
Your Software at my Service

Security Analysis of SaaS Single Sign-On Solutions in the Cloud

Christian Mainka∗

Horst Görtz Institute for
IT-Security

Bochum, Germany
christian.mainka@rub.de

Vladislav Mladenov†

Horst Görtz Institute for
IT-Security

Bochum, Germany
vladislav.mladenov@rub.de

Florian Feldmann†

Horst Görtz Institute for
IT-Security

Bochum, Germany
florian.feldmann@rub.de

Julian Krautwald†

Horst Görtz Institute for
IT-Security

Bochum, Germany
julian.krautwald@rub.de

Jörg Schwenk
Horst Görtz Institute for

IT-Security
Bochum, Germany

joerg.schwenk@rub.de

ABSTRACT
Software-as-a-Service (SaaS) is typically defined as a rental model
for using a complex software product, running on a centralized
computing platform, using a thin client (most frequently a web
browser). As such, it is one of the major categories of Cloud Com-
puting, besides IaaS and PaaS.

While there are many economic benefits in using SaaS, each
company must nevertheless enforce control over its own data pro-
cessed in the Cloud. One of the most important building blocks
of such an enforcement scheme is Identity Management (IdM),
whereat the industry standard for IdM is SAML, the Security As-
sertion Markup Language.

In this paper, we study the security of the SAML implementa-
tions of 22 SaaS Cloud Providers (SaaS-CPs) and show that 90%
of them can be broken, resulting in company data exposure to at-
tackers on the Internet. The detected vulnerabilities are exploited
by a wide variety of attack techniques, ranging from classical web
attacks to problems specific to XML processing.

1. INTRODUCTION
Software-as-a-Service (SaaS). It is difficult to define what
SaaS exactly is. Even “The NIST Definition of Cloud Computing”
[25] does not help: Any application running on a “Cloud Platform”
is classified as SaaS there. Informally, many people think of SaaS
as an off-premise replacement of a complex software system that
previously was running on-premise. For instance, a customer re-
lationship management (CRM) system that previously was hosted

∗ This work has been funded by the European Union within the
European Regional Development Fund program.
† The authors were supported by the SkIDentity project of the
German Federal Ministry of Economics and Technology (BMWi,
FKZ: 01MD11030).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2014 ACM 978-1-4503-3239-2/14/11 ...$15.00.

in the company’s own computing center and was accessed through
some additional client software, is now hosted in some Cloud Com-
puting center and accessed via a web browser.

In any case it should be clear that company data, which was pre-
viously stored on-premise and protected by network perimeter se-
curity mechanisms like firewalls and VLANs, is now hosted in a
Public Cloud system accessible from the Internet. Thus, the data
is no longer protected by the company’s firewalls, but accessible to
anyone who can circumvent the corresponding SaaS security mech-
anisms.
Authentication in SaaS. Authentication and authorization are
the most important SaaS security mechanisms. For this, there are
commonly two possibilities:
(1.) Passwords.
The SaaS Cloud Provider (SaaS-CP) authenticates users by com-
paring their Username/Password pairs to some stored values. Each
Username/Password pair is associated with an account. Access
rights are directly linked to the user account. For example, a re-
source could be available only for a specific user or for a list of
specific users.
(2.) Federated Identity Management (IdM)/Single Sign-On (SSO).
The SaaS system accepts SSO authentication tokens from a trusted
Identity Provider (IdP). These tokens may contain identity infor-
mation and/or additional authorization information.

This paper focuses on the security of the SSO authentication re-
lated mechanisms.
SAML. The most important industry standard for IdM is the Security
Assertion Markup Language (SAML) [31]. SAML is based on the
eXtensible Markup Language (XML) and enables the secure ex-
change of XML-based authentication and authorization messages.
In conjunction with SSO systems, SAML especially offers a stan-
dardized format for authentication tokens.
Differentiation from Web Applications. A web applica-
tion is commonly defined as an application that uses a web browser
as client software. By this definition, every SaaS-CP is also a web
application, in case it can be accessed via a web browser. In con-
trast to most standard web applications, SaaS-CPs (1.) store a great
amount of valuable data and (2.) offer rich authentication and au-
thorization interfaces. Property (1.) makes them a very attractive
target for attacks, whereas property (2.) can be used to strengthen
security.
Security Analysis of online SaaS-CPs. This paper identi-

fies components that are responsible for the SSO authentication.
We therefore identified the message flow of the token processing,
the components that are passed and their interaction with each other.
Based on this, we found eight different attacks and categorized
them within three different attacker models (AM). Model AM1 is
the weakest one and models an attacker that only uses publicly
available information (URL of the Server, SAML specification,
. . .). AM2 is stronger than AM1 – the attacker has access to a
valid authentication token, for example, because he has a valid ac-
count on the target SaaS-CP. Attacker model AM3 uses Cross-Site-
Request-Forgery (CSRF) [29] to lure a victim into clicking on a
link. The goal of the attacker in each AM is to get access to a
protected resource on the target SaaS-CP and thus break the au-
thentication.
Results. We performed a large-scale security study which eval-
uates 22 SaaS-CPs. Applying the eight identified attacks, we were
able to circumvent security mechanisms on 90% of them. This is
an alarming result, given the value of the data stored there. The ma-
jority of the corresponding SaaS-CPs responded quickly and pos-
itively, when we communicated our findings to them. Most SaaS-
CPs have already taken measures to mitigate the reported attacks
and some of them acknowledged our work [12, 11, 10, 13, 14].
Contribution. The contribution of this paper can be summarized
as follows:

I Analysis of SaaS-CP authentication mechanisms and identi-
fication of security related components on a logical level.

