
On the Security of Holder-of-Key Single Sign-On

Andreas Mayer1, Vladislav Mladenov2, and Jörg Schwenk2

1Adolf Würth GmbH & Co. KG, Künzelsau-Gaisbach, Germany
2Horst Görtz Institute, Ruhr-University Bochum, Germany

Abstract: Web Single Sign-On (SSO) is a valuable point of attack because it provides
access to multiple resources once a user has initially authenticated. Therefore, the
security of Web SSO is crucial. In this context, the SAML-based Holder-of-Key (HoK)
SSO Profile is a cryptographically strong authentication protocol that is used in highly
critical scenarios. We show that HoK is susceptible to a previously published attack by
Armando et al. [ACC+11] that combines logical flaws with cross-site scripting. To fix
this vulnerability, we propose to enhance HoK and call our novel approach HoK+. We
have implemented HoK+ in the popular open source framework SimpleSAMLphp.

1 Introduction

Today’s Internet users are forced to register to each website individually and have to man-
age a plethora of accounts and passwords as part of their daily job. This aspect is not only
cumbersome but also seriously insecure, as users frequently choose weak (easy to remem-
ber) passwords and/or reuse them on several websites. Furthermore, each website has to
reinvent the wheel by building and operating another stand-alone authentication solution
and thus suffers from high user management costs.

Web Single Sign-On (SSO), as a subset of identity and access management, was proposed
to tackle the described usability, security, and management issues. With SSO, a user au-
thenticates once to a trusted third party, called Identity Provider (IdP), and subsequently
gains access to all federated websites (i.e. Service Providers) he/she is entitled to – without
being prompted with another login dialog.

Nowadays, Web SSO solutions are wide-spread and their importance still continues to
grow. In this context, the Security Assertion Markup Language (SAML) [S. 05] is a flex-
ible and open XML standard for exchanging authentication and authorization statements.
Since its invention in 2001, SAML has become the dominant technology for enterprise
Web SSO. SAML is also used in research, education, and e-Government scenarios.

In security critical use cases, SAML Holder-of-Key (HoK) Web SSO [KS10] is applied
because it fulfills the highest “level of assurance” as defined by the National Institute of
Standards (NIST) [The11]. HoK adds strong cryptographic guarantees to the authenti-
cation context and enhances the security of SAML assertion and message exchange by
using mutual authenticated secure channels. It builds on the TLS protocol which is ubiq-
uitously implemented in all major browsers (including mobile browsers) and web servers.

Therefore, maximum compatibility to existing infrastructure and deployments is given.

CONTRIBUTION. Although, HoK successfully defends against a wide range of attacks,
like man-in-the middle (MITM) and man-in-the-browser (MITB), we show that it is still
susceptible to a previously discovered attack by Armando et al. [ACC+11]. To mitigate
this vulnerability, we propose to extend HoK and use the strong cryptographic binding in
a more holistic approach. We call this countermeasure HoK+. In order to demonstrate the
practical feasibility, we have implemented a proof-of-concept in the popular open source
framework SimpleSAMLphp [Sim13].

OUTLINE. Related work is given in Section 2. The following section will introduce Web
SSO, SAML, and cookie theft. HoK Web SSO is explained in Section 4. The RelayState
Spoofing attack applied on HoK is presented in Section 5. Our countermeasure HoK+
along with the implementation is presented in Section 6. We conclude in Section 7.

2 Related Work

SINGLE SIGN-ON. The Security Assertion Markup Language (SAML) was developed for
the secure exchange of XML-based messages and is mostly applied within federated iden-
tity management. The most widespread field of use of SAML is Web SSO. Unfortunately,
a diversity of attacks have been discovered in the last years.

In 2003, Groß [Gro03] disclosed several adaptive attacks on the SAML Browser Artifact
Profile resulting in the interception of the authentication token contained in the URL. Ad-
ditionally, Groß analyzed the revisited version of SAML [S. 05], finding further logical
flaws and security threats [GP06]. Related vulnerabilities have been analyzed and found
in the Liberty Single Sign-On by Pfitzmann and Waidner [PW03]. In 2006 Y. Chan in-
troduced a new parallel session attack to bypass all levels of authentication by exclusively
breaking the weakest one among them [Cha06].

