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Abstract
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1 Introduction

1.1 Motivation

The protocol framework of Transport Layer Security (TLS) [18] serves as fundamental primitive for
WWW security and has fostered to the most valuable cryptographic protocol family in practice.
The TLS protocol suites enable applications to communicate across a distributed network in a
way that endpoint authentication and transmission privacy is guaranteed. Prominent examples
include tunneling to create a virtual private network, protect Internet phone calls, and secure the
rich facets of multi-party Internet applications, such as online banking, electronic commerce or
federated identity management, just to name a few.

The main goal of this paper is to provide a rigorous and generic analysis of TLS’s cryptograph-
ically relevant parts of the protocol framework, namely the handshake and record-layer protocols.
Given the wide deployment of TLS and the fact that it has been designed as contemporary cryp-
tography started to explore provable security, it is natural that this analysis is of high, practical
interest. Since TLS has already been investigated with respect to certain cryptographic primitives
and protocol abstractions (see below), a general belief is that the framework is secure. Yet, there
is no security proof of the entire TLS protocol in a solid framework and a careful observation of
TLS’s subtleties in the various modes provided by the different cipher suites. However, such a proof
would significantly contribute to the analysis of complex protocols executed on top of TLS.

Our analysis is carried out in the meanwhile classical model of Universally Composable (UC)
security [5] which guarantees protocol security under general composition with arbitrary other
protocols. This valuable property stimulated the search for universal protocol design techniques
and their realizations [8, 10, 27, 30, 14, 15]. On the other hand, there are important impossibility
results [8, 31] so that a security proof of TLS in this model is neither obvious nor trivial. Our
work particularly continues the way of Canetti’s and Krawczyk’s consideration of the Σ-protocol
underlying the signature based modes in IPSec [12] and their model to build up secure channels [13]
in the UC model with the exception that instead of proving single modes, we utilize UC as technique
to prove the complete protocol secure in a single proof. Applied to the analysis of TLS, it includes
Diffie-Hellman and encrypted key transport in the uni- or bi-directional model of authentication
which are part of the TLS handshake, and their emulation to build secure communication protocols
realized by the additional TLS record layer.

The most relevant question is how to reduce the complexity of the proof. Is it possible to unitize
TLS in meaningful protocol fragments such that the composition theorem allows for an efficient
protocol reformulation in the hybrid model? That means, can we define ideal functionalities that
capture the cryptographic task of some of its fragments and simply reuse these functionalities with
the next fragment? Otherwise, a composite analysis would not make sense so that we could switch
to stand-alone protocol proofs. Fortunately, we answer the questions in the positive. To this end,
we introduce two ideal functionalities, dubbed the universal key exchange and universal secure com-
munication sessions. The functionalities are “universal” in the sense that they emulate different
key establishment methods and modes of authentication in a self-contained definition. In contrast
with the formulation in the post-specified setting as used for the analysis of the Σ-protocol in [12]
or more recently in [34], where the peer identities are disclosed during the protocol execution, in
the responder authenticated setting the server identity is publicly known at the start. However, in
TLS the client identity may remain undisclosed at the end of the protocol implying the anonymous
uni-directional model of authentication which is of prime interest for anonymous user authenti-
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cation [41]. In which case, the client reveals its own identity and authenticates using a password
which is triggered over a higher-layer protocol on top of TLS (e.g. HTTPS, FTPS). These construc-
tions constitute the layered Internet approach for designing network security protocols. However,
the protocols significantly differ from universally composable password-based authenticated chan-
nels [10, 21]. Here, the adversary can attack the composed protocol (e.g. [39, 22, 32]). We show
that the TLS framework including the different modes securely emulates the universal secure ses-
sions functionality in the presence of non-adaptive adversaries. Our result can significantly simplify
security proofs of higher-layer protocols by employing the composition theorem. We are not aware
of any prior work that evaluates the essential composability property of TLS.

1.2 Related Work

Because of its eminent role the TLS framework has been repeatedly peer-reviewed. Schneier and
Wagner [40] gave the first informal analysis in the core specification. Bleichenbacher [4] found some
weaknesses in the PKCS#1 standard for RSA encryption as used with some SSL 3.0 handshake
protocols.1 Jonsson and Kaliski [29] showed that the encryption in the revised PKCS#1.5 standard
is secure against chosen cipher attacks in the Random Oracle Model. Krawczyk [33] analyzed the
composition of symmetric authentication and encryption to establish a secure communication chan-
nel with TLS record layer protocols and found some problems in the case of general composition.
However, these do not apply to the standard cipher suites.

Apart from the analysis of some cryptographic primitives, a line of research addressed the
analysis of dedicated TLS protocols on the basis of cryptographic abstractions to allow automated
proof techniques. Paulson [38] gave an inductive analysis of a simplified version of TLS, using the
theorem proving tool Isabelle. Mitchell, Shmatikov, and Stern [35] checked TLS, using the finite-
state enumeration tool named Murphφ. Ogata and Futatsugi [37] used the interactive theorem
prover OTS/CafeObj to check a simplified version of the key transport handshake protocol through
equational reasoning. He et al. [26] provided a proof of correctness of TLS in conjunction with the
IEEE 802.11i wireless networking protocol, using the Protocol Composition Logic. The drawback
these tool-supported approaches currently share is that the proofs are considerably simplified. They
follow the Dolev-Yao model [19] which represents cryptography as term algebras and abstracts away
the comprehensiveness of the adversary such that the proofs are not known to be cryptographically
sound.

Very recently, Morrissey et al. [36] analyzed in an independent and yet unpublished work the
modularity of a TLS-related handshake protocol in a game-based style. The handshake is not ex-
actly conform with the core TLS specification [18] and considers not all protocol variants. Their
work focuses on a generic proof of the iterated session key constructions. By contrast, our work
is of independent interest and practical relevance. We investigate TLS’s intrinsic compositional
property which is to provide higher-layer protocols with some secure communication functional-
ity. Furthermore, our work addresses the native handshake protocols and additionally the record
layer protocols in different authentication models under the stronger security notion of universally
composable security.

1Note that the attack exploited weaknesses of the PKCS#1 standard and not the TLS protocol.
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1.3 Organization

The remaining sections are structured as follows. Section 2 clarifies notation and cryptographic
building blocks. Section 3 reviews the Universal Composability Framework. Section 4 shortly
introduces the TLS protocol family and describes the compositional proof idea. Section 5 is devoted
to the TLS handshake subroutines we use throughout the analysis. Section 6 proves the full
framework and Section 7 concludes.

2 Preliminaries

2.1 Notations

The protocols run between two players: a client and a server. A player may act as initiator I or
responder R. By P ∈ (I,R) we denote a pair of such players and by P̄ the same pair but in the
reverse order, i.e. (R, I). An anonymous player, i.e. a party whose identity is not known is denoted
by ⊥. We refer to the handshake protocol structure as π and the composition with the record-layer
protocols as ρ. Additionally, we use different indices to capture the modes of authentication in ideal
functionalities. We refer to a responder-only authenticated functionality as F1, i.e. a functionality
where the responder authenticates to the initiator, but the initiator’s identity remains unknown.
Further, we denote an ideal functionality, where both players authenticate by F2, and a hybrid
functionality of F1 and F2 by F (1,2).

2.2 Cryptographic Building Blocks and their Constructions

The specification of TLS [18] uses several cryptographic primitives and mandates or recommends
certain instantiations of them as described in the following:

An asymmetric encryption scheme (ENCpkR
(), DECskR

()) for transporting the encrypted
premaster secret which must be instantiated with the RSA-OAEP construction (known to provide
indistinguishability under adaptive chosen ciphertext attacks [29] in the Random Oracle Model).
In TLS handshake a private key skR is known to the responder R and its public key pkR is signed
by a Certification Authority (CA).

A digital signature scheme (SIGsk(), VERvk()) for entity authentication which can be in-
stantiated with DSA and RSA-PSS (the latter is known to provide weak existential unforgeability
under chosen message attacks in the Random Oracle Model [28]). The players own a signing key
sk and the respective verification vk is certified by a CA.

A message authentication code function HMACk() from [2] and a symmetric encryption
scheme (Ek(), Dk()) which is recommended to be DES or 3DES in different modes and with different
key lengths. The construction of symmetric authentication with encryption is known to provide
weak unforgeability under chosen message attacks and indistinguishability under chosen plaintext
attacks [33, 3].

A pseudo-random function for the key derivation and confirmation, denote here by PRFk().
It is evaluated with seed k on an input string li, i ∈ [1, 4] which is labeled with different publicly
known space delimiters and two independently chosen random values, i.e. the nonces exchanged in
the first protocol, or a function thereof. The specification defines a special construction based on
HMAC combiners which has been recently proven to be a good randomness extractor [20].
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3 The Universal Composability Security Framework

We give an overview of the UC security framework, referring the reader to [5] for a comprehensive
description.

3.1 System Model

In the UC framework, Interactive Turing Machines (ITM) interact in two worlds. See Fig. 1. The
real-world model comprises honest parties and the adversary A. The parties run a protocol π in
order to compute a cryptographic task. A controls the communication and potentially corrupts
the parties. The ideal world includes “dummy” parties who interact with an ideal functionality
F , running the ideal protocol φ. The functionality F represents a trusted party that carries out
the same cryptographic task. It simply obtains the inputs of all players and provides them with
the desired outputs. The ideal-world adversary S (dubbed the simulator) is allowed to delay
messages. However, is unable to gain knowledge of any inputs/outputs except the functionality
F is willing to grant it. Intuitively, the ideal functionality captures the security requirements of
a given cryptographic task we expect from the real-world protocol π and defines the adversarial
corruption model we consider in that setting.

Figure 1: The Real World/Ideal World Paradigm in the UC Framework. In the real world, player
I and R execute protocol π in front of adversary A. In the ideal world, the dummy players I ′

and R′ interact with the ideal Functionality F in presence of the simulator S to compute the same
cryptographic task.