I Identification of eight SAML-related attacks and their corre-
sponding component.

I Security study of 22 real-life SaaS-CPs by applying the iden-
tified attack classes and analyzing the results.

Outline. Section 2 describes our findings about the logical archi-
tecture of security related components of SaaS-CPs. In Section 3,
we describe our attacker model by differentiating between three
different categories of required attacker capabilities. Section 4 ex-
plains our methodology for selecting the SaaS-CPs we analyzed
and for the security analysis we performed on the selected SaaS-
CPs. Sections 5 through 7 offer detailed descriptions of all attack
classes we identified, sorted by required attacker capabilities. Ex-
amples of our experiences while performing the security study are
provided in Section 8. Section 9 discusses security insights to be
gained from this study. Section 10 lists past and current related
research work and finally, we conclude our study in Section 11.

2. SAAS PROVIDER MODEL
The architecture of an SaaS-CP regarding authentication is a

very complex system consisting of different modules and entities
interacting with each other. In this section, the role of these com-
ponents and the communication between them is explained.

2.1 Single Sign-On (SSO)
Using authentication via SSO has many advantages over simple

Username/Password mechanisms. Whereas for the former, the user
has to remember multiple different Username/Password combina-
tions, this overhead can be significantly reduced with SSO. Also,
the security of Username/Password relies solely on the strength of
the password provided by the user, but SSO allows for the adoption
of several technical measures to further enhance the security of the
login procedure.

In general, authentication using SSO is done utilizing a trusted
third party called Identity Provider (IdP). When a user uses his user

agent (UA), e.g., a web browser, to request a login to the service
provider (SaaS-CP), instead of asking for Username/Password, the
service issues a Token Request and redirects the client to the IdP.
After proper authentication, the IdP issues a signed authentication
token (Token) and redirects the client back to the SaaS-CP, where
the token will be validated and the user logged in.

2.2 Components
Figure 1 shows a generic block diagram of the different security

related components of an SaaS-CP:
The Client is a user communicating with an SaaS-CP via his

UA, for example, a web browser. The communication takes place
via the HTTP Protocol.

On the server side of this communication, the SaaS-CP provides
a Web Frontend, for example, a web server listening on a specific
port and forwarding the traffic to the according handlers (PHP, Java,
. . .). Additionally, the Web Frontend implements RFC 6265 [5] in
order to make HTTP stateful and allow the deployment of different
web applications.

The Username/Password module manages the corresponding
authentication and the password-recovery mechanism. For exam-
ple, it compares the Username/Password combination sent to the
Web Frontend with the information stored in the User Database.

The Session Management (SM) module resolves the received
Session Cookies by the Web Frontend to a user identity and for-
wards this information to Authorization & Access Management
(AAM).

The SSO module carries out the verification of the received au-
thentication tokens (c.f. Section 2.4). Additionally, it forwards the
information about the authenticated user to AAM. During the veri-
fication, the SSO module fetches the configured IdP certificate from
the User Database and uses it for verifying the provided digital sig-
nature within the authentication token. The SSO module contains
three internal modules:

I The Parser is a module that converts an input string into data
objects, which can then be further processed by following
components. The structure of the parsed messages can differ
according to the IdM protocol, for example, this could be a
JSON or an XML parser. For our analysis, the SAML case
is most important, in which a XML parser is applied.

I The verification of the token is provided by the Verificator.
This is a module responsible for the validation of all security
relevant parameters within the authentication token, c.f. Sec-
tion 2.3.

I After the verification, the information regarding the authenti-
cated user will be extracted from the token and forwarded to
the business logic. This process is provided by the Proces-
sor. The information regarding the user is usually his name,
which is then looked up in the AAM to get the according ac-
cess rights. At the end of the processing, the authentication
token will be deleted, since it is not needed any more.

The Authorization & Access Management (AAM) component
controls the access to the restricted resources. It gets informa-
tion regarding the authenticated user from the previous components
(Username/Password, Session Management and Single Sign-On),
fetches information from the User Database and enables or restricts
access to the resources.

The User Database stores information about users and their cre-
dentials, for example, Username/Password combinations with their

ClientClientClientClient

Cloud Service ProviderCloud Service Provider

Web
Frontend

Web
Frontend

Authorization &
Access Management

Authorization &
Access Management RessourcesRessources

Single Sign-On

Parser Verificator Processor

Username/PasswordUsername/Password

Session ManagementSession Management

User
Database

User
Database

Figure 1: Overview over the different modules related to the authentication process on the Cloud Service Provider.

corresponding access rights. Additionally, it stores the SSO con-
figuration data, for example, the endpoint and certificate of the fed-
erated IdP. This data is essential to establish a trust relationship
between the SaaS-CP and the IdP.

The Resources include the entirety of data accessible to regis-
tered users.