In 2008, Armando et al. [ACC+08] built a formal model of the SAML V2.0 Web Browser
SSO protocol and analyzed it with the model checker SATMC. The practical evaluation
revealed an existing security issue on the SAML interface of Google, allowing a ma-
licious SP to impersonate any user at any Google application. Later on, same authors
identified another attack on Google’s SAML interface [ACC+11]. They manipulated the
RelayState parameter in the query string of an HTTP request in order to exploit an
existing cross-site scripting (XSS) vulnerability on Google. In this paper, we apply the
RelayState Spoofing attack on HoK Web SSO.

Further researches on the security of Web SSO have shown serious flaws resulting in iden-
tity theft and compromising the security of the end-systems. In [SMS+12] the authors
published an in-depth analysis of XML Signature. Additionally, they introduced novel
techniques to manipulate digitally signed messages, despite the applied integrity protec-
tion mechanisms. As a result the authors of the study examined 14 major SAML frame-
works and showed that 11 of them had critical XML Signature wrapping flaws allowing
the impersonation of any user. Another study regarding the security of SSO systems has
been published in 2012 by Wang et al. [WCW12]. The authors examined REST-based

authentication protocols like OpenID and found serious logic and implementation flaws
resulting in identity theft.

TLS CHANNEL BINDINGS. In 2009 OASIS1 standardized the SAML Holder-of-Key Web
Browser SSO Profile [KS10] using TLS client certificates for strengthening the authenti-
cation process. Later on, RFC 5929 [AWZ10] has been published in 2010 and describes
three different channel binding types for TLS without using any client certificates.

In 2012, Dietz et al. [DCBW12] have proposed a TLS channel binding called Origin-
Bound Certificates (OBC) by using a TLS extension. Their approach changes server au-
thenticated TLS channels into mutually authenticated channels by using client certificates
created on the fly by the browser. However, their idea requires changes in the TLS proto-
col, thus all current TLS implementations must be modified.

Recently, Google introduced another TLS extension called Channel ID [BH12]. Again,
fundamental changes to underlying TLS implementations are required. In summary, the
browser creates an additional asymmetric key pair during the TLS handshake and uses
the private key to sign all handshake messages up to the ChangeCipherSpec message.
Subsequently, the signature, along with the public key, is sent encrypted through the TLS
channel using the freshly established TLS key material. This is done before finishing the
TLS handshake. The browser uses the public key as “Channel ID” that identifies the TLS
connection.

In 2013 OASIS published the SAML Channel Binding Extensions [Can13] that allows the
use of channel bindings in conjunction with SAML. In this manner, the channel bindings
of RFC 5929 [AWZ10] can be integrated in all SAML related services (e.g. SSO).

3 Foundations

WEB SINGLE SIGN-ON. In an SSO flow (cf. Figure 1) user U navigates user agent
UA (e.g. a browser) and tries to access a restricted resource on SP (1). Thus the user is
not authenticated yet, SP generates a token request (2) and redirects UA with the token
request to IdP (3,4). In the following step U authenticates himself to IdP (5) according to
the supported authentication mechanisms. Subsequently, the security token is issued and
sent through UA to SP , where the integrity and authenticity is verified and the content is
evaluated (6,7).

SAML. The Security Assertion Markup Language (SAML) [S. 05] is a widely-used open
XML standard for exchanging authentication and authorization statements about subjects.
These statements are contained in security tokens called assertions. SAML consists of
three other building blocks: (1) protocols – define how assertions are exchanged between
the actors; (2) bindings – specify how to embed assertions into transport protocols (e.g.
HTTP or SOAP), and (3) profiles define the interplay of assertions, protocols, and bindings
that are necessary for the needs of a specific use case to be met. The investigated SAML
HoK Web Browser SSO Profile [KS10] is such an application scenario.

1https://www.oasis-open.org/

UA SPIdP

Issue signed
Token

6
Token

Token

● Verify signature
● Evaluate Token

[TLS]

3

Token Request

1

[TLS]

2

Issue
Token
Request

 U
Login Request

4

Token Request

5

Authentication

7

Figure 1: Single Sign-On Overview.

