.net/burp/.
[5] Cart2Cart - Automated Shopping Cart Migration Service. url: http://www.shopping-cart-

migration.com/supported-carts (visited on 2016-05-08).
[6] Datanyze. url: http://www.datanyze.com/market- share/e- commerce- platforms/

Alexa%20top%201M (visited on 2016-05-08).
[7] HTML Variables for PayPal Payments Standard. url: https://developer.paypal.com/

docs / classic / button - manager / integration - guide / ButtonManagerHTMLVariables/
(visited on 2016-08-02).

[8] jwt.io JSON Web Token Decoder. url: https://jwt.io/ (visited on 2016-07-17).
[9] Christian Mainka, Vladislav Mladenov, et al. “Do not trust me: Using malicious IdPs for

analyzing and attacking Single Sign-On”. In: 2016 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE. 2016, pp. 321–336.

[10] OpenID. url: https://openid.net/ (visited on 2016-07-16).
[11] paydirekt. url: https://www.paydirekt.de/kaeufer/index.html (visited on 2016-09-10).
[12] PayPal: DoExpressCheckoutPayment API. url: https://developer.paypal.com/docs/

classic/api/merchant/DoExpressCheckoutPayment_API_Operation_NVP/ (visited on
2016-06-26).

[13] PayPal: Express Checkout Overview. url: https://developer.paypal.com/docs/classic/
express-checkout/overview-ec/ (visited on 2016-06-13).

[14] PayPal FAQ: CorrelationID. url: https://www.paypal- knowledge.com/infocenter/
index?page=content&widgetview=true&id=FAQ1087 (visited on 2016-06-26).

[15] PayPal: GetExpressCheckoutDetails API. url: https://developer.paypal.com/docs/
classic/api/merchant/GetExpressCheckoutDetails_API_Operation_NVP/ (visited on
2016-06-25).

[16] PayPal: Instant Payment Notification (IPN). url: https://developer.paypal.com/docs/
classic/ipn/integration-guide/IPNIntro/ (visited on 2016-07-30).

[17] PayPal: NVP and PDT Variables. url: https://developer.paypal.com/docs/classic/
ipn/integration-guide/IPNandPDTVariables/ (visited on 2016-08-08).

http://dx.doi.org/10.1109/CSF.2010.27
https://trends.builtwith.com/shop
http://forum.portswigger.net/thread/1188/icon-make-burp-pretty-dock
http://forum.portswigger.net/thread/1188/icon-make-burp-pretty-dock
https://portswigger.net/burp/
http://www.shopping-cart-migration.com/supported-carts
http://www.shopping-cart-migration.com/supported-carts
http://www.datanyze.com/market-share/e-commerce-platforms/Alexa%20top%201M
http://www.datanyze.com/market-share/e-commerce-platforms/Alexa%20top%201M
https://developer.paypal.com/docs/classic/button-manager/integration-guide/ButtonManagerHTMLVariables/
https://developer.paypal.com/docs/classic/button-manager/integration-guide/ButtonManagerHTMLVariables/
https://jwt.io/
https://openid.net/
https://www.paydirekt.de/kaeufer/index.html
https://developer.paypal.com/docs/classic/api/merchant/DoExpressCheckoutPayment_API_Operation_NVP/
https://developer.paypal.com/docs/classic/api/merchant/DoExpressCheckoutPayment_API_Operation_NVP/
https://developer.paypal.com/docs/classic/express-checkout/overview-ec/
https://developer.paypal.com/docs/classic/express-checkout/overview-ec/
https://www.paypal-knowledge.com/infocenter/index?page=content&widgetview=true&id=FAQ1087
https://www.paypal-knowledge.com/infocenter/index?page=content&widgetview=true&id=FAQ1087
https://developer.paypal.com/docs/classic/api/merchant/GetExpressCheckoutDetails_API_Operation_NVP/
https://developer.paypal.com/docs/classic/api/merchant/GetExpressCheckoutDetails_API_Operation_NVP/
https://developer.paypal.com/docs/classic/ipn/integration-guide/IPNIntro/
https://developer.paypal.com/docs/classic/ipn/integration-guide/IPNIntro/
https://developer.paypal.com/docs/classic/ipn/integration-guide/IPNandPDTVariables/
https://developer.paypal.com/docs/classic/ipn/integration-guide/IPNandPDTVariables/

Bibliography 37

[18] PayPal: NVP API. url: https://developer.paypal.com/webapps/developer/docs/
classic/api/NVPAPIOverview/ (visited on 2016-06-25).

[19] PayPal: SetExpressCheckout API. url: https://developer.paypal.com/docs/classic/
api/merchant/SetExpressCheckout_API_Operation_NVP/ (visited on 2016-06-25).

[20] RFC 7519 - JSON Web Token (JWT). url: https://tools.ietf.org/html/rfc7519
(visited on 2016-07-17).

[21] SAML. url: https://www.oasis- open.org/committees/tc_home.php?wg_abbrev=
security (visited on 2016-07-17).

[22] Shopify. url: https://www.shopify.com/.
[23] Rui Wang et al. “How to Shop for Free Online–Security Analysis of Cashier-as-a-Service Based

Web Stores”. In: 2011 IEEE Symposium on Security and Privacy. IEEE. 2011, pp. 465–480.
[24] Wappalyzer. url: https://wappalyzer.com/categories/ecommerce (visited on 2016-05-08).
[25] Stefan Weinfurtner et al. “Erfolgsfaktor Payment–Der Einfluss der Zahlungsverfahren auf

Ihren Umsatz”. In: Aktuelle Ergebnisse zum Bezahlverhalten der Endkunden aus dem Projekt
E-Commerce-Leitfaden, 2nd ed., ibi research, Regensburg (2013).

https://developer.paypal.com/webapps/developer/docs/classic/api/NVPAPIOverview/
https://developer.paypal.com/webapps/developer/docs/classic/api/NVPAPIOverview/
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/
https://tools.ietf.org/html/rfc7519
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.shopify.com/
https://wappalyzer.com/categories/ecommerce

	List of Figures
	List of Tables
	Introduction and Motivation
	Overview
	Overview of Webshops
	Overview of Cashiers
	Selection of Webshops and Cashiers

	Methodology
	Magento's PayPal's Express Checkout Integration
	Testing Environment
	Protocol Analysis
	Security Analysis

	Woocommerce's PayPal Payments Standard Integration
	Testing Environment
	Protocol Analysis
	Security Analysis

	Conclusion
	Appendix
	Spreadsheet Excerpt

	Bibliography