3.2 Security Definition

In the UC framework there exists an additional entity called the environment Z. The environment
plays the role of a “judge” who has to distinguish between the two worlds. Therefore, the envi-
ronment feeds all parties with input, retrieves their outputs, and interacts with the adversary in
an arbitrary way throughout the computation. The ideal-world adversary S does not perceive the
message exchange between the real-world parties and has to simulate the interaction in order to
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mimic the behavior of A. Then, security of protocol π is captured by the fact that every attack
A mounts in the real world, S carries out in the ideal world. The protocol security is implied,
since in the ideal world such attacks cannot be mounted. We have then that the outputs Z re-
trieved from the execution of φ with the dummy players and S and the execution of π with the
real-world players and A are indistinguishably distributed. Here, indistinguishability means in this
case computational indistinguishability (“≈”). Informally, a protocol π is said to securely emulate
an ideal-world protocol φ. In addition, a protocol π is said to securely realize a cryptographic task,
if for any real-world adversary A that interacts with Z and real players running π, there exists an
ideal-world simulator S that interacts with Z, the ideal functionality F , and the dummy players
running the ideal protocol φ, so that no probabilistic polynomial time environment Z is able to
distinguish whether it is interacting with the real-world A or the ideal-world adversary S. A more
general definition is:

Definition 1 A protocol π UC-emulates protocol φ if for any adversary A there exists an adversary
S such that for all environments Z that output only one bit:

UC−EXECφ,S,Z ≈ UC−EXECπ,A,Z

A protocol π UC-realizes an ideal functionality F if π UC-emulates the ideal protocol for F .

We sometimes abuse the notation and write UC−EXECF ,S,Z ≈ UC−EXECπ,A,Z to say that π
UC-realizes an ideal functionality F . It is easy to see that ideal protocol φ is the protocol that
defines the communication between F and the dummy players that simply forward their inputs
and outputs. This is equivalent to F bypassing the dummy players.

Relaxed UC Security The standard notion of UC security is a strong security definition and
rules out the simulatability of some important, provably secure protocols. In order to make the
restriction clear, we recall the example from [13]. Consider a two-move Diffie-Hellman protocol.
Assume that a prime p and a generator g of a large subgroup of Z∗p of prime order are given.
The initiator fixes x r← Zq and sends α = gx to the responder. Upon reception the responder fixes
y

r← Zq and sends β = gy. Both players locally output gxy. Simulating the two-move Diffie-Hellman
protocol with access to a functionality, say Fbad

KE , which independently fixes the shared key µ at
random yields a view that allows the environment to distinguish the two worlds. To understand why,
assume that the simulator comes up with the values α′ and β′. Next, the environment instructs the
adversary to corrupt the initiator before receiving the responder’s answer. Then, the environment
learns the random value fixed by Fbad

KE due to the output from the responder and the simulator has
to come up with a value x′ such that β′x

′
= µ. Since the values α′ and β′ are independent from µ,

a value x′ exists only with negligible probability.
To mitigate the limitations, a relaxation of the UC security definition has been proposed in [13]

by providing the functionality with some help in form of a non-information oracle N . The ora-
cle outputs a value which is indistinguishable from a random value. More formally, let N be a
polynomial time machine interactive Turing machine. Then N is a non-information oracle if no
interactive Turing machine M, having interacted with N on security parameter k, can distinguish
with non-negligible probability between the local output of N and a value drawn uniformly from
{0, 1}k. The purpose of the non-information oracle is to supply the simulator with auxiliary infor-
mation to make the output from the simulation conform to the output from the functionality. The
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simulator interacts with the non-information oracle and receives the input for the simulation. If the
adversary corrupts a player, then N discloses its current session state to the adversary, including
the randomness (x, y) and its local output (gxy).

Definition 2 A protocol π is said to be relaxed UC-secure if there exists a non-information
oracle N such that π securely realized FN .

In particular, realizing a key exchange functionality under the relaxed definition has been shown
to be equivalent to the notion of SK-security. Informally, a key exchange protocol is said to be
SK-secure, if (i) no adversary can force the partners of the session to output different session keys,
and in addition (ii) guesses whether the output was the real session key or a random test value.
The proof is given in [13].

3.3 Universal Composition

A key point of the UC framework is the composition theorem. It guarantees composition with
arbitrary sets of parties. Consider a protocol ρ that operates in the F-hybrid model. That is,
parties interact in the normal way and in addition can invoke an arbitrary number of copies of the
functionality F . We call the invocation of F subroutine-respecting, if only ρ is permitted to receive
the inputs and outputs of the ideal functionality. Then, the following holds.

Theorem 3 Let π and φ be two subroutine-respecting polynomial-time protocols such that π UC-
emulates φ. Then ρπ/φ UC-emulates ρ for any polynomial-time protocol ρ.

If π UC-emulates φ, we have that there is no Z that can distinguish with non-negligible prob-
ability between the players running π and players running φ in the presence of the adversary. The
subroutine-respecting invocation ensures that the surrounding protocol ρ feeds π and φ in the same
way so that the outputs are identical distributed. The composition theorem prevails that replacing
the instance of π with an instance of φ does not change the behavior of ρ with respect to any
polynomial-time adversary; we have a symmetry between the case that ρ interacts with π and φ in
the presence of the adversary. The main attraction of the composition theorem follows from the
fact that if φ UC-realizes F then the real-world protocol ρ can replace the invocation of subroutine
π by calling the ideal functionality. The full proof is detailed in [7].

In some cases the universal composition operation would result in highly inefficient protocols.
Consider a key exchange protocol that calls a signature subroutine for authenticating the keys.
The universal composition theorem states that for each instance of the key exchange protocol a
new instance of the signature module is invoked. Consequently, the subroutine would generate for
each key exchange a new pair of signature and verification keys. It becomes more involved when
the subroutine applies certified keys issued by a public authority where multiple players use the
same key (as required in many cryptosystems to setup the protocol). The composition theorem with
joint state (JUC) avoids this unnecessary complexity [16]. This operation is similar to universal
composition except that multiple instances of a protocol can gain access to the same instance of a
subroutine in order to benefit from a joint state (e.g. the signature key is the joint state).

Theorem 4 Let F be an ideal functionality. Let π be a protocol in the F-hybrid model, and let ρ̂
be protocol that securely realizes F̂ , the multi-session extension of F . Then the composed protocol
π[ρ̂] emulates protocol π in the F-hybrid model.
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The intuition behind the JUC theorem is as follows. Observe a protocol π in the F-hybrid model.
Next, observe a protocol ρ̂ that realizes F̂ , the multi-session extension of F . The functionality F̂
maintains multiple copies of F . Technically, the multi-session extension is responsible for the
invocation of an appropriate copy of F . Upon invocation of F̂ , the protocol participants perceive
the cryptographic task of F . Consequently, Z’s view when interacting with the players running
an instance of π in the ρ̂-hybrid model is computationally indistinguishable from its view when
interacting with π in the F-hybrid model.

4 Transport Layer Security

4.1 TLS in a Nutshell

The standard TLS specification [18] comprises handshake, alert, change cipher spec, and record
layer (sub)protocols. The handshake protocol is used to negotiate key material and cryptographic
algorithms and the record layer protocol can then be applied to secure transmitted application data.
The change cipher spec protocol consisting of one message triggers a change in the cryptographic
parameters used by the record layer, while the alert protocol communicates error messages, when-
ever a failure during the handshake or message protection occurs. Thus, the essential cryptographic
building blocks for TLS and target to the presented analysis are the handshake and record layer
protocols.

Handshake and Record Layer The TLS handshake aims at the negotiation of a common
secret called the master secret km which is in turn derived from the the previously established
premaster secret kp. The modularity of the handshake protocol is captured by the fact that different
subroutines are applied to establish the premaster secret and derive the master secret while the
remaining structure of the handshake is unchanged (see Fig. 2). TLS distinguishes among the
following subroutines: encryption of the premaster secret using the server’s public key (EKT);
static (DHS) or ephemeral signed (DHE) Diffie-Hellman key exchange. Optionally, TLS allows for
the client authentication via a signature over all received values trscrpt which can be verified
using the public key with the client certificate. The master secret km is then used to derive up
to four cryptographic keys for the record layer: two symmetric encryption keys kPe (including an
initialization vector for the block-cipher based encryption), and two authentication keys kPa , where
P ∈ {I,R}. Finally, client and server confirm the negotiated security parameters by exchanging
their finished messages which are derived from km and protected via authenticated encryption by
the record layer (i.e. MAC of the plaintext is used as input to the symmetric encryption). The
same protection is then applied to the subsequent application data.

Remark. Note that an application message may be fragmented and compressed when processed
by the record layer. Therefore, the record layer encodes sequence numbers into the fragments and
maintains a counter in order to prevent disorder. Note also that a key feature of TLS is session
resumption in order to reduce server-sided performance penalties. The client names an earlier
session that it intends to continue; if the server agrees, the previous master secret is used with the
new nonces to generate new key material for the record layer. Though not explicitly treated in our
paper, it is easy to see that the security of the abbreviated handshake follows from our analysis of
the full handshake.
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Initiator I Responder R

rI
r← {0, 1}p1(k) rI−−−−−−−−−−−−−−−−−−−−−−−−→

rR←−−−−−−−−−−−−−−−−−−−−−−−− rR
r← {0, 1}p2(k)

DHE
g, gx, SIGskR

(rI , rR, g, gx), R
←−−−−−−−−−−−−−−−−−−−−−

gy−−−−−−−−−−−−−−−−−→
km ← PRFgxy (l1)

DHS
R←−−−−−−−−−−−−−−−−−
gy−−−−−−−−−−−−−−−−−→

km ← PRFgxy (l1)

EKT
R←−−−−−−−−−−−−−−−−−

ENCpkR
(kp)−−−−−−−−−−−−−−−−−→

km ← PRFkp(l1)

[SIGskI
(trscrpt), I]∗

−−−−−−−−−−−−−−−−−−−−−−−−→ parse SIGskI
() as σ

IF VERvkI
(trspt, σ) accept

ELSE abort
(kIe , k

I
a, k

R
e , k

R
a )← PRFkm

(l2)
FI ← PRFkm

(l3)
EkI

e
(FI |HMACkI

a
(FI))