In order to request an assertion, SAML defines the <AuthnRequest> XML message
(i.e. token request). Important elements and attributes of this message are: ID – a
unique and randomly chosen request identifier; AssertionConsumerServiceURL
(ACSURL) – specifies the endpoint to which IdP must deliver the assertion; <Issuer>
– the EntityID of SP .

The issued assertion (i.e. security token) contains the following elements and parameters
relevant to this paper: InResponseTo – must match the ID of the <AuthnRequest>;
ID – a unique and randomly chosen assertion identifier; <Issuer> – the EntityID of
IdP ; <Audience> – the EntityID of SP ; <SubjectConfirmation> – the client
certificate of UA; <Subject> – the EntityID of U ;. To assure the integrity and au-
thenticity of the security claims made, the whole assertion must be protected by a digital
signature (<Signature>) which is compliant to the XML Signature standard [ERS+08].

COOKIE THEFT. The Hypertext Transfer Protocol (HTTP) [FGM+99] is a wide-spread
web application protocol transmitting messages between user’s browser and web server.
Since HTTP is a stateless protocol, without additional mechanisms a user will be forced
to re-enter his login information repeatedly, for every HTTP request. HTTP session cook-
ies [Bar11] are applied to solve this problem by making HTTP stateful. In other words,
the cookies are a mechanism to make authentication persistent. They are set by the web
server, stored in the client’s browser and transmitted with every HTTP request to the web
server. In this manner a user has to authenticate himself only once in order to get a cookie
which represents the session state of an authenticated user.

Unfortunately, HTTP cookies can be stolen by various attacks like eavesdropping the net-
work communication, cross-site scripting (XSS), cross-site request forgery (CSRF), and
UI redressing. The theft results in impersonation of the victim by the adversary. To impede
cookie theft, two cookie flags are applied: secure – defines that cookies are only sent
over a secure channel (i.e. TLS); HTTPOnly – makes a cookie inaccessible by client-side
scripts (e.g. JavaScript). Unfortunately, all existing best-practice cookie theft countermea-
sures can be bypassed in several ways [Man03, Pal07, BBC11, Hei12].

1. HTTP GET URI
R

4. Authenticate user U

5. HTTP 200, Form(<Response(ID
2
,ID

1
, A)>, URI

R
, target=ACS

URL
)

6. HTTP POST ACS
URL

,

<Response(ID
2
,ID

1
, A)>, URI

R
)

7. HTTP 200, URI
R

UA SP IdP

2. HTTP 302 IdP, (<AuthnRequest(ID
AR

,

SP, ACS
URL

)>, URI
R
)

3. HTTP GET IdP, (<AuthnRequest(ID
1
, SP, ACS

URL
)>, URI

R
)

Not specified

1. Extract Cert
UA

2. Issue assertion:

A:={ID
A
,ID

1
,IdP,

 SP, U, Cert
UA

}
K

IdP

-1

TLS (mutually authenticated)

1. Extract Cert´
UA

 2. Cert´
UA

= Cert
UA

?

Figure 2: SAML 2.0 Holder-of-Key Web Browser SSO Profile.

4 Holder-of-Key Web SSO

The SAML V2.0 Holder-of-Key (HoK) Web Browser SSO Profile [KS10] is an OASIS
standard based on the browser-based Kerberos scheme BBKerberos [GJMS08]. By
using mutual authenticated secure channels, HoK adds strong cryptographic binding to
the authentication context and enhances the security of the message exchange, i.e. the
SAML assertion. HoK builds on the TLS protocol which is ubiquitously implemented in
all major browsers (including mobile browsers) and web servers. Therefore, maximum
compatibility to existing infrastructures and deployments is given.

In HoK the web server recognizes the browser on basis of a unique (self-signed) client cer-
tificate. The browser proves the possession of the client certificate’s private key in a mutual
authenticated TLS handshake. Any self-signed certificate is sufficient, as neither IdP nor
SP are required to validate the trust chain of the certificate. Therefore, no complex and
expensive public-key infrastructure (PKI) is needed. The issued assertion is cryptograph-
ically bound to the client certificate by including either the certificate itself or a hash of it
in the signed assertion. In this manner the assertion can be used only in conjunction with
the according private key stored in user’s browser.