2.3 SaaS Authentication flow
Whenever an HTTP Request arrives at the SaaS-CP, the Web

Frontend module checks if a corresponding Session Cookie is pro-
vided, indicating that the user has already been authenticated.
Initial Authentication. Initial Authentication states that the
user does not have a current session with the SaaS-CP. He cannot
provide a corresponding Session Cookie and therefore must au-
thenticate first. In this case, the user can choose to authenticate
via (1.) Username/Password or to initiate (2.) SSO.

(1.) During the Username/Password authentication, the module
verifies the correctness of the user supplied credentials. For
that purpose the Username/Password module fetches the
data stored within User Database and uses it for verification.
In case that the authentication is successful, the information
about the user is forwarded to AAM and a Session Cookie is
set to make the authentication persistent.

(2.) The SSO procedure on Cloud Service Provider side consists
of two phases: The redirection of the user to the IdP and the
verification of the received authentication token. In the first
of these phases, the SSO module fetches information about
the federated IdP from the User Database. It then generates
the token request and redirects the user to a specified IdP.
In the subsequent phase (after the Client provides the token),
the SSO module verifies the received token. For the verifi-
cation of the digital signature, it fetches the IdP’s certificate
from the User Database. In case of successful token verifi-
cation, the SSO module extracts information about the user’s
identity from the token and forwards it to AAM. Finally, a
Session Cookie is set by the Web Frontend and the authenti-
cation is made persistent.

Repeated Authentication. Repeated Authentication indicates
that the user has already been authenticated, either by Username/-
Password or by SSO authentication. In this case, the received Ses-
sion Cookie is forwarded to the Session Management module that
resolves the identity of the user via the value of the Session Cookie.
Consequentially, the identity of the user is forwarded to AAM.

2.4 SSO Authentication Token
On a logical level, an SSO authentication token, called in SAML

Assertion, always contains certain information, regardless of the
actual SSO mechanism. These contents are defined as follows:

I The Identity (I) is the value representing the user on the
SaaS-CP. Typically, this is an email address to uniquely iden-
tify the user. In SAML context, I is represented by the ele-
ment Subject [31, Section 2.4.1].

I Freshness (N) is used to limit the usage of the token. This
can be in the form of a nonce so that the token can only be
used once, a timestamp which restricts the usage to a spe-
cific time slot, or a combination of both nonce and times-
tamp. The SAML tokens analyzed for this study usually bear
timestamp elements NotOnOrAfter and NotBefore [31, Sec-
tion 2.5.1] within the Conditions element as a freshness value
N . As a further freshness parameter, the unique ID [31, Sec-
tion 1.3.4] of the Assertion is used as a nonce.

I The Destination (D) is contained in the token to restrict the
usage to a specific SaaS-CP. The value D is typically rep-
resented by the AudienceRestricton [31, Section 2.5.1] and
Recipient [31, Section 2.4.1] elements.

I To protect the token information, a Signature or HMAC (σ)
is used. The IdP is the one to chose which information are
protected by σ. SAML tokens use the XML Signature stan-
dard [20] to realize this protection: A Signature element is
added to the Response. To determine the Assertion, σ be-
longs to, a Reference to the ID attribute of said Assertion is
used in SAML context. The IdP uses its secret key k to gen-
erate σ. The corresponding public key is then included in a
certificate which is stored on the Service Provider (SP). Note
that there is no PKI connected to this certificate. The certifi-
cate contains just a public key plus some meta information.

Summarized, an SSO token can be defined as t = (I ,N ,D) to-
gether with a corresponding signature σ. During our study, we
found that most SaaS-CPs expect multiple/redundant information
within their SAML tokens, so that we can define treal =(
I ,N0, . . . ,Ni,D0, . . .D j

)
. For instance, we found tokens with up

to five freshness parameters and up to three destination parameters.
An interesting observation at this is that σ does not always protect
all data specified in the token. For instance, N0 might be signed but
N1 might not.

ClientClientClientClient

AM1 – Message Generation AM2 – Access to a valid token

AM3 – Web attacker Classical Man-in-the-Middle

SaaS-SPSaaS-SPSaaS-SPSaaS-SP

AttackerAttackerAttackerAttacker

ClientClientClientClient SaaS-SPSaaS-SPSaaS-SPSaaS-SP

AttackerAttackerAttackerAttacker

Token

ClientClientClientClient SaaS-SPSaaS-SPSaaS-SPSaaS-SP

AttackerAttackerAttackerAttacker

ClientClientClientClient SaaS-SPSaaS-SPSaaS-SPSaaS-SP ClientClientClientClient SaaS-SPSaaS-SPSaaS-SPSaaS-SP

AttackerAttackerAttackerAttacker

Figure 2: Overview of the relevant attacker models: AM1,
AM2, AM3. The “Classical Man-in-the-middle” attacker con-
trolling the network traffic between Client and SaaS-CP is not
relevant for the attacks introduced in the paper and thus not
considered further.

3. ATTACKER MODEL
For the security analysis explained in the next section, we distin-

guish three different attacker models as shown in Figure 2. Each
attacker type has different capabilities.

All of our attacker models do not require the attacker to control
the network communication. Thus, we do not require the attacker
to be able to eavesdrop or modify messages sent between client
and servers, as it is the case in classical Man-in-the-Middle (MitM)
attacks.

Finally, we do not assume the attacker having knowledge of any
secrets (passwords, secret keys etc.) other than those established
by himself.
AM1 - Message Generation.