−−−−−−−−−−−−−−−−−−−−−−−−→ parse EkR
e

() as α
(kIe , k

I
a, k

R
e , k

R
a )← PRFkm(l2)

(FI |tI)← DkI
e
(α)

IF FI ← PRFkm(l3)
AND tI ← HMACkI

a
(FI)

accept (kIe , k
I
a, k

R
e , k

R
a )

ELSE abort
FR ← PRFkm

(l4)

parse EkR
e

() as β
EkR

e
(FR|HMACkR

a
(FR))

←−−−−−−−−−−−−−−−−−−−−−−−−
(FR|tR)← DkR

e
(β)

IF FR ← PRFkm(l4)
AND tR ← HMACkR

a
(FR)

accept (kIe , k
I
a, k

R
e , k

R
a )

ELSE abort

send mj

EkI
e
(mj |HMACkI

a
(mj))

−−−−−−−−−−−−−−−−−−−−−−−−→ parse EkI
e
() as γj

(mj |tmj
) ← DkI

e
(γj)

IF tmj
← HMACkI

a
(mj)

receive mj

ELSE abort

parse EkR
e

() as γj+1

EkR
e

(mj+1|HMACkR
a

(mj+1))
←−−−−−−−−−−−−−−−−−−−−−−−− send mj+1

(mj+1|tmj+1) ← DkR
e

(γj+1)
IF tmj+1 ← HMACkR

a
(mj+1)

receive mj+1

ELSE abort

Figure 2: The TLS protocol including the different subroutines DHE, DHS, and EKT to establish
the master secret km. (∗) marks the optional client authentication message. Event ’abort’ invokes
the alert protocol with the respective error message; events ’send’ and ’receive’ trigger interfaces
to the application layer.

10



4.2 Roadmap for the Modular Analysis of TLS

The structure of the TLS framework advocates its modular analysis. Intuitively, the handshake
protocol captures the cryptographic task of key exchange and the composition with the record
layer protocol emulates secure transfer of application messages. However, the straightforward
idea to model the complete handshake protocol as ideal key exchange functionality in order to
negotiate the session keys and compose it with the record layer protocol in order to realize a secure
communication sessions functionality fails in general. The handshake protocol does not securely
realize the ideal key exchange functionality since it uses the derived session keys to encrypt and
authenticate finished messages. Thus, the environment can test the keys using the finished messages
and tell the two worlds apart. See Appendix A for more discussions.

In our analysis we avoid this obstacle by devising a functionality F (1,2)
KE that emulates the

handshake’s subroutines to negotiate the master secret km (instead of a straight-line computation
of the session keys). F (1,2)

KE captures the fact that two players receive a random key unless either
player is corrupted. Next, we demonstrate that the subroutines DHE, DHS, and EKT securely
realize F (1,2)

KE (Section 5). Our analysis is focused on responder-only and mutual authenticated
communication which are the authentication modes supported by TLS (apart from anonymous
Diffie-Hellman suites). Since TLS operates in a setting where the existence of a trusted third party
in the sense of a Certificate Authority (CA) is required, we formalize the global setup assumption
by formulating the real-world protocols in F-hybrid models, utilizing the certification functionality
FCERT, certified public key encryption functionality FCPKE, and certificate authority functionality
FCA, as presented in [6, 11].

The composition with these functionalities to a subroutine protocol is preserved by the JUC
theorem. It is useful in the case of key exchange when multiple subroutine sessions have access to
the same instance of functionalities FCERT, FCPKE, and FCA, using the same key for authenticating
multiple messages (i.e. the signature, encryption, and deposited key is the joint state, respectively).
Finally, we make use of the composition theorem and specify the TLS protocol in the F (1,2)

KE -hybrid
model. We show that the reformulated TLS protocol securely realizes the ideal functionality for
the secure communication sessions (Section 6).

5 Specification and Analysis of TLS Subroutines

We proceed with the specification and emulation of an ideal-world functionality which we henceforth
call universal key exchange F (1,2)

KE that captures the requirements of the subroutines DHE, DHS,
and EKT. These subroutines compute the master secret.

5.1 Universal Key Exchange Functionality

The key exchange functionality F (1,2)
KE is illustrated in Fig. 3. It mimics the cryptographic task that

the players I and R agree upon a shared secret µ which is indistinguishable from an independently
chosen value of the same length as long as a party is uncorrupted. There is a large body of
literature that covers ideal key exchange functionalities (e.g. [5, 13, 11]). F (1,2)

KE is similar to these
functionalities except for:

First, the players authenticate in a post-specified fashion, i.e. the environment invokes players
with the session identifier SID and optionally their own identity. A player learns its peer identity
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Functionality F (1,2)
KE

F (1,2)
KE proceeds as follows when parameterized with security parameter k.

• Upon receiving an input (“establish-key”, SID, IDI) from some party, where IDI ∈ (⊥, I), record
IDI as initiator, and send a message (“establish-session”, SID, IDI) to the adversary. Upon
receiving input (“establish-key”, SID, R) from some other party, record R as responder, and send
the message (“establish-key”, SID, R) to the adversary.

• Upon receiving an answer (“impersonate”, SID, µ̃) from the adversary, do: If IDI=⊥, record the
adversary as initiator and send message (“Key”, SID, ⊥, µ̃) to the responder. Else, ignore the
message.

• Upon receiving an answer (“Key”, SID, P , µ̃) from the adversary, where P is either the initiator
or responder, do: If neither initiator nor responder is corrupted, and there is no recorded key, fix
µ uniformly from {0, 1}k. If either initiator or responder is corrupted, and there is no recorded
key, record µ ← µ̃ as the adversary. Send message (“Key”, SID, P̄ , µ) to P .

Figure 3: The Universal Key Exchange Functionality

while executing the TLS protocol (captured by the fact that peer identities are given by the func-
tionality and not in the setup). This is an essential difference of TLS to related protocols (e.g.
SSH) where the players have already negotiated their public keys before the protocol start.

Second, the functionality defines a hybrid notion of authenticated key exchange. When the
initiator is parameterized with an identity, i.e. IDI=I, the functionality assures mutual authen-
tication between the initiator and server. Then the functionality randomly fixes the (master) key
unless a party is corrupt. On the other hand, when the initiator is invoked with an anonymous
identity, i.e. IDI=⊥, the functionality guarantees a matching conversation between the responder
and some party whose identity is unknown. Consequently, the adversary can impersonate the ini-
tiator and fix the master key.2 The corresponding case in the real world is that the environment
instructs the adversary to replay the key exchange protocol with the exception that it contributes
to the premaster key. The initiator is unable to terminate the session while the responder accepts
the session. Technically, the functionality deploys the session identifier SID to determine the anony-
mous player. Such technicality is only feasible for a two party functionality. Recall that the SIDs
of all Turing machines in a protocol instance must be identical in the UC framework. Any player
participating in the same session who is not a responder must be a potential initiator.

Third, the functionality is defined for non-adaptively corrupting adversaries and therefore ex-
cludes (perfect) forward secrecy. In fact, this exclusion makes it possible to define a universal key
exchange functionality which covers both, key transport and Diffie-Hellman key agreement.

Remark. To distinguish between the authentication modes, we denote the key exchange func-
tionality where the initiator’s identity is kept secret and the initiator’s identity disclosed by F1

KE

and F2
KE, respectively. The functionality F (1,2)

KE qualifies a hybrid formulation thereof.

2Note that in case of Diffie-Hellman the key exchange functionality does not consider key control issues (see [27]).
However, this has no impact on the security of secure communication sessions because the impersonator learns the
master key and thus derives the session keys for the protection of the messages.
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5.2 Subroutine DHE

The subroutine DHE, described in Fig. 7, is a 2-way Diffie-Hellman key exchange, whereby expo-
nents are randomly chosen and the responder authenticates via a signature; the verification key is
certified by a trusted third party and conveyed with the responder’s identity. We capture the fact
that the players own certified keys by exploiting the presence of an ideal certification functionality
FCERT [6], see also Fig 8 in Appendix B.1 which permits the owner of the instance to receive a
signature on arbitrary messages while any player can verify the signature. The JUC-theorem en-
sures that multiple sessions of protocol DHE have access to the same instance FCERT (i.e. verify
arbitrary messages signed with the same signature key). Any CMA-secure signature scheme can be
employed for signing (this follows from the results in [6]), and our proof (in Appendix B.1) for the
UC-realization of F1

KE by the subroutine DHE (Lemma 5) is therefore independent of the model in
which the security of the signature scheme is guaranteed (e.g. in the Random Oracle model in the
case of RSA-PSS).

Lemma 5 Subroutine DHE in the FCERT-hybrid model securely realizes F1
KE.

5.3 Subroutine DHS

The subroutine DHS, described in Fig. 9, is identical to DHE with the exception that the responder’s
DH exponent is certified by a trusted third party and carried within its identity. We capture the
difference by reformulating DHE in the FCA-hybrid model. Functionality FCA [6], see also Fig. 10
in Appendix B.2, serves as a trusted registration authority where the responder escrows a static
DH exponent gx and group 〈g〉 of order q in Z∗p. FCA outputs the values to arbitrary players when
it is invoked with the identity of the registered owner. Essentially, FCA binds the deposit to a
particular identity and captures the setup that a CA has certified static DH parameters. The JUC
theorem guarantees that different sessions of DHE have access to the same instance of FCA. The
UC-realization of F1

KE by the subroutine DHS is captured with Lemma 6, proven in Appendix B.2.

Lemma 6 Subroutine DHS in the FCA-hybrid model securely realizes F1
KE.