Figure 2 illustrates the detailed flow of the SAML Holder-of-Key Web Browser SSO Pro-
file. Subsequently, we describe the individual steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted re-
source R by accessing URIR.2 This starts a new SSO protocol run.

2. SP → UA: SP determines that no valid security context (i.e. an active login session)
exists. Accordingly, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with the RelayState parameter
URIR, as an HTTP 302 (redirect to IdP) to UA. ID1 is a fresh random string and
SP the identifier of the Service Provider. ACSURL specifies the endpoint to which the
assertion must be delivered by IdP .

3. UA → IdP : Triggered by the HTTP redirect, a mutually authenticated TLS connec-
tion is established between UA and IdP . Thereby, IdP and UA send to each other
their certificates and each proves possession of the corresponding private key within
the mutual TLS handshake. Afterwards, the built TLS channel is used to transport
<AuthnRequest(ID1, SP, ACSURL)>, along with URIR, to IdP .

4. UA ↔ IdP : If the user is not yet authenticated, IdP identifies U by an arbitrary
authentication mechanism.

5. IdP → UA: IdP creates an assertion A := (IDA, ID1, IdP, SP, U,CertUA), in-
cluding the unique identifier IDA and ID1 from the request, the entity IDs of IdP , SP ,
the user identity U , and the user certificate CertUA. Subsequently, A is signed with
the IdP’s private key K−1IdP . The signed assertion A is embedded into a <Response>
message, together with ID1 and the fresh response identifier ID2, and is sent Base64-
encoded in an HTML form, along with the RelayState=URIR, to UA.

6. UA→ SP : A small JavaScript embedded in the HTML form triggers the forwarding of
the assertion A to ACSURL via HTTP POST. Simultaneously, a mutually authenticated
TLS channel with SP is built, where UA presents a client certificate Cert′UA.

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the assertion. A is only valid if the contained CertUA is equal to Cert′UA

from the previous TLS handshake (step 6). SP verifies the XML signature, and au-
thenticates user U resulting in a security context. Finally, SP grants U access to the
protected resource R by redirecting U to URIR.

HoK does not prevent assertion theft in any circumstance (e.g. via XSS). However, stolen
assertions are always worthless for the adversary, since they are cryptographically bound
to the legitimate browser. To successfully attack HoK, the adversary needs knowledge of
the private key belonging to the used client certificate. Consequently, the private key is
protected by the browser and/or by the underlying operating system. It is even possible
to store the private key on a secure device (e.g. smart card) to protect against malware
in untrusted environments (e.g. in kiosk scenarios, where computers are accessible to
everyone at public places). Furthermore, HoK protects both TLS connections (between
UA and SP as well as between UA and IdP) against MITM and MITB attacks. It is
important to note that the presentation of a client certificate in step 1 and 2 (i.e. a mutually
authenticated TLS handshake) is strictly optional [KS10, p.10].

2URIR is called RelayState as it preserves and conveys the initial step of a SSO protocol run (i.e. the URI
of the accessed resource R).

1. HTTP GET URL

6. Authenticate user U

7. HTTP 200, Form(<Response(ID
2
,ID

1
, A)>, Bad

URI
, target=ACS

URL
)

8. HTTP POST ACS
URL

, (<Response(ID
2
,ID

1
, A)>, Bad

URI
)

9. HTTP 200, Bad
URI

UA SP IdP

4. HTTP 302 IdP, (<AuthnRequest(ID
AR

,

SP, ACS
URL

)>, Bad
URI

)

5. HTTP GET IdP, (<AuthnRequest(ID
1
, SP, ACS

URL
)>, Bad

URI
)

Not specifiedTLS (mutually authenticated)

Adv
WS

2. HTTP GET URI
R

3. HTTP 302 IdP, (<AuthnRequest(ID
AR

,

SP, ACS
URL

)>, Bad
URI

)

1. Extract Cert
UA

2. Issue assertion:

A:={ID
A
,ID

1
,IdP,

 SP, U, Cert
UA

}
K

IdP

-1

Figure 3: RelayState Spoofing attack on HoK Web SSO.