For the first type of attacks, we assume that the attacker is able
to generate valid XML messages of the SaaS-CP’s specified for-
mat. These messages can be of any publicly available XML format
(plain XML, SAML, XSLT, DTD etc.) and can contain any data
which is publicly available or chosen arbitrarily by the attacker.

Note 1: No secret information, such as secret keys or passwords
known either to the SaaS-CP or to the victim must be used to gen-
erate these messages. For example, AM1 includes the capability to
create arbitrary tokens t = (I ,N ,D), but no corresponding valid
signatures σ = SIGIdP(t) (as the attacker does not have access to
the secret key of IdP).

Note 2: An exception to Note 1 occurs for tokens generated by an
attacker who uses his own key material. In this case, the secret key
used to generate the digital signature σ was chosen by the attacker,
thus, he can create tokens with arbitrary content and then correctly
sign them with a corresponding signature σ.
AM2 - Access to Valid Token.

In AM2, we assume the attacker having access to a valid token
t = (I ,N ,D) of the victim, including the corresponding signa-
ture σ = SIGIdP(t). Multiple possibilities to obtain such a token
exist: They can, for example, be stolen via Cross-Site-Scripting
(XSS) [46], or they can simply be found in public support forums
by using an online search engine like Google. Please note that to-
ken theft via MitM attacks or eavesdropping on the communication
channel between the Client and SaaS-CP is not part of AM2.

A special case of AM2 occurs, when the attacker himself is a
valid user of the system. He can then use his credentials on his IdP
to let it issue tokens for his own account on demand (but not for the
victim account).

Note: In general, an attacker will not be able to chose the con-
tents of such a token arbitrarily – even as a regular user he will be
restricted to his given identity and the according permissions. Thus,
the main goal of attacks related to AM2 is to expand the rights pro-
vided by the given token.
AM3 - Web attacker.

For attacker model AM3, we assume that the attacker is able to
influence the victim to click on an attacker provided link. This in-
cludes both, a technical method to provide an attacker generated
link to the user (e.g., by e-mail or through user forums), and the
technical and/or social means to convince the user to actually acti-
vate (i.e. click on) the link.

AM3 further assumes that the victim is logged in to his account
on the targeted SaaS-CP at the time of clicking on the malicious
link (i.e., the victim has an active authenticated session with the
SaaS-CP – see Repeated Authentication in Section 2.3).

4. METHODOLOGY
Selection criteria. For this study, we intended to analyze the
security of the most important SaaS-CPs. Naturally, the first ap-
proach was to analyze all SaaS-CPs from the Alexa Top 100,000.
Unfortunately, this proved to be very inefficient: The main prob-
lem of this approach was to decide whether or not an analyzed
domain is an SaaS-CP, as there is no strict labeling for this kind
of site (c.f. Section 1). This is why it is not possible to simply
do an automatic keyword search for, for example, “SaaS-CP”, as
this would lead to (1.) a substantial amount of false positives, in
case websites just advertised working in conjunction with certain
SaaS-CPs, and (2.) an at least equally considerable amount of false
negatives for those SaaS-CPs, which called themselves, for exam-
ple, “Cloud Service Provider” instead of “SaaS-CP”. Thus, this ap-
proach would have meant manually analyzing all 100,000 domains
including their corresponding subdomains, and possibly also study-
ing the provided documentation and external descriptions.

In order to find a more efficient way of identifying the most im-
portant SaaS-CPs, our second approach was to use precompiled
lists of existing Cloud Service Providers. Such lists could be found
at major Identity Providers (e.g., OneLogin [28] and Bitium [6]),
who maintain up to date lists of their respective supported Cloud
Service Providers. Wikipedia also offers a list of known Cloud
Service Providers [41]. Further internet research yielded additional
independent lists [16, 38]. After consolidating all the lists and elim-
inating overlaps, we used the resulting consolidated list as a basis
for our analysis. From this list we selected all SaaS-CPs, which
satisfied certain selection criteria:

I Cloud Service Provider Type: As we intended to analyze
SaaS-CPs, we concentrated only on Software-as-a-Service
Providers. For this study, this was a sensible approach, as
other Cloud Provider Types, such as Platform-as-a-Service
(PaaS) or Infrastructure-as-a-Service (IaaS), differ substan-
tially in terms of attack surface and handling. Thus, these
other types would require a mostly different approach in terms
of attack types, attacker models, etc.

I Free Trial Accounts: We did not have any specific funding
for opening and maintaining accounts with SaaS-CPs for this
study. Thus, we were limited to analyze only those SaaS-CPs
which offer a free trial account for their services.

I SAML-based Single Sign-On: Our goal was to evaluate the
security of SAML-based SSO authentication modules. Thus,
we included all SaaS-CPs which offer SSO functionality with
support for SAML in their authentication procedures.

Security analysis. After we selected all relevant SaaS-CPs for
our study, we specifically analyzed the security architecture of the
SSO authentication mechanisms of these SaaS-CPs. On a logical
level, we identified the components related to the authentication
process and the relevant information flows between them. An ab-
stract overview of our findings is given in Section 2.2.