5.4 Subroutine EKT

The subroutine EKT, illustrated in Fig. 11, is different in nature from previous subroutines in
that the initiator transports the premaster secret encrypted with the responder’s public key. We
formulate EKT in the FCPKE-hybrid model that provides the players with certified public key
functionality. The functionality FCPKE [11], see also Fig. 12 in Appendix B.3, maintains a repository
where any invoking player deposits plaintexts which can be accessed only by the owner of the
instance. In the presence of non-adaptive3 adversaries this functionality can be realized by any
CCA2-secure encryption scheme (this follows from the results in [11]). Therefore, any CCA2-
secure encryption scheme can be employed for key transport, and our proof (in Appendix B.3) for
the UC-realization of F1

KE by the subroutine DHE (Lemma 7) is therefore independent of the model
in which the security of the encryption scheme is guaranteed (e.g. in the Random Oracle model

3Obviously, realizing FCPKE in the presence of adaptive adversaries so that secrecy of multiple messages is pre-
served under the condition that the adversary has corrupted the decryptor and gained access to the secret key is a
considerably stronger requirement and demands for additional techniques, such as forward secure or non-committing
encryption [17, 9].
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in the case of RSA-OAEP which is the recommended in the π specification). The JUC-theorem
guarantees that the same instance of FCPKE is used to encrypt multiple messages by multiple
parties to a single recipient.

Lemma 7 Subroutine EKT in the FCPKE-hybrid model securely realizes F1
KE.

5.5 On Realizing Mutual Authentication

The framework enables the responder to opt for initiator authentication. Then, the initiator proves
its identity by signing the transcript of incoming and outgoing messages whereby the verification
key is certified by a trusted third party and appended to the signature. Employing the composition
theorem, we capture the model by reformulating the subroutines in the FCERT-hybrid model,
assuming the registration of the initiator as owner of the instance. The subroutines are extended
in the following way:

Before the initiator submits the response message, it stores the message transcript in value
trscrpt. Next, it feeds FCERT with message (“sign”, SIDCERT1, trscrpt) where SIDCERT1=(I,
SID ◦ 1) includes its identity and waits for the answer (“Signature”, SIDCERT1, trscrpt, ς). Then,
the initiator places the signature ς and its identity I to the response message. When the responder
receives the message, it first computes its own trscrpt and checks that ς is a valid signature
by calling FCERT on input (“verify”, SIDCERT1, trscrpt, ς). If the verification fails, it aborts.
Otherwise, the responder continues to process the subroutine in the normal way. If the subroutine
terminates, then the responder generates local output (“Key”, SID, I, km).

Theorem 8 Subroutines DHE in the (FCERT,FCERT)-hybrid model, DHS in the (FCA, FCERT)-
hybrid model and EKT in the (FCPKE,FCERT)-hybrid model securely realizes F2

KE.

Proof. The proof follows from the composition theorem. Lemma 5, 6, and 7 imply that the
subroutines DHE, DHS and EKT UC-realize F1

KE. It remains to show that F1
KE in the FCERT-

hybrid model securely realizes F2
KE. It is easy to see that Z’s distribution when it interacts with the

dummy players calling functionality F1
KE is identical to the its distribution when it communicates

with the dummy players invoking F2
KE except that the responder’s output includes the initiator

identity. However, by calling FCERT the initiator commits to its identity. Hence, the output
distributions of F1

KE in the FCERT-hybrid are indistinguishable from an emulation of F2
KE. �

6 TLS UC-Realizes Secure Communication Sessions

The natural abstraction of TLS is to allow secure communication between players in a single
protocol instance. While the handshake protocol aims at securely sharing uniformly distributed
session keys, the record layer protocol provides authenticated encryption of session messages.

6.1 Universal Secure Communication Sessions

Secure communication sessions have been discussed in [5, 13] for the general case in which all players
are authenticated. We refine the functionality and relax the requirements to the universal model of
authentication in the post-specified setting, where a player learns the identity of its peer during the
execution of the protocol and must cope with impersonation attacks against the initiator, provided
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the environment keeps the initiator’s identity secret. In which case, we have to expect a real-
world adversary that plays the role of the initiator by intercepting the first two protocol rounds,
choosing own premaster secret, and completing the protocol in the normal way. The initiator will
be unable to terminate the session. Nevertheless, the responder accepts the session and answers to
the adversary, mimicking arbitrary party. We capture the requirements by formulating a universal
secure communication sessions functionality F (1,2)

SCS in Fig. 4. Let us highlight some characteristics
of F (1,2)

SCS in the following:

Functionality F (1,2)
SCS

F (1,2)
SCS proceeds as follows, when parameterized by a leakage function l : {0, 1}∗ → {0, 1}∗.

• Upon receiving an input (“establish-session”, SID, IDI) from some party, where IDI ∈ (⊥, I),
record IDI as initiator, and send the message to the adversary. Upon receiving input (“establish-
session”, SID, R) from some party, record R as responder, and forward the message to the adver-
sary.

• Upon receiving a value (“impersonate”, SID) from the adversary, do:If (IDI=⊥), check that no
ready entry exists, and record the adversary as initiator. Else ignore the message.

• Upon receiving a value (“send”, SID, m, P̄ ) from party P , which is either initiator or responder,
check that a record (SID, P , P̄ ) exists, record ready (if there is no such entry) and send (“sent”,
SID, l(m)) to the adversary and a private delayed value (“receive”, SID, m, P ) to P̄ . Else ignore
the message. If the sender is corrupted, then disclose m to the adversary. Next, if the adversary
provides m′ and no output has been written to the receiver, then send (“send”, SID, m′, P ′) to
the receiver unless P ′ is an identity of an uncorrupted party.

Figure 4: The Universal Secure Communication Sessions Functionality

First, the functionality handles a uni- and bi-directional model of authentication (as in the
universal key exchange functionality). The latter is accomplished by invoking the players with
their own identity. The first is realized by invoking the initiator with an empty identity value ⊥
allowing the adversary to mount an impersonation attack. The functionality proceeds in the usual
way except that a secure session is established between the adversary and the responder.

Second, the functionality guarantees that the adversary gains no information other than some
side channel information about the transmitted plaintext m, expressed via a leakage function l(m),
when the adversary has neither impersonated nor corrupted a player. In particular, the information
leakage includes the length of m and some information concerning the transmitted messages’ source
and destination; thus, modeling network information about the TLS-protected channel from lower-
layer protocols and higher-layer protocols prior to their processing by the record layer. Further,
the leakage reveals the error messages provided by the TLS alert protocol, when either party fails
to complete the protocol.

Third, the session identifier SID assures that the functionality may address the initiator even
though its identity is undisclosed (because it knows the responder’s identity and the underlying
system model permits a party, i.e. the initiator, to interact with the functionality with an identical
session identifier). This is so because TLS runs above transport-layer protocols which provide
the players with routing information (e.g. IP address, domain) and a establish a channel for the
communication session. Furthermore, these protocols typically ensure that the channel is locally
fresh by exchanging a pair of nonces. The environment mimics the task of these surrounding
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processes by activating the players with session identifier SID.
Fourth, the functionality does not pre-process the messages to be sent to the peer. In fact,

we assume that the environment “prepares” the messages, i.e. compresses, fragments and adds a
sequence number into the encoding. Otherwise, the functionality must provide the technicalities.
This would unnecessarily complicate the formulation of the ideal functionality.

Lastly, the functionality manages an internal ready state. This technicality ensures that in
the responder-only model of authentication the adversary cannot impersonate the initiator after
the responder agreed upon the session keys and switched into the pending state waiting for the
transmission.

6.2 Protocol ρ realizes F (1,2)
SCS

In Fig. 5 we apply Theorem 8 and reformulate protocol ρ in the F (1,2)
KE -hybrid model. The gen-

eral Universal Composability theorem guarantees that no probabilistic polynomial time-bounded
environment distinguishes between the case that it observes an instance of TLS executing the
subroutines DHE, DHS and EKT and the case that it interacts with a TLS instance where the
subroutines are replaced by the ideal key exchange functionality. We are now ready to state our
main theorem.

Theorem 9 Protocol ρ in the F (1,2)
KE -hybrid model securely realizes F (1,2)

SCS .

Proof. Let A be a real-world adversary that operates against ρ. We construct an ideal-world
adversary S such that no environment Z can distinguish between the case that it interacts with A
and parties running ρ in the F (1,2)

KE -hybrid model or with S in the ideal world for F (1,2)
SCS . S runs

a simulated copy of A and mimics an interaction with players executing ρ. It tries to make the
internal protocol simulation consistent with the real protocol execution and the limitation that it
has no information about the transmitted message m other than its length l(m). The simulator
allows the adversary A to attack the simulated protocol execution in arbitrary way throughout
the simulation. S emulates the protocol execution in such a way that A thinks that it intercepts
a real-world execution of ρ, and such that its interaction with Z is distributed computationally
indistinguishable from that observed by the environment in the real-world execution.

In detail, the simulator proceeds in the following way:

1. Simulating invocation of I. Upon receiving (“establish-session”, SID, IDI) from F (1,2)
SCS , S

feeds A with the init message (rI) where rI
r← {0, 1}p1(k).

2. Simulating invocation of R. Upon receiving (“establish-session”, SID, R) from F (1,2)
SCS , S

waits for receipt of an init message (r′I) from A. Then, it chooses a nonce rR
r← {0, 1}p2(k) and

feeds A with the response message (rR, R). Finally, it calls F (1,2)
KE on query (“establish-key”,

SID′KE, R), where SID′KE=(SID ◦ r′I|rR).

3. Simulating receipt of a response message by I. Upon A delivers the message (r′R, P ′)
to I, S proceeds as follows:

(a) S verifies that I has previously sent the init message (rI).

(b) S checks that P ′=R. Otherwise, it aborts the simulation.
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Protocol ρ

(a) Upon activation with query (“establish-session”, SID, IDI) by Z, where IDI ∈ (⊥, I), the ini-
tiator sends the init message (rI) where rI

r← {0, 1}p1(k) is a nonce. Upon activation with query
(“establish-key”, SID, R) by Z, the responder waits for the receipt of the init message. It re-
sponds with own nonce rR

r← {0, 1}p2(k) and initializes a copy of F (1,2)
KE with session identifier

SIDKE=(rI |rR) by sending query (“establish-key”, SIDKE, R) to F (1,2)
KE .

(b) Upon receiving the response message, the initiator calls F (1,2)
KE with session identifier

SIDKE=(rI |rR) on query (“establish-key”, SIDKE, IDI) and waits for the delivery of output
(“Key”, SIDKE, R, µ). It then computes the session keys (kIe , k

I
a, k

R
e , k

R
a ) ← PRFµ(l2) and

the finished value FI ← PRFµ(l3). Additionally, the initiator sends the final initiator message
(EkI

e
(FI |HMACkI

a
(FI))).