5 RelayState Spoofing Attack

Armando et al. [ACC+11] have discovered a serious authentication flaw (RelayState Spoof-
ing) in standard Web SSO. In this section, we provide a review of this attack and show that
this technique breaks the security of SAML HoK Web SSO.

5.1 Threat Model

We make two assumptions on adversary Adv to launch a successful RelayState Spoofing
attack:

1. Adv is able to lure the victim to a malicious website (Advws) controlled by him.
Since there is no need to read the network traffic, we may assume that UA of the
victim always communicates over encrypted TLS channels. Moreover, the victim
may only accept communication partners with valid and trusted server certificates.

2. Adv requires an XSS vulnerability for each attacked SP that allows cookie theft.

5.2 Attack Description

The RelayState Spoofing attack combines a logical flaw in the SSO implementation (the
RelayState parameter URIR can be changed by Adv, and this parameter will be used
in a final redirect triggered by SP) with implementation bugs at the Service Provider
SP (an XSS attack can be launched through an HTTP redirect query string parameter).
The attack flow is depicted in Figure 3.

In step 2 or 4, Adv injects an XSS attack vector into the parameters of the RelayState
URIR= BADURI . After successful authentication at the honest SP (i.e. after successful
verification of the SAML assertion), the maliciously-crafted URIR= BADURI is loaded
by a browser redirect (step 9), and the XSS attack is automatically executed in the browser
resulting in a cookie theft.

Two preconditions must be met for this attack to be successful: (1) injectability of XSS
code into URIR and (2) XSS-vulnerable implementations of SPs. The first precondition
normally holds in SAML-based SSO scenarios, because URIR is not part of the XML-
based data structures authentication request or assertion, and can thus not be integrity pro-
tected by an XML signature. Instead, the SAML standard recommends to protect the in-
tegrity of URIR by a separate signature ([CHK+05], Section 3.4.3). However, [ACC+11]
and our own investigations show that this is normally not the case in practice. The second
precondition has been shown to be applicable by [WCW12] and [SB12], where numerous
implementation bugs for SPs have been documented. Additionally, Armando et al. have
presented two successful RelayState Spoofing attacks on Novel Access Manager 3.1 and
Google Apps.

By misusing the SSO protocol flow, Adv can ensure that the victim has an authenticated
session with the attacked SP, which is a precondition for cookie theft via XSS. Further-
more, Adv can use this attack as launching pad to automatically execute cross-site request
forgery (CSRF) [The13] attacks.

An attack related to RelayState Spoofing is login CSRF [BJM08], whereby Adv forges a
cross-site request to the honest website’s login form, resulting in logging the victim into
this website as the adversary. This CSRF variant is also applicable to SAML-based SSO.

6 HoK+ Web SSO

Although SAML HoK Web SSO protects against a variety of attacks, it is still susceptible
to the RelayState Spoofing attack as shown in the previous section. This is due to the fact,
that HoK does not protect the SP’s <AuthnRequest> against a MITM attack.

To additionally mitigate this severe attack, we propose to enhance HoK and call our novel
approach HoK+. In summary, HoK+ additionally binds the SP ’s <AuthnRequest>
message to the client certificate. Therefore, the whole SSO protocol flow is cryptographi-
cally linked to the legitimate UA.

6.1 HoK+ Protocol

Figure 4 illustrates the detailed flow of HoK+, which consists of the following steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted re-
source R by accessing URIR. This starts a new SSO protocol run. A mutually authen-
ticated TLS connection is established between UA and SP and thereby UA sends its
client certificate CertUA to SP .

2. SP → UA: SP extracts CertUA from the TLS handshake and issues an authentica-

1. HTTP GET URI
R

4. Authenticate user U

5. HTTP 200, Form(<Response(ID
2
,ID

1
, A)>, URI

R
, target=ACS

URL
)

6. HTTP POST ACS
URL

,

<Response(ID
2
,ID

1
, A)>, URI

R
)

7. HTTP 200, URI
R

UA SP IdP

2. HTTP 302 IdP, (<AuthnRequest({ID
AR

 ,

SP, Cert
UA

, ACS
URL

}
K

SP
)>, URI

R
)

3. HTTP GET IdP, (<AuthnRequest({ID
1
, SP, Cert

UA
, ACS

URL
}

K
SP

)>, URI
R
)

Not specified

Issue assertion:

A:={ID
A
,ID

1
,IdP,

 SP, U, Cert
UA

}
K

IdP
-1

TLS (mutually authenticated)

Extract
Cert‘

UA

1. Extract Cert‘‘
UA

 2. Cert‘‘
UA

= Cert
UA

?