Based on our understanding of this logical architecture, we iden-
tified possible attack classes against the corresponding component.
Sections 5, 6 and 7 give detailed descriptions of all identified at-
tacks. Testing has been performed in a semi-automated blackbox
analysis. Due to the fact that we analyzed real applications for
which we did not have access to the source code, we were only
able to perform blackbox testing on the SaaS-CPs. For the analysis
itself, we used a self-developed tool to dynamically generate dif-
ferent messages and observed the reaction of the targeted systems.
The analysis of each SaaS-CP was split into three phases:

I Learning phase – This phase introduced the calibration of
our tool as a preparation for the next phase. We configured
the tool to generate valid messages that were accepted by the
target SaaS-CP. Analyzing the system’s responses allowed
us to estimate the “normal” (i.e., intended) behavior of the
system.

I Security phase – This phase was split into several steps
- one for each attack. During this phase’s steps, we used
our tool to generate different messages deviating from those
accepted by the target SaaS-CP in the previous phase. The
actual deviations of the generated messages in each step were
depending on the corresponding attack class. All attack classes
were applied to each analyzed SaaS-CP. We then observed
the reaction of the systems and analyzed the results.

I Verification phase – To verify the results obtained from
the previous phase and to mitigate possible false-positives,
we used a completely independent platform, for example,
another PC, to manually execute the exploits and verify the
correctness of the results.

5. AM1 RELATED ATTACKS
This section describes attacks related to AM1: (1.) Signature Ex-

clusion (/0Sig), (2.) Certificate Faking (CF), (3.) XML External En-
tity Attack (XXEA) and (4.) XSLT Attack (XSLTA). For all these
attacks, only publicly available information is required. Especially,
no knowledge of any foreign secret keys is needed.

5.1 Signature Exclusion (/0Sig)
The integrity of all authentication tokens should be protected. In

case of SAML, this is realized by a digital signature σ = SIGIdP(t).
Signature Exclusion (/0Sig) exploits a vulnerability in the verifica-
tion logic allowing the usage of unsigned tokens, see Figure 3 (a).

Since no digital signature for the token is required, an attacker
can generate tokens containing arbitrary identities I of other users.
Exploit. The attacker creates authentication tokens containing
statements about other users, t = (. . . ,IAlice/IBob/IAdmin, . . .). He
then sends the token to an SaaS-CP (Starget) and is logged in with
the corresponding identity.
Impact. The attacker gains access to arbitrary accounts and their
resources.
SaaS-CP component. The attack is targeted at the SSO Verifica-
tor, which should require that the authentication token is signed
and verify the applied signature. By this means, the integrity of the
authentication token is guaranteed.

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signature

saml:Conditionssaml:Conditions

BobBob

timestamptimestamp

ds:Key

recipient=SArecipient=SA

(a) The SAML token does not
contain any signature. This
means, no protection of integrity
or authenticity is provided.

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signaturesaml:Signature

saml:Conditionssaml:Conditions

BobBob

timestamptimestamp

ds:Key = evilCertds:Key = evilCert

recipient=SArecipient=SA

(b) The SAML token is signed
with an untrusted key. If the key
stored in the token is used for
the verification without validat-
ing the trust relationship to it,
CF is applicable.

Figure 3: Signature Exclusion (a) and Certificate Faking (b)

5.2 Certificate Faking (CF)
The cryptographic verification of the digital signature guaran-

tees the integrity of the token. Additionally, it is essential to ver-
ify the token’s authenticity, too (c.f. [32, Section 4.4.2]). In other
words, the SaaS-CP should check whether the token was signed by
a trusted IdP. The CF attack utilizes possible flaws in the selection
logic of the key used for the verification of tokens, by providing an
attacker generated token signed by an attacker generated key.

In order to run the attack, the attacker must be able to create
SAML tokens and sign them with his own self-created key.
Exploit. The attacker creates a token t = (I ,N ,D). Then, he
creates a secret key evilKey and a corresponding public key. The se-
cret key is used to compute the digital signature σ = SIGevilKey(t).
The attacker then uses his key pair to create a certificate evilCert
containing the corresponding public key to verify σ. SAML uses
the XML Signature standard that allows to store evilCert directly
within the XML Signature as shown in Figure 3 (b). If the tar-
get SaaS-CP uses evilCert to verify the signature σ (without prior
check of the trust relationship for the corresponding key), the token
will be accepted as valid.
Impact. The attacker gains access to arbitrary accounts, since he
can generate and sign valid tokens containing the identities of other
users, for example, t = (Iadmin/Ibob,N ,D) with σ = SIGevilKey(t).
SaaS-CP component. The attack targets the SSO Verificator, which
should verify that the authentication token is signed by a trusted
third party instead of accepting any key provided with the token (al-
though the XML Signature standard allows to include certificates,
it is essential to verify whether it is a trusted certificate). This attack
can be mitigated by manually deploying the trusted certificates to
the corresponding SaaS-CP and not using any certificates provided
with the token.

5.3 XML External Entity Attack (XXEA)
XML offers the possibility to describe the document’s structure

by using a Document Type Definition (DTD). Unfortunately, the
usage of these features can lead to security vulnerabilities enabling
very efficient Denial-of-Service attacks [17] or allowing unautho-
rized access to files stored on the target SaaS-CP, for example,
/etc/passwd or key files.