(c) When the responder receives the final initiator message (α), it first waits for the delivery of
(“Key”, SIDKE, IDI , µ) from F (1,2)

KE . Then, the responder computes in the same way the session
keys (kIe , k

I
a, k

R
e , k

R
a ) ← PRFµ(l2) for the players. It decrypts the final initiator message (FI |tI) ←

DkI
e
(α) and verifies that FI ← PRFµ(l3) and tI ← HMACkI

a
(FI). If the verification fails, it aborts.

Otherwise, it computes the finished value FR ← PRFµ(l4) and sends the final responder message
(EkR

e
(FR|HMACkR

a
(FR))).

(d) Upon delivery of the final responder message (β), the initiator decrypts the message (FR|tR) ←
DkR

e
(β). Then, it verifies that FR ← PRFµ(l4) and tR ← HMACkR

a
(FR). If the verification fails, it

aborts.

(e) Once the session keys are agreed upon, the sender P ∈ (I,R) waits for the transmission notification
(“send”, SID, m, P̄ ) from Z. It then sends EkP

e
(m|tm) whereby messagem is authenticated through

the tag tm ← HMACkP
a

(m). Upon receiving the message γ, the receiver P̄ decrypts the message
(m|tm)← DkP

e
(γ) and verifies that tm ← HMACkP

a
(m). If the verification fails, it aborts. Otherwise,

the receiver accepts the message and makes the local output (“receive”, SID, m, P ) to Z.

Figure 5: The full TLS Framework Structure, in the F (1,2)
KE -hybrid Model
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(c) S mimics on behalf of I the master key generation by invoking a copy of F (1,2)
KE . The

master key is obtained by handing F (1,2)
KE the message (“establish-key”, SIDKE, IDI),

where SIDKE=(SID ◦rI|r′R) and waiting for the delivery of the response message (“Key”,
SIDKE, R, µ). Otherwise, S terminates with an internal error message (because there was
no matching activation of the same instance of F (1,2)

KE in form of a query (“establish-key”,
SIDKE, R) by the simulator on behalf of the responder).

(d) S defines the master key µ, the session keys (kIe , k
I
a, k

R
e , k

R
a ), and the finished value FI

to be random values ∆km , (∆kI
e
,∆kI

a
,∆kR

e
,∆kR

a
), and ∆FI

chosen from the appropriate
spaces, respectively.

(e) S feeds A with the final initiator message (E∆
kI
e
(∆FI

|tI)), where tI ← HMAC∆
kI
a
(∆FI

).

4. Simulating receipt of a final initiator message by R. When A delivers the message
(α) to R, S proceeds as follows:

(a) S verifies that it has previously received an init message (r′I) and sent a response message
(rR, R).

(b) S waits for the master key by mimicking the key establishment process of F (1,2)
KE . Now

we distinguish between the following two distinct cases.
Case 1 (no impersonation): If S receives an answer (“Key”, SIDKE, IDI , µ) from
F (1,2)

KE , then no impersonation attack has occurred. In this case S uses for km, (kIe , k
I
a, k

R
e , k

R
a ),

and FI exactly the same values ∆km , (∆kI
e
,∆kI

a
,∆kR

e
,∆kR

a
), and ∆FI

that it has chosen
on behalf of the initiator before. Then, it waits for the delivery of the final initiator mes-
sage and applies the session keys to decrypt (F ′I |t′I) ← D∆

kI
e
(α). S compares whether

F ′I = ∆FI
and t′I = tI . If the verification fails, it aborts the simulation. Otherwise, it

chooses FR to be a random value ∆FR
from the same space and feeds A with the final

responder message (E∆
kR
e

(∆FR
|tR)) where tR ← HMAC∆

kR
a

(∆FR
). Then, S prepares for

the secure message exchange on behalf of R.
Case 2 (impersonation): If S receives an answer (“Key”, SID′KE, P ′, µ̃), then the
original master key has been modified by the adversary implying the impersonation
attack framing the initiator. In this case S computes (kIe , k

I
a, k

R
e , k

R
a ), and FI as specified

in the protocol, i.e. (kIe , k
I
a, k

R
e , k

R
a ) ← PRFµ̃(l2), and FI ← PRFµ̃(l3). Then, it waits for

the delivery of the final initiator message and decrypts (F ′I |t′I) ← DkI
e
(α). S compares

whether F ′I = FI and t′I = HMACkI
a
(FI). If the verification fails, it aborts the simulation.

Otherwise, S computes FR ← PRFµ̃(l4), and feeds A with the final responder message
(EkR

e
(FR|HMACkR

a
(FR))). Finally, S sends (“impersonate”, SID) to F (1,2)

SCS . This is exactly
the point in the simulation where the adversary has impersonated the unauthenticated
party. Then, S continues the simulation with the exception that the interaction proceeds
with A and I aborts the protocol.

Note that in all subsequent simulation steps, S uses session keys (kPe , k
P
a ) for P ∈ (I,R) and

finished values FI and FR obtained from one of the above two cases.

5. Simulating receipt of a final responder message by I. When A delivers the message
(β) to an uncorrupted I, S proceeds as follows:

18



(a) S verifies that it has previously sent an init message (rI), received a response message
(r′R, P

′), and sent a final initiator message (E∆
kI
e
(∆FI

|tI)).

(b) S uses its own session keys (∆kR
e
,∆kR

a
) to decrypt β obtaining F ′R|t′R. Since no responder

impersonation attacks may occur it aborts the simulation if F ′R 6= ∆FR
or t′R 6= tR

whereby ∆FR
and tR are the values used by S on behalf of R in the previous simulation

step 4b (case 1). If the simulation does not abort then S prepares for the secure message
exchange on behalf of I.

6. Simulating Message Transmission. Upon receiving (“sent”, SID, l(m)) from F (1,2)
SCS , S

extracts from l(m) the sender and receiver identities. It then chooses a random message ∆m
r← {0, 1}l(m) and feeds A with message EkP

e
(∆m|t∆m) where t∆m ← HMACkP

a
(∆m).

7. Simulating Message Reception. Upon receiving the message (γ), the receiver decrypts
the message (∆′m′ ,t

′
∆m′

) ← DkP
e

(γ) and then verifies that t′∆m′
← HMACkP

a
(∆m) using its own

keys. If the verification fails, it aborts. Otherwise, S signals F (1,2)
SCS to send the message.

8. Simulating Static Corruption If one of the parties gets corrupted, then S proceeds by
emulating a ρ protocol session, just as a honest party would play it. In particular, S uses the
message m transmitted by F (1,2)

SCS in the emulation of the last protocol round.

We now prove that the simulator S is such that no environment Z can distinguish between the
ideal execution of F (1,2)

SCS and S, and the real execution of ρ and A in the F (1,2)
KE -hybrid model. To

prove that the environment’s view is indistinguishable in the two worlds, we define a sequence of
hybrid distributions, H1 and H2, where we make some modifications, starting from the real-world
protocol execution and ending at the ideal-world execution. We show

UC−EXECF
(1,2)
KE

ρ,A,Z ≈ H1 ≈ H2 ≈ UC−EXEC
F(1,2)

SCS ,S,Z
(1)

The distributions are defined as follows:

• H1 takes the distribution of the output of Z which is identical to a real execution of A
running ρ in the F (1,2)

KE -hybrid model with the following exception. When the protocol ρ
instructs the initiator (respectively the responder) to evaluate the pseudo-random function
PRF() with some random key ∆km in the range of the master secret in order to compute the
session keys (kPe , k

P
a ) for P ∈ (I,R) and the finished values FI and FR, we replace the outputs

with the independently chosen random values (∆kP
e
,∆kP

a
), ∆FI

, and ∆FR
, respectively, all in

the range of PRF().

• H2 is identical to H1 with the following exception. The simulation fails if on behalf of the
responder (resp. initiator) it receives a message ∆m which it decrypts with kPe and obtains
a valid authentication tag which has not been generated by the simulator on behalf of the
responder (resp. initiator) before. Since the authentication tags are generated via the HMAC()
function the simulation failure occurs whenever the adversary forges a corresponding tag.

Claim 10 If PRF() is a secure pseudo-random function, then UC−EXECF
(1,2)
KE

ρ,A,Z ≈ H1.
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Proof. Assume that such environment Z that distinguishes with non-negligible simulation

slice between the interaction UC−EXECF
(1,2)
KE

ρ,A,Z and H1 exists. We construct an adversary D that has
access to the black-box oracle OP . The oracle computes throughout the whole simulation either
PRF∆km

() for some randomly chosen secret ∆km or a truly random function with the same range.
D runs a copy of Z and mimics the roles of A and the parties. It emulates the interaction

with parties running ρ in the F (1,2)
KE -hybrid model until it is required to compute the session keys

(kPe , k
P
a ) or the finished values FI or FR which it obtains through the corresponding call to OP . D

interpolates between UC−EXECF
(1,2)
KE

ρ,A,Z (this is the case where OP contains PRF∆km
()) and H1 (this is

the case where OP contains the truly random function) so that based on the output of OP , D can

distinguish with non-negligible probability between UC−EXECF
(1,2)
KE

ρ,A,Z and Ha for any Z. �

Claim 11 If HMAC() is a WUF-CMA secure message authentication function, then H1 ≈ H2.

Proof.Assume that there exists an environment Z that distinguishes with non-negligible sim-
ulation slice between the interaction H1 and H2. We specify an adversary F that has access
to an authentication oracle OM which on input some message m outputs the corresponding au-
thentication tag HMAC∆

kP
a

(m) using some initially fixed random key ∆kP
a

unknown to F and the
corresponding verification oracle VM that on input a message m and a candidate authentication
tag t outputs valid if t ← HMAC∆

kP
a

(m), otherwise it returns invalid. We show how F can use
Z in order to output a valid tag t′ for some message m′ which has not been previously queried
to OM. In fact, F emulates the execution of ρ in the F (1,2)

KE -hybrid model and mimics for Z the
role of the adversary and the players with the exception that the required authentication tags for
the computed protocol messages F obtains from OM. Thus, the environment can easily recognize
when some forgery is received during the emulation of the protocol with respect to the adversary.
This forgery is also the output of F . Thus, unless the simulation fails both hybrids H1 and H2

proceed identical. By assumption the simulation fails only with negligible probability. �

Claim 12 If E(), D() is an IND-CPA secure encryption scheme, then H2 ≈ UC−EXEC
F(1,2)

SCS ,S,Z
.