-1

-1

Extract
Cert

UA

Figure 4: The novel HoK+ SSO Profile.

tion request <AuthnRequest(ID1, SP, CertUA, ACSURL)>, which is then
signed with the SP’s private key K−1SP . The <AuthnRequest> is sent back to UA,
along with URIR, as HTTP redirect to IdP .

3. UA → IdP : Triggered by the HTTP redirect, a mutual authenticated TLS connec-
tion between UA and IdP is established. UA uses this TLS connection to transport
<AuthnRequest>, along with URIR, to IdP .

4. UA ↔ IdP : IdP verifies the XML signature of the received <AuthnRequest>
with SP ’s public key and then compares CertUA from the authentication request with
Cert′UA of the TLS connection. If they match, IdP authenticates U with an arbitrary
method. Otherwise, the protocol is stopped.

5. IdP → UA: IdP creates an assertion A := (IDA, ID1, IdP, SP, U,CertUA). Sub-
sequently, A is signed with the IdP’s private key K−1IdP and is embedded into a <Response>
message, together with ID1 and the fresh response identifier ID2. Afterwards it is sent
Base64-encoded in an HTML form, along with the RelayState=URIR, to UA.

6. UA→ SP : A small JavaScript embedded in the HTML form triggers the forwarding of
the assertion A to ACSURL via HTTP POST. Simultaneously, a mutually authenticated
TLS channel with SP is built, where UA presents a client certificate Cert′′UA.

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. Additionally, A is only valid
if the contained CertUA is equal to Cert′′UA from the previous TLS handshake (step
6). SP verifies the XML signature, and authenticates U resulting in a security context.
Finally, SP grants U access to the protected resource R by redirecting U to URIR.

The reason why HoK+ mitigates the RelayState Spoofing attack is that no SAML assertion
will be issued by IdP in case of an attack, since the authentication request is bound to the
client certificate used by the adversary Adv. Thus we make it impossible for Adv to submit
a valid SAML assertion to SP .

6.2 Implementation

In order to demonstrate the feasibility of HoK+, we have implemented it in the popular
open source framework SimpleSAMLphp (SSP) [Sim13]. We have chosen SSP because
it is known as a fairly secure framework [SMS+12], and because our own penetration
tests and source code observations have shown that SSP did not reveal any XSS flaws.
Moreover, SSP supports defense-in-depth techniques like HTTPOnly and secure flag
cookies by default.

SSP already supports HoK [MS11]. We added code to create, process, and verify signed
HoK+ authentication requests. The enhanced <AuthnRequest> is compliant with the
SAML standard and conforming to the SAML V2.0 XML schema. The TLS client certifi-
cate is added in the same way as in the HoK SAML assertion: a <SubjectConfirmation>
element, whose Method attribute is set to holder-of-key:SSO:browser, contains
the Base64 encoded client certificate from the TLS channel. The <SubjectConfirmation>
is inserted into the authentication request’s <Subject> element. Due to the XML signa-
ture and the additional XML elements, the resulting HoK+ <AuthnRequest> messages
are bigger than 2,048 bytes. Therefore, we had to change the HTTP redirect binding (i.e.
transfer by HTTP GET parameter) to HTTP POST binding.

A total of 113 modified or added lines across 3 files in the SSP source code were required
for these SSP modifications. Additionally, no further changes on UA were required.

7 Conclusion

Developing a secure Web SSO protocol is a nontrivial task. Due to the more complex tri-
lateral communication flow between all participants, the attack surface is larger and more
often leads to security issues compared to standard authentication. Despite the provided
protection mechanisms to strengthen the authentication process, a plethora of attacks still
exists.

The introduced HoK is a secure and robust Web SSO protocol that already protects against
a variety of attacks (e.g. MITM). However, based on previously found authentication
flaws, we showed that even the cryptographically strong security, provided by HoK, can
be bypassed and thus cannot mitigate identity theft.