The idea of the XML External Entity Attack (XXEA) is shown in
Figure 4. The attacker sends an XML document containing the at-
tack vector as shown in Listing 1. The vulnerable application parses
the XML document and processes the defined DTD. The DTD con-

ClientClientClientClient

Cloud Service ProviderCloud Service Provider

Web
Frontend

Web
Frontend

Authorization &
Access Management

Authorization &
Access Management RessourcesRessources

Single Sign-On

Parser Verificator Processor

Username/PasswordUsername/Password

Session ManagementSession Management

User
Database

User
DatabaseXXE/XSLT Attack

Figure 4: The attacker sends an XML document containing an
Entity, which points to a file stored on the local filesystem. As a
result the attacker breaks out of the usual processing schema
and bypasses the security verification provided by the SSO-
Verificator plus AAM and reads locally stored files.

tains an External Entity reading a resource from the filesystem, in
this case the /etc/passwd file, and sends the content to the at-
tacker.

In order to start XXEA, the attacker only has to create a valid
XML message containing a DTD. Note that the message does not
has to be a SAML token (c.f. Listing 1).
Exploit. An example exploit is shown in Listing 1. The XML
message contains two External Entities. The first Entity (file)
will read the content of the protected resource. The second Entity
(send) is used to send this content to a web server controlled by the
attacker via a GET parameter. If the SaaS-CP reflects the content of
the file Entity in the HTML response, which will be automatically
displayed in the attacker’s browser, the send Entity is unnecessary.
However, this is rarely the case for SAML token verification.

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
< !DOCTYPE Response [
<!ENTITY f i l e SYSTEM " / e t c / passwd ">
< !ENTITY send SYSTEM " h t t p : / / a t t a c k e r . com / ? r e a d=& f i l e ; ">
] >
< s a m l p : R e s p o n s e >

< a t t a c k >&send ; < / a t t a c k >
< / s a m l p : R e s p o n s e >

Listing 1: XML message containing the XXE attack vector.

The listing only sketches the concept of the attack. The code as
shown will not work on most XML parsers, because the usage of
the External Entity file within the External Entity send is not al-
lowed. However, this technical restriction can be avoided as shown
in [26].
Impact. XXEA allows an attacker to read arbitrary files within the
context of the used web server. Particularly, it is possible to read
configuration and SSL keystore files.
SaaS-CP component. The attack targets the SSO Parser. To pro-
hibit XXEA, the processing of DTDs should be disabled. XML
Schema [36] can be used to verify the structure of XML messages.

A more detailed explanation of XXEA on SAML interfaces can
be found in our Blog Post [9].

5.4 XSLT Attack (XSLTA)
Extensible Stylesheet Language Tranformation (XSLT) is a lan-

guage for transforming XML documents into other documents, for
example, XML, HTML, JSON or even PDF [23]. The XML Sig-
nature standard allows the usage of XSLT by definition, and thus,
XSLT can be used in SAML.

XSLT is a turing complete language [27]. By this means, it is
possible to use XSLT, for example, to read/write files on the local
filesystem and send them over the Internet. Furthermore, the XSLT
transformation will be executed before the digital signature is veri-

fied. Thus, an attacker can send a SAML token including a digital
signature containing the XSLT Attack (XSLTA) vector, but it is not
required that the signature is valid.

The attacker needs the same resources as for XXEA. In compari-
son to XXEA, the message has to be a SAML token. However, this
token does not have to be signed with a valid key nor the signature
needs to be valid.
Exploit. The attacker prepares a SAML token t and creates an
XML Signature for it. Note that it is not important to have a cor-
rectly computed signature value – the XSLTA only requires a well-
formed XML document. The attacker adds a Transform element
to the XML Signature and places the XSLT payload in it as shown
in Figure 5.

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

ds:Signatureds:Signature

BobBob

<xsl:stylesheet xmlns:xsl="...">
 <xsl:template match="doc">
 <xsl:variable name="file"
 select="unparsed-text('/etc/passwd')"/>
 <xsl:variable name="escaped"
 select="encode-for-uri($file)"/>
 <xsl:variable name="attackerUrl"
 select="'http://attacker.com/'"/>
 <xsl:variable name="exploitUrl"
 select="concat($attackerUrl,$escaped)"/>
 <xsl:value-of
 select="unparsed-text($exploitUrl)"/>
 </xsl:template>
</xsl:stylesheet>

<xsl:stylesheet xmlns:xsl="...">
 <xsl:template match="doc">
 <xsl:variable name="file"
 select="unparsed-text('/etc/passwd')"/>
 <xsl:variable name="escaped"
 select="encode-for-uri($file)"/>
 <xsl:variable name="attackerUrl"
 select="'http://attacker.com/'"/>
 <xsl:variable name="exploitUrl"
 select="concat($attackerUrl,$escaped)"/>
 <xsl:value-of
 select="unparsed-text($exploitUrl)"/>
 </xsl:template>
</xsl:stylesheet>

ds:Transformds:Transform

XSLT PayloadXSLT Payload

Figure 5: XSLTA payload that reads the /etc/passwd file
and forwards its content to an attacker controlled server.

The basic idea of the attack is similar to XXEA: First, the at-
tacker reads an arbitrary file using XSLT (in this example by using
the unparsed-text() function). Afterwards, he forwards the con-
tents of the file to his own server via a GET parameter.
Impact. XSLTA allows accessing files within the context of the
used web server.
SaaS-CP component. The attack targets the SSO Verificator. The
SSO Verificator should mitigate the usage of XSLT within the to-
ken.