Proof. Assume that such environment Z that distinguishes with non-negligible simulation slice
between the interaction H2 and UC−EXEC

F(1,2)
SCS ,S,Z

exists. We construct an adversary D that has

access to the Real-Or-Random encryption oracle OE that on input a message m outputs E∆
kP
e

(mb)
using some initially fixed random unknown key ∆kP

e
and bit b such that in case b = 0 the oracle

uses m0 ← m (this is the message from the real world) and in case b = 1 it uses m1 ← m̃ for some
m̃ 6= m (this is the message chosen by the simulator). We show how SE breaks the security of the
symmetric encryption scheme, i.e. decides on b with a probability non-negligibly larger than 1/2.
D runs a copy of A and emulates the interaction with parties running ρ in the F (1,2)

KE -hybrid
model except that whenever D is required to obtain a ciphertext on some message m′ (which can be
one of the finished messages FI |tFI

or FR|tFR
, or the securely transmitted message m|tm) it queries

OE on m′. In this way D interpolates between H2 (this is the case where the oracle encrypts a real
message, i.e. b = 0) and UC−EXEC

F(1,2)
SCS ,S,Z

(this is the case where the oracle encrypts a different
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message, i.e. b = 1). Based on the output of Z D can decide on the bit b used by OE . Thus, by
assumption H2 ≈ UC−EXEC

F(1,2)
SCS ,S,Z

for any Z. �

This completes the simulation and the proof of the theorem. �

7 Conclusion

We have analyzed the TLS protocol family in the framework of Universal Composition. We have
shown that the complete TLS protocol framework securely realizes secure communication sessions.
Thus, future analysis of composite protocols can be considerably simplified by calling the secure
communication functionality in the hybrid-model reformulation. The composition theorem pre-
serves that security holds under general composition with arbitrary players. Furthermore, since the
ideal functionality is free from any probabilism, it may be expressed in an abstract term algebra,
enabling Dolev-Yao style proofs. It allows applying automated proof tools while preserving sound-
ness and composition. In many analysis of Internet protocols TLS has been abstracted away in a
Dolev-Yao-style and assumed to provide secure communication channels [25, 23, 24]. Our analysis
is a first step towards showing whether this claim is founded.
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A Impossibility of UC-secure TLS Handshakes

The main pillar of the TLS framework are the various handshake protocols that negotiate crypto-
graphic key material for the instantiation of secure communication channels. We would like to claim
that the analysis can be carried out in the spirit of a hybrid-model reformulation. We wish to show
that the native TLS composition, i.e., establish the session keys by the handshake protocols and
then use some cryptography to build secure channels by the record-layer protocols, is secure under
the universal composable notion. That means, we would like to show that the handshake protocols
securely emulate ideal key exchange and the record layer simply syncs the keys to establish the
secure session as suggested in [13]. A separated consideration of the handshake protocols would
have wide applicability and is of independent interest because there exist also protocols that take
advantage of the functionality provided by the handshake protocol (e.g., the IEEE 802.11 EAP
protocol family [1]). Unfortunately, it turns out that the handshake protocols are neither secure
under the standard nor relaxed notion of UC security. This is due to a commitment problem in the
confirmation of the session keys. The environment can test whether the session keys origin from
the interaction with the real protocol in presence of A or ideal protocol in presence of S.

A.1 Protocol π does not UC-realize F (1,2)
KE+

We would like to claim that the handshake protocol UC-realizes an ideal key exchange functionality.
Unfortunately, such a strong claim does not hold. To understand why, we formulate the handshake
protocols π in the F (1,2)

KE -hybrid model. Protocol π in the F (1,2)
KE -hybrid model is illustrated in

Fig. 6. To capture the ideal-world security requirements of π, we make use of functionality F (1,2)
KE+.

Essentially, it is a copy of F (1,2)
KE with the exception that F (1,2)

KE+ outputs the session keys κ (instead
of the master secret µ).

Claim 13 Protocol π in the F (1,2)
KE -hybrid model does not securely realize F (1,2)

KE+.

Proof.(Sketch) There exists an environment Z that distinguishes with non-negligible probabil-
ity whether it communicates with the players interacting with the ideal key exchange functionality
F (1,2)

KE+ in the presence of adversary S and players interacting with protocol π in the F (1,2)
KE -hybrid

model in front of the adversary A. We construct such Z as follows:
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Z activates first I with input (“establish-key, SID, IDI), instructs the adversary to deliver
the init message (rI), and records the value. Similarly, it activates R with input (“establish-key,
SID, R), instructs the adversary to deliver the response message (rR), and records the value. It
then instructs the adversary to send the final initiator message (EkI

e
(FI |HMACkI

a
(FI))), records the

message, and waits for the output (“Key”, SID, IDI , κ) from R. Recall that κ=(kIe , k
I
a, k

R
e , k

R
a )

are the session keys. Finally, it decrypts the final initiator message (FI |tI) and verifies that tI ←
HMACkI

a
(FI). If the verification fails, Z outputs “ideal world”, otherwise it outputs “real world”.

Obviously, when Z communicates with protocol π in the presence of adversary A, it outputs
“real world”. By contrast, when interacting with the ideal key exchange functionality F (1,2)

KE+ in the
presence of adversary S, the session keys, say κ̃=(k̃Ie , k̃

I
a, k̃

R
e , k̃

R
a ), are independently and randomly

chosen by the functionality. The keys are potentially different from κ. S has to come up with the
session keys κ without ever seeing the master secret µ. Otherwise Z decrypts the final initiator
message using k̃Ie and notices that tI 8 HMACk̃I

a
(FI). Consequently the probability that S simu-

lates the required session keys is 1/k and Z distinguishes between the ideal and real process with
overwhelming probability. �

A.2 Protocol π does not relaxed UC-realize FN ,(1,2)
KE+

We wish to formulate a relaxed definition of the key exchange functionality FN ,(1,2)
KE+ and would like

to claim that protocol π relaxed UC-realizes FN ,(1,2)
KE+ . The functionality differs from the previous

definition in that it sets the session key to the local output of the non-information oracle N unless
the initiator is uncorrupted. Otherwise, it fixes the session key as the adversary. See [27, p. 117]
for a definition. Unfortunately, such a claim does not hold either.

Claim 14 Protocol π does not relaxed UC-secure realize FN ,(1,2)
KE+ .

Proof.(Sketch) We use the equivalence between relaxed-UC security and SK-security, and show
that π is not an SK-secure key exchange protocol, even in front of a passive adversary. Adversary
A instructs honest parties to run a session of the π protocol, of which A stores all messages. Then,
A makes a test query for that session, and receives a pair of keys (kIe , k

I
a, k

R
e , k

R
a ) that are either

the keys corresponding to the executed session or random keys, with probability one half. In order
to decide whether it sees real or random keys, A simply uses those keys to decrypt the third and
fourth messages of the π session it monitored, checks the MACs, and decides that it received the
real keys if the decryption and MAC verification succeeded. This adversary makes the correct guess
with overwhelming probability, contradicting the SK-security definition. �

Remark. The impossibility of simulating the key exchange functionality is due to the fact that
the players commit to the finished value by tagging before encrypting the message. In fact, the
problem is similar to the general commitment problem presented in [8]. Since the finished values are
identically computed, the impossibility result applies to all cipher suites. However, the result does
not indicate that the handshake protocols are insecure. In fact, the implication is that the desired
native composition is infeasible and we have to search for another composition, being close to the
native TLS framework structure. A promising approach is to relax the key exchange functionality
in the form that it outputs the session keys and two random values in the space of the finished
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Protocol π

1. Upon activation with query (“establish-key”, SID, IDI), where IDI=(⊥, I), the initia-
tor sends the init message (rI) where rI

r← {0, 1}p1(k) is a nonce. Upon activation with
query (“establish-key”, SID, R), the responder waits for the receipt of the init message.
It responds with own nonce rR

r← {0, 1}p2(k) and initializes a copy of F (1,2)
KE with session

identifier SIDKE=(rI |rR) by sending query (“establish-key”, SIDKE, R) to F (1,2)
KE .

2. Upon receiving the response message, the initiator calls F (1,2)
KE with session identifier

SIDKE=(rI |rR) on query (“establish-key”, SIDKE, IDI) and waits for the delivery of
output (“Key”, SIDKE, R, µ). It then computes the session keys (kIe , k

I
a, k

R
e , k

R
a ) ←

PRFµ(l2) and the finished value FI ← PRFµ(l3). Additionally, the initiator sends the
final initiator message (EkI

e
(FI |HMACkI

a
())).

3. When the responder receives the final initiator message (α), it first waits for the delivery
of (“Key”, SIDKE, IDI , µ) from F (1,2)

KE . Then, the responder computes in the same
way the session keys (kIe , k

I
a, k

R
e , k

R
a ) ← PRFµ(l2). It decrypts the final initiator message

(FI |tI)← DkI
e
(α) and verifies that FI ← PRFµ(l3) and tI ← HMACkI

a
(FI). If the verification

fails, it aborts. Otherwise, it computes the finished value FR ← PRFµ(l4) and sends the
final responder message (EkR

e
(FR|HMACkR

a
(FR))). Finally, the responder terminates with

local output (“Key”, SID, IDI , κ) for κ=(kIe , k
I
a, k

R
e , k

R
a ).

4. Upon delivery of the final responder message (β), the initiator decrypts the message
(FR|tR) ← DkR

e
(β). Then, it verifies that FR ← PRFµ(l4) and tR ← HMACkR

a
(FR). If the

verification fails, it aborts. Otherwise, the initiator locally outputs (“Key”, SID, R, κ)
for κ=(kIe , k

I
a, k

R
e , k

R
a ).