Our improved HoK+ approach holistically secures the whole SSO protocol flow and addi-
tionally mitigates RelayState Spoofing without the need of changing existing Web infras-
tructure (i.e. TLS, browser, and web server). Finally, the concept of HoK+ is generic and
can be applied to other SSO protocols (e.g. OAuth and OpenID).

holder-of-key:SSO:browser

References

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, and M. Llanos
Tobarra. Formal Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the
SAML-based Single Sign-On for Google Apps. In Proceedings of the 6th ACM Work-
shop on Formal Methods in Security Engineering, FMSE 2008, pages 1–10, Alexandria
and VA and USA, 2008. ACM.

[ACC+11] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, Giancarlo
Pellegrino, and Alessandro Sorniotti. From Multiple Credentials to Browser-Based
Single Sign-On: Are We More Secure? In Jan Camenisch, Simone Fischer-Hübner,
Yuko Murayama, Armand Portmann, and Carlos Rieder, editors, SEC, volume 354 of
IFIP Advances in Information and Communication Technology, pages 68–79. Springer,
2011.

[AWZ10] J. Altman, N. Williams, and L. Zhu. Channel Bindings for TLS. RFC 5929 (Proposed
Standard), July 2010.

[Bar11] A. Barth. HTTP State Management Mechanism. RFC 6265 (Proposed Standard), April
2011.

[BBC11] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin Cookies: Session Integrity for
Web Applications. In W2SP: Web 2.0 Security and Privacy Workshop 2011, May 2011.

[BH12] D. Balfanz and R. Hamilton. Transport Layer Security (TLS) Channel IDs. Internet-
Draft, November 2012.

[BJM08] Adam Barth, Collin Jackson, and John C. Mitchell. Robust Defenses for Cross-Site
Request Forgery. In Proceedings of the 15th ACM conference on Computer and com-
munications security, CCS ’08, pages 75–88, New York and NY and USA, 2008. ACM.

[Can13] Scott Cantor. SAML V2.0 Channel Binding Extensions Ver-
sion 1.0, 2013. http://docs.oasis-open.org/security/
saml/Post2.0/saml-channel-binding-ext/v1.0/cs01/
samlchannel-binding-ext-v1.0-cs01.html.

[Cha06] Yuen-Yan Chan. Weakest Link Attack on Single Sign-On and Its Case in SAML V2.0
Web SSO. In Computational Science and Its Applications - ICCSA 2006, volume 3982
of Lecture Notes in Computer Science, pages 507–516. Springer Berlin Heidelberg,
2006.

[CHK+05] Scott Cantor, Frederick Hirsch, John Kemp, Rob Philpott, and Eve Maler. Bindings
for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Standard,
15.03.2005, 2005. http://docs.oasis-open.org/security/saml/v2.
0/saml-bindings-2.0-os.pdf.

[DCBW12] Michael Dietz, Alexei Czeskis, Dirk Balfanz, and Dan S. Wallach. Origin-Bound Cer-
tificates: A Fresh Approach to Strong Client Authentication for the Web. In Proceed-
ings of the 21st USENIX conference on Security symposium, Security’12, pages 16–16,
Berkeley, CA, USA, 2012. USENIX Association.

[ERS+08] Donald Eastlake, Joseph Reagle, David Solo, Frederick Hirsch, and Thomas Roessler.
XML Signature Syntax and Processing (Second Edition), 2008. http://www.w3.
org/TR/xmldsig-core/.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, 1999.

http://docs.oasis-open.org/security/saml/Post2.0/saml-channel-binding-ext/v1.0/cs01/samlchannel-binding-ext-v1.0-cs01.html
http://docs.oasis-open.org/security/saml/Post2.0/saml-channel-binding-ext/v1.0/cs01/samlchannel-binding-ext-v1.0-cs01.html
http://docs.oasis-open.org/security/saml/Post2.0/saml-channel-binding-ext/v1.0/cs01/samlchannel-binding-ext-v1.0-cs01.html
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

[GJMS08] Sebastian Gajek, Tibor Jager, Mark Manulis, and Jörg Schwenk. A Browser-based Ker-
beros Authentication Scheme. In Sushil Jajodia and Javier López, editors, Computer
Security - ESORICS 2008, 13th European Symposium on Research in Computer Secu-
rity, Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in
Computer Science, pages 115–129. Springer, August 2008.