6. AM2 RELATED ATTACKS
In this section, attacks related to AM2 are described: (1.) Replay

Attack (RA), (2.) XML Signature Wrapping (XSW), (3.) Token
Recipient Confusion (TRC). Compared to AM1, AM2 describes a
stronger attacker. He is able to do everything an attacker according
to AM1 can do (because AM1 only uses publicy available informa-
tion). Additionally, the AM2 attacker has access to a valid token.

6.1 Replay Attack (RA)
Every SSO protocol provides parameters N to limit the reuse

and lifetime of the authentication tokens. Taking into account that
the reuse of tokens is optional [32, Section 6.4.4], the validation of
the attributes providing freshness is not considered as critical.

On the other hand, the time restriction regarding the usage of
authentication tokens is more critical and should be evaluated [32,
Section 6.4.1]. Otherwise, tokens issued once might be valid for
an extended time period or even an infinite amount of time [31,
Section 2.5.1.2].

The attacker needs access to a valid token (AM2). More specifi-
cally, the token in question is required to be valid for the SaaS-CP
at any time in the past. This can be achieved if the attacker had
legitimate access (for a limited period of time) to the SaaS-CP via
SSO and used this access to generate and store a token for himself.
Alternatively, searching for published tokens in forums or in techni-

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signaturesaml:Signature

saml:Conditionssaml:Conditions

BobBob

timestamptimestamp

ds:Keyds:Key

recipient=SArecipient=SA

(a) SAML token with expired
timestamps is sent to the SaaS-
CP.

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signaturesaml:Signature

saml:Conditionssaml:Conditions

BobBob

timestamptimestamp

ds:Keyds:Key

recipient=SArecipient=SA

(b) SAML token addressed for
service SA will be sent to Starget .

Figure 6: Replay Attack (a) and Token Recipient Confusion
(b)

cal documentations could also provide valid, though most possibly
outdated, tokens.
Exploit. The attacker sends an expired authentication token to the
target SaaS-CP, see Figure 6 (a). In case that the unlimited reuse
of authentication tokens is applicable and the token is successfully
verified, the attack is classified as successful.
Impact. The attack’s impact is average, since the attacker has lim-
ited attack surface – he can only spend authentication tokens he
possesses. However, the potential impact drastically rises in case
the attacker gains hold of an authentication token granting him ex-
tended access rights (e.g., as an administrator of the system).
SaaS-CP component. The attack specifically targets the SSO Ver-
ificator. This component should validate attributes providing the
corresponding restrictions, i.e., the freshness parameter N . In the
SAML context relevant to this study, this parameter is represented
by NotOnOrAfter and NotBefore [31, Section 2.5.1]. Failing to
properly verify these parameters will enable this attack type. An-
other possibility to enable this attack type would be via additional
freshness attributes, which are not part of the digital signature σ.

6.2 XML Signature Wrapping (XSW)

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signaturesaml:Signature

BobBob

ds:Keyds:Key

saml:Responsesaml:Response

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

saml:Signaturesaml:Signature

adminadmin

ds:Keyds:Key

saml:Assertionsaml:Assertion

saml:Subjectsaml:Subject

BobBob

Figure 7: The authentication token is signed for a user Bob. Via
XSW the attacker can inject a second Assertion containing an-
other identity (e.g. admin). The verification logic will verify the
Assertion pointed by the Ref, which is valid. The business logic
(SSO Processor) will process the injected (malicious) Assertion.

The idea of XSW [24] is to exploit the separation between SSO
Verificator and SSO Processor (see Figure 1). In case both logics
have different ”views” of the same document, XSW can be appli-
cable.

For this attack to work, the attacker modifies the contents of the
token by injecting malicious data without invalidating the signa-
ture. One example for this is shown in Figure 7. The goal is to

force the SSO Verificator to use different elements than the SSO
Processor. For the given example, the SSO Verificator will ver-
ify the signature based on the contents of the original Assertion,
which is selected by ID. However, if the SSO Processor’s program
logic automatically process the first Assertion found within the
token, an attacker can bypass the integrity protection and enforce
the processing of unverified data on the SaaS-CP.

The attacker needs the same resources as for Replay Attack (RA),
in order to provide the attack – access to a valid token.
Exploit. The attacker manipulates his token by injecting ma-
licious contents, for example, the identity I of other users, see
Figure 7. Multiple possibilities to apply XSW exist and a de-
tailed study regarding this attack type was already published by
Somorovsky et.al [34, 35].
Impact. XSW allows an attacker to log into arbitrary user ac-
counts and gain unauthorized access to their data.
SaaS-CP component. The attack targets the discrepancy in the
program logic of SSO Verificator and SSO Processor. The latter
should extract and forward only exactly the data verified by the
former to AAM.

6.3 Token Recipient Confusion (TRC)
In real-life SSO there exist multiple SaaS-CPs federating with

the same IdP. In order to distinguish the authentication tokens gen-
erated for different SaaS-CPs, each token contains information D
about its recipient. In most cases this is the URL of the SaaS-CP
for which the token was generated.

The goal of Token Recipient Confusion (TRC) is to use an au-
thentication token tA generated for a service SA (depicted in Fig-
ure 6 (b) with highlighted Recipient element) on a second ser-
vice Starget . The attack is considered successful, if Starget becomes
“confused” by the recipient of the token and accepts tA as valid.