Figure 6: The TLS Handshake Protocol Structure, in the F (1,2)
KE -Hybrid model. Note, the finished

values are the first messages, which are encrypted and authenticated with the session keys [18, Sect.
7.4.9.].
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values, and next analyze whether a TLS-like handshake protocol without the commitment to the
finished values securely emulates the relaxed functionality.

B Proofs for TLS Subroutines

B.1 Proof of Lemma 5

Subroutine DHE

1. Upon reception of an activation query (“establish-Key”, SID, R), the responder chooses primes
p, q, q/p− 1 and g of order q in Z∗p. The DH exponent gx is computed with x r← Zq. It calls FCERT

with a message (“sign”, SIDCERT0, (SID, g, gx)) where SIDCERT0=(R, SID ◦0) contains the identity
of the owner of the instance. The responder waits for the delivery of (“Signature”, SIDCERT0, (SID,
g, gx), σ). Finally, it computes the response message by placing the signature to the DH parameters
(g, gx, σ) and appends its identity R.

2. When receiving an activation query (“establish-Key”, SID, ⊥), the initiator waits for the delivery of
the response message (g, gx, σ, R). Then, it calls FCERT on query (“verify”, SIDCERT0, (g, gx), σ)
and waits for the verification (“verified”, SIDCERT0, (g, gx), f). If σ is an invalid signature (f = 0),
it aborts. Otherwise, the initiator sends gy with y

r← Zq. Additionally, it computes the master
secret km ← PRFgxy (l1) and locally outputs (“Key”, SID, R, km).

3. Upon delivery of message (gy), the responder derives the master secret km ← PRFgxy (l1) and locally
outputs (“Key”, SID, ⊥, km).

Figure 7: Subroutine DHE, in the FCERT-Hybrid model

Proof. We construct a simulator S such that no environment Z can tell whether it interacts
with subroutine DHE in front of adversary A and F1

KE in presence of S. S runs a simulated copy
of A and mimics an interaction with players executing DHE. Further, the simulator allows the
adversary A to attack the simulated protocol execution in arbitrary way throughout the simulation.
Any input from Z is forwarded to A and any output from A is copied to S in order to be forwarded
to Z. S tries to make the internal protocol simulation consistent with the real protocol execution
under the condition that it has no information about the master key km. To this end, the simulator
proceeds as follows:

1. Simulating Activation of R Upon receiving message (“establish-key”, SID, R) from F1
KE,

S feeds A with the message (g, gx, σ, R) from R. Here, x is chosen at random and σ is
obtained by handing A the message (“sign”, SIDCERT0, (SID, g, gx)) on behalf of FCERT, and
setting σ to the value returned by A, where SIDCERT0=(R, SID ◦ 0).

2. Simulating Activation of I Upon receiving message (“establish-key”, SID, ⊥) from F1
KE,

S waits for delivery of message (g, α, σ, P ′) from A. It verifies that σ is a valid signature by
querying FCERT on input (“verify”, SIDCERT0, (g, α), σ). (The verification succeeds, if P ′=R
and σ is the response to a request by S of the form (“sign”, SIDCERT0, (SID, g, α)) sent to
FCERT. It fails, if P ′ 6=R is the identity of an uncorrupted party.) S mimics the response
message by choosing y at random and sending gy to R. In addition, it chooses the master key
km to be a random value ∆km in the same domain and sends (“Key”, SID, ⊥, km) to F1

KE.
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Functionality FCERT

FCERT proceeds as follows, running on security parameter k, with parties P and an adversary S. The
SID is assumed to consist of a pair SID=(PIDowner, SID′), where PIDowner is the owner of this instance.

Signature Generation: Upon receiving a value (“sign”, SID, m) from some the signer PIDowner, send
(“sign”, SID, m) to the adversary. Upon receiving (“Signature”, SID, m, σ) from the adversary,
verify that no entry (m, SID, 0) is recorded. If it is, then output an error message to S and halt.
Else, output (“Signature”, SID, m, σ) to S, and record the entry (m, σ, 1).

Signature Verification: Upon receiving a value (“verify”, SID, m, σ) from some party P , hand (“ver-
ify”, SID, m, σ) to the adversary. Upon receiving (“verified”, SID, m, ϕ) from the adversary,
do:

1. If (m, σ, 1) is recorded then set f=1.

2. Else, if the signer is not corrupted, and no entry (m, σ′, 1) for any σ′ is recorded, then set
f=0 and record the entry (m, σ, 0).

3. Else, if there is an entry (m, σ, f ′) recorded, then set f=f ′.

4. Else, set f=ϕ, and record the entry (m, σ, ϕ).

Output (“verified”, SID, m, f) to P .

Figure 8: Certification Functionality

3. Simulating Reception of the Response Message by R When A delivers the message
β, then two cases exists.

• If β 6=gy, then the adversary impersonated the client. S sets the master secret km ←
PRFβx(l1) and sends message (“impersonate”, SID, km) followed by a (“Key”, SID, R,
km) message to F1

KE.

• If β=gy, then no impersonation occurred. S fixes the same master key km=∆km and
answers F1

KE with message (“Key”, SID, R, km).

4. Simulating Static Corruption If one of the parties is corrupted, then S proceeds by
emulating a DHE protocol session, just as a honest party would play it. In particular, it fixes
the master key µ̃ as the adversary A says to do.

We now prove that the simulator S is such that no environment Z can distinguish between the
ideal execution of F1

KE and S, and the real execution of DHE and A in the FCERT-hybrid model.
This is done in the following way. We define an intermediate hybrid distributions H1 and show
that the environment notifies the change by contradicting the decisional Diffie-Hellman assumption.
The hybrid distribution H1 is defined as follows:

• H1 takes the distribution of the output of Z which is identical to a real execution of A running
DHE in the FCERT-hybrid model with the following exception. When protocol DHE instructs
the initiator (respectively the responder) to evaluate the pseudo-random function PRF() with
the premaster secret αy (resp. βx) in order to compute the master key km, we replace the
output with an independently chosen random key from the same domain.
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Claim 15 Assume the Decisional Diffie-Hellman assumption holds, then UC−EXECFCERT
DHE,A,Z ≈ H1.

Assume there is an environment Z and an adversary A such that Z distinguishes with non-
negligible probability between UC−EXECFCERT

DHE,A,Z and H1. We construct an adversary D that con-

tradicts the Diffie-Hellman assumption. That is, given the tuple ga, gb, gz where a, b
r← Zq, D

distinguishes between the case where z=ab and z
r← Zq.

Parameterized with the tuple ga, gb, gz, D runs a copy of Z on a simulated interaction with
A and parties running DHE in the FCERT-hybrid model. D plays for Z the roles of A and the
parties with the following exceptions. When the responder fixes gx, it replaces the value with ga.
Next, if the initiator fixes gy, it replaces the value with gb. Further, whenever the players evaluate
the pseudo-random function PRF() on seed αy (resp. βx) in order to compute the master key, D
replaces the evaluation with PRFgz(). Finally, whenever Z instructs A to corrupt a party, D outputs
whatever the simulated Z outputs.

Consider the case where z
r← Zq. We claim that in this case the view of the simulated Z

is identically distributed to the view of Z in H1. This is so because gx, gy and the seed for
the evaluation of the pseudo-random function PRFgz() are independently and randomly chosen,
assuming that D did not abort. Now, consider the case where z=ab. We claim that in this case
the view of the simulated Z is identically distributed to the view of Z in UC−EXECFCERT

DHE,A,Z . The
only potential mismatch is that the initiator accepts a value α which is different from the value gx

the responder has chosen. Such a mismatch cannot occur due to the security properties of FCERT,
i.e. the initiator accepts α only when σ is a valid signature under the condition that Z did not
instruct A to corrupt the responder. And the only way for this to occur is that the responder has
registered as owner of the instance SIDCERT0, and queried FCERT on message (“sign”, SIDCERT0,
(SID, g, gx)) in order to retrieve a signature.

Claim 16 Assume PRF() is a secure pseudo-random function, then H1 ≈ UC−EXECF1
KE,S,Z

.

Assume that such environment Z that distinguishes with non-negligible simulation slice between
the interaction H1and UC−EXECF1

KE,S,Z
exists. We construct an adversary D who has access to

the black-box oracle OP that contains throughout the whole simulation either PRFkp() for some
randomly chosen secret kp or a truly random function with the same range. D runs a copy of Z
and emulates the interaction with parties running DHE in the FCERT-hybrid model and A unless
it is required to compute the master secret km for which it calls OP . It is easy to see that D
interpolates between H1 (this is the case where OP contains PRFkp()) and UC−EXECF1

KE,S,Z
(this is

the case where OP contains the truly random function). Hence, the output of Z can be directly
used by D to decide on the content of OP .

�

B.2 Proof of Lemma 6

Proof. Again, we construct a simulator S such that no environment Z distinguishes between the
case that Z interacts with DHS in the FCA-hybrid model and A, and the case that Z interacts
with F1

KE and S. S runs a simulated copy of the adversary A and mimics for A an interaction
with players executing DHS under the limitation that it has no clue about the master key km. It
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Subroutine DHS

1. Upon reception of an activation query (“establish-Key”, SID, R), the responder sends a response
messages consisting of its identity R, signaling that it has registered static DH parameters at FCA

by sending a query (“register”, SIDCA0, (g, gx)) where SIDCA0=(R, SID ◦ 0) includes its identity.

2. When the initiator receives an activation query (“establish-Key”, SID, ⊥), it waits for the delivery
of the response message (R) and invokes FCA with query (“retrieve”, SIDCA0). Then, the initiator
waits for the output (“retrieve”, SIDCA0, (g, gx)). If no value is retrievable, it aborts. Otherwise,
the initiator sends gy with y r← Zq and computes the master secret km ← PRFgxy (l1). It terminates
the protocol with local output (“Key”, SID, R, km).

3. Upon delivery of message (gy), the responder computes the master secret km ← PRFgxy (l1) and
locally outputs (“Key”, SID, ⊥, km).