[GP06] Thomas Groß and Birgit Pfitzmann. SAML artifact information flow revisited. Re-
search Report RZ 3643 (99653), IBM Research, 2006. http://www.zurich.
ibm.com/security/publications/2006.html.

[Gro03] T. Groß. Security analysis of the SAML Single Sign-on Browser/Artifact profile. In
Annual Computer Security Applications Conference. IEEE Computer Society, 2003.

[Hei12] Mario Heiderich. Towards Elimination of XSS Attacks with a Trusted and Capability
Controlled DOM. PhD thesis, Ruhr-University Bochum, Bochum, May 2012.

[KS10] Nate Klingenstein and Tom Scavo. SAML V2.0 Holder-of-Key
Web Browser SSO Profile Version 1.0: Committee Specification 02.
http://docs.oasis-open.org/security/saml/Post2.0/
sstc-saml-holder-of-key-browser-sso-cs-02.pdf, August 2010.

[Man03] Art Manion. Vulnerability Note VU#867593, 2003. http://www.kb.cert.org/
vuls/id/867593.

[MS11] Andreas Mayer and Jörg Schwenk. Sicheres Single Sign-On mit dem SAML Holder-
of-Key Web Browser SSO Profile und SimpleSAMLphp. In Bundesamt für Sicherheit
in der Informationstechnik, editor, Sicher in die digitale Welt von morgen, pages 33–46,
Gau-Algesheim, May 2011. SecuMedia Verlag.

[Pal07] Wladimir Palant. (CVE-2009-0357) XMLHttpRequest allows reading HTTPOnly
cookies, 2007. https://bugzilla.mozilla.org/show_bug.cgi?id=
380418.

[PW03] Birgit Pfitzmann and Michael Waidner. Analysis of Liberty Single-Sign-on with En-
abled Clients. IEEE Internet Computing, 7(6):38–44, 2003.

[S. 05] S. Cantor et al. Assertions and Protocols for the OASIS Security Asser-
tion Markup Language (SAML) V2.0. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf, March 2005.

[SB12] San-Tsai Sun and Konstantin Beznosov. The Devil is in the (Implementation) Details:
An Empirical Analysis of OAuth SSO Systems. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages 378–390, New
York, NY, USA, 2012. ACM.

[Sim13] SimpleSAMLphp. SimpleSAMLphp Project. URL: http://www.
simplesamlphp.org, 2007–2013.

[SMS+12] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen. On Breaking SAML: Be Whoever You Want to Be. In 21st USENIX Secu-
rity Symposium, Bellevue, WA, August 2012.

[The11] The National Institute of Technology. Special Publication 800-63-1: Elec-
tronic Authentication Guideline, December 2011. http://csrc.nist.gov/
publications/nistpubs/800-63-1/SP-800-63-1.pdf.

http://www.zurich.ibm.com/security/publications/2006.html
http://www.zurich.ibm.com/security/publications/2006.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-holder-of-key-browser-sso-cs-02.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-holder-of-key-browser-sso-cs-02.pdf
http://www.kb.cert.org/vuls/id/867593
http://www.kb.cert.org/vuls/id/867593
https://bugzilla.mozilla.org/show_bug.cgi?id=380418
https://bugzilla.mozilla.org/show_bug.cgi?id=380418
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.simplesamlphp.org
http://www.simplesamlphp.org
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf

[The13] The Open Web Application Security Project (OWASP). Cross-Site Request Forgery
(CSRF), 2013. https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF).

[WCW12] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me onto Your Accounts through
Facebook and Google: a Traffic-Guided Security Study of Commercially Deployed
Single-Sign-On Web Services. In IEEE, editor, Security & Privacy 2012, 2012.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

	Introduction
	Related Work
	Foundations
	Holder-of-Key Web SSO
	RelayState Spoofing Attack
	Threat Model
	Attack Description

	HoK+ Web SSO
	HoK+ Protocol
	Implementation

	Conclusion