Figure 9: Subroutine DHS, in the FCA-Hybrid model

allows A to attack the simulated protocol execution in arbitrary way throughout the simulation.
Any input from Z is forwarded to A and any output from A is copied to S in order to be forwarded
to Z. In order to make the environment’s view consistent with its view of the real-world protocol
execution, S proceeds as follows:

1. Simulating Activation of R Upon receiving message (“establish-key”, SID, R) from F1
KE,

S feeds A with the message (“register”, SIDCA0, (g, gx)), where SIDCA0=(R, SID ◦0) includes
the responder’s identity. It simulates that the responder has registered at FCA. In addition,
it feeds A with message (R) from R.

2. Simulating Activation of I Upon receiving message (“establish-key”, SID, ⊥) from F1
KE, S

waits for delivery of message (P ′) from A. It retrieves the registered parameters by emulating
a request (“retrieve”, SIDCA0), where SIDCA0=(P ′, SID ◦ 0), to A on behalf of I. It waits for
the answer (“retrieve”, SIDCA0, (g, gx)) from A. (The retrieval succeeds, if P ′=R and (g, gx)
is the response to a the previous registration request by S of the form (“register”, SIDCA0,
(g, gx)) sent to FCERT. It fails, if P ′ 6=R is the identity of an uncorrupted party.) In addition,
S simulates the response message by choosing y at random and sending gy to R. Finally, it
chooses the master key km to be a random ∆km in the same range and sends (“Key”, SID,
⊥, km) to F1

KE.

3. Simulating Reception of the Response Message by R When A delivers the message
β, then two cases exists as in the previous simulation.

• If β 6=gy, then the adversary acts as the initiator. S reacts in the following way to make
the simulation consistent with the real-world. It sets the master secret km ← PRFβx(l1)
and sends message (“impersonate”, SID, km) followed by a (“Key”, SID, R, km) message
to F1

KE.

• If β=gy, then the adversary did not intercept the communication between the initiator
and responder. S fixes the same master key km=∆km as in the previous simulation step
and queries F1

KE with message (“Key”, SID, R, km).
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Functionality FCA

FCERT proceeds as follows, running on security parameter k, with parties P and an adversary S. The
SID is assumed to consist of a pair SID=(PIDowner, SID′), where PIDowner is the owner of this instance.

Registration: Upon receiving the first message (“register”, SID, m) from party P , send (“register”,
SID, m) to the adversary; upon receiving ok from the adversary, and if this is the first request
from P , then record the pair (P , m).

Retrieval: Upon receiving a message (“retrieve”, SID) from other party P ′, send (“retrieve”, SID, P ′)
to the adversary, and wait for an ok from the adversary. Then, if there is a recorded pair (SID,
m) output (“retrieve”, SID, m) to P ′. Else output (“retrieve”, SID, ⊥) to P ′.

Figure 10: Certificate Authority Functionality

4. Simulating Static Corruption If one of the parties gets corrupted, then S proceeds by
emulating a DHS protocol session, just as a honest party would play it. In particular, it fixes
the master key µ̃ as the adversary A says to do.

Analyzing S, it can be seen that the environment’s view when interacting with DHS is computa-
tional indistinguishable from its view when interacting with DHE. The only difference is that DHS
calls FCA to fix gx (instead of FCERT). Thus, the potential mismatch is that the initiator accepts
a value α which is different from the value gx the responder has fixed. However, such a mismatch
cannot occur due to the security properties of FCA. Hence, by the reduction to the Diffie-Hellman
assumption and the security of the pseudo-random function, it can be seen that both views of Z
are computational indistinguishable.

Claim 17 Assume the Diffie-Hellman assumption holds and PRF() is a secure pseudo-random func-
tion, then UC−EXECFCA

DHS,A,Z ≈ UC−EXECF1
KE,S,Z

.

See the proof of hybrid H1 for subroutine DHE. �

B.3 Proof of Lemma 7

Proof. Let A be a real-world adversary that operates against EKT. As in the prior simulations,
we construct an ideal-world adversary S such that no environment Z can distinguish between the
case that it interacts with A and parties running EKT or with S in the ideal world for F1

KE. S
runs a simulated copy of A and mimics an interaction with players executing EKT. It tries to
make the internal protocol simulation consistent with the real protocol execution. The simulator
allows the adversary A to attack the simulated protocol execution in arbitrary way throughout the
simulation. Any input from Z is forwarded to A and any output from A is copied to S in order to
be forwarded to Z. In detail, S proceeds in the following way:

1. Simulating Activation of R Upon receiving message (“establish-key”, SID, R) from F1
KE,

S feeds A with the message (R), indicating that the responder has registered at FCPKE.
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Subroutine EKT

1. Upon reception of an activation query (“establish-Key”, SID, R), the responder sends the response
message (R), indicating that it owns an instance of FCPKE.

2. Upon reception of an activation query (“establish-Key”, SID, ⊥), the initiator waits for the delivery
of the response message (R). It fixes a premaster secret kp

r← {0, 1}p3(k). Next, the initiator sends
the value (“encrypt”, SIDCPKE0, kp) to FCPKE where SIDCPKE0=(R, SID ◦ 0) contains the owner
identity, and waits for the delivery of (“Ciphertext”, SIDCPKE0, c). Then, the initiator derives
master secret km ← PRFkp

(l1), forwards ciphertext value (c) to the responder, and generates local
output (“Key”, SID, R, km).

3. Upon delivery, the responder first decrypts c by sending (“decrypt”, SIDCPKE0, c) to FCPKE and
waits for the output (“Plaintext”, SIDCPKE0, kp). If the decryption succeeds, the responder computes
the master secret km ← PRFkp

(l1) and terminates with local output (“Key”, SID, ⊥, km). Otherwise,
the responder aborts.

Figure 11: Subroutine EKT, in the FCPKE-Hybrid model

2. Simulating Activation of I Upon receiving message (“establish-key”, SID, ⊥) from F1
KE,

S waits for delivery of message (P ′) from A. It chooses a premaster secret kp at random and
queries A on behalf of FCPKE with message (“encrypt”, SIDCPKE0, kp), where SIDCPKE0=(P ′,
SID ◦ 0). (The request succeeds unless P ′ is an uncorrupted party and P ′=R. Otherwise, the
simulator aborts.) Upon reception of message (“Ciphertext”, SIDCPKE0, c), S sets the master
key km to be a value ∆km in the same range, forwards the ciphertext c to the responder and
outputs (“Key”, SID, ⊥, km) to F1

KE.

3. Simulating Reception of the Response Message by R When A delivers the message α,
S mimics the decryption of α by sending (“decrypt”, SIDCPKE0, α) to A on behalf of FCPKE

and waiting for the response (“Plaintext”, SIDCPKE0, k′p). Now, two cases exists agai.

• If k′p=kp, then S fixes the same master key km=∆km as in the previous simulation step
and outputs (“Key”, SID, ⊥, km) to F1

KE.

• Otherwise, S sets the master secret km← PRFk′p(l1) and outputs message (“impersonate”,
SID, km) followed by a (“Key”, SID, R, km) message to F1

KE.

4. Simulating Static Corruption If one of the parties gets corrupted, then S proceeds by
emulating a EKT protocol session, just as a honest party would play it. In particular, it fixes
the master key µ̃ as the adversary A says to do.

We now prove that no environment Z exists that distinguishes with non-negligible simulation
slice between the case that Z interacts with EKT and A, and the case that Z interacts with F1

KE

and S. This is done by reduction to the security of the pseudo-random function.

Claim 18 Assume PRF() is a secure pseudo-random function, then UC−EXECFCPKE
EKT,A,Z ≈

UC−EXECF1
KE,S,Z

.

Assume that such environment Z that distinguishes with non-negligible simulation slice between
the interaction UC−EXECFCPKE

EKT,A,Z and UC−EXECF1
KE,S,Z

exists. We construct an adversary D who has

32



Functionality FCPKE

FCPKE proceeds as follows, when parameterized by message domain M , a function E with domain M
and range {0, 1}∗, and function D of domain {0, 1}∗ and range M ∪ error. The SID is assumed to
consist of a pair SID=(PIDowner, SID′), where PIDowner is the owner of this instance.

Encryption: Upon receiving a value (“encrypt”, SID, m) from a party P , proceed as follows:

1. If m /∈ M then return an error message to P .

2. If m ∈ M then:

• If the owner of this instance of FCPKE is corrupted, then hand also the entire value m
to the adversary and receive tag c.

• Else, calculate a value c by choosing a random r of the same length as m, and selecting
c ← E(r).

Record the pair (c,m), and output (“Ciphertext”, SID, c). (If c already appears in a previ-
ously recorded pair then return an error message to P .)

Decryption: Upon receiving a value (“decrypt”, SID, c) from the owner of this instance, proceed as
follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c,m), then hand (“Plaintext”, SID, m) to P .

2. Otherwise, compute m ← D(c), and hand (“Plaintext”, SID, m) to P .

Figure 12: Certified Public Key Encryption Functionality

access to the black-box oracle OP . D plays for Z the roles of A and the parties running EKT. The
black-box oracle OP contains throughout the whole simulation either PRFkp() for some randomly
chosen secret kp or a truly random function with the same range. D runs a copy of Z and emulates
the interaction with parties running EKT in the FCPKE-hybrid model and A unless it is required
to compute the master secret km for which it calls OP .

Consider the case where OP calls the truly random function. We claim that in this case the
environment’s view is identically distributed to UC−EXECF1

KE,S,Z
. This is so because the master key

is chosen randomly and independently from the initiator’s state under the condition that S did not
abort. Now, consider the case where OP calls PRFkp(). We claim that in this case the environment’s

view is identically distributed to UC−EXECFCPKE
EKT,A,Z . Indeed, the only potential mismatch is that

the responder accepts a premaster key kp that has not been fixed by the initiator, assuming Z
neither instructed A to corrupt nor impersonate the initiator. Such a mismatch cannot occur due
to the security of FCPKE. The responder accepts the premaster key kp, when it receives output
(“Plaintext”, SIDCPKE0, kp) from FCPKE. And the only way for this to occur is that the initiator
has uploaded the premaster key by sending (“encrypt”, SIDCPKE0, kp) to FCPKE before. �
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