As in the previous two attacks, the attacker has access to a valid
token. An additional requirement is that both services (SA and
Starget) have to be federating with the same IdP. This is a realis-
tic assumption, since an IdP usually offers authentication services
for multiple SaaS-CPs.
Exploit. There are two different approaches for a TRC exploit:

Exploit 1: Suppose that SaaS-CPs SA and Starget are accepting
tokens from the same IdP, and the attacker does not have access
to Starget . The attacker does, however, have legitimate account on
SA, thus he can request a token tA = (. . . ,DA, . . .) from the IdP.
By sending tA to Starget (instead of SA), the attack is performed. It
is considered successful if tA is accepted by Starget ; the attacker is
thus logged in with the same account name as he has for SA and
gets access to Starget ’s corresponding resources.

Exploit 2: Alternatively, the attacker can set up his own SaaS-CP
(Sbad) offering some service for registered users (e.g., a weather
forecast). To authenticate to Sbad , SSO is used and the attacker
specifically federates it with the same IdP used by Starget . After
that, the attacker lures his victim (a legitimate user of Starget) to
register with and authenticate to Sbad . Instead of or in addition
to its usual service (weather forecast), Sbad stores all tokens in a
database so that the attacker can access them. The attacker can then
try to use the tokens to log in on Starget as the victim. The attack is
considered successful, if an authentication token tbad issued for the
victim for service Sbad is successfully verified on Starget .
Impact. According to [3], this type of attacks is classified as criti-
cal, since information disclosure or privilege escalation is possible.
A dishonest user can redeem his tokens on different services and
get unauthorized access to restricted resources. Furthermore, a ma-
licious SaaS-CP could collect authentication tokens and forward

them to other SPs in order to get login in arbitrary accounts.
SaaS-CP component. This attack also targets the SSO Verifica-
tor, which is responsible for checking the restrictions regarding
the destination of the token, D . In the SAML context, specifically
the AudienceRestricton [31, Section 2.5.1] and Recipient [31,
Section 2.4.1] elements are relevant for this attack type.

7. AM3 RELATED ATTACKS
The only attack related to AM3 is Certificate Injection (CInj),

because it makes use of CSRF.

7.1 Certificate Injection (CInj)

Figure 8: The SAML module is configured via the Web inter-
face of the SaaS-CP. The certificate of the trusted IdP and the
according endpoints can be uploaded and stored in the AAM
module.

All tested SaaS-CPs provide a Web interface allowing to activate
and configure the SSO module. See Figure 8 for an example. This
is a critical area and thus has to be well protected.

During our research we recognized that the security of the entire
SSO module (Figure 1) depends on the security of the applied Web
interface and the stored information in the AAM module (which
includes, e.g., the IdP certificate used for verification). This ob-
servation led to the Certificate Injection (CInj) attack. The basic
idea of CInj is to inject a malicious certificate and store it in the
AAM module. Since the SSO module uses this certificate for the
token verification, tokens signed by the attacker, who possesses the
private key to the injected certificate, will be successfully verified.
By this means, even a correctly implemented SSO module, which
mitigates all attacks directly related to this module, can still be by-
passed.

In order to apply CInj we used CSRF attacks to inject a mali-
cious configuration regarding the SAML interface. In case that the
target SaaS-CP does not provide any CSRF protection, the attacker
can enable and configure the SAML interface by injecting the mali-
cious contents via a CSRF attack. As a result, he is able to remotely
establish a trust relationship between the target SaaS-CP and a ma-
licious certificate, which does not belong to any trusted IdP.

The attacker uses CSRF attack techniques in order to inject the
malicious contents, thus, he must be able to lure the victim to click
on a link or to visit a web page.

Exploit. An actual exploit for this attack type can be separated
into three consecutive phases:

Phase 1 – Preparation. The attacker creates his private key evilKey
and a corresponding public key and uses these to create a cer-
tificate evilCert.

Phase 2 – Configuration Injection. The attacker creates a mali-
cious link containing the CSRF attack vector, i.e., the in-
jection of evilCert. Luring the victim to click on that link,
he will exchange the originally stored certificate in the User
Database with the one provided by the attacker. This is pos-
sible because the HTTP-request that changes the certificate
is sent via the victim’s browser (using the victim’s session
cookies).

Phase 3 – Access to resources. The attacker can then generate a
token t for an arbitrary user and sign it with the key belonging
to evilCert generating σ. Then, he sends (t,σ) to the target
SaaS-CP for verification. The target SaaS-CP will use the
certificate stored in the AAM module and use this for the
verification of σ. Since the stored certificate is evilCert, the
verification is successful and the attacker can log in with the
chosen identity.

Impact. If the attacker is able to inject his own SSO configuration,
the SaaS-CP and the according SSO module will trust the attacker
just as a regular trusted IdP. By this means, the attacker can gen-
erate valid tokens for any user on the SaaS-CP and log into his
account.
SaaS-CP component. The attack uses the CSRF technique to en-
force the victim to change changing configuration data without ex-
plicit user interaction. Therefore it targets the Session Manage-
ment, which should include a protection against CSRF to mitigate
the attack.

8. CLOUD STUDY
According to the responsible disclosure model, we promptly re-

ported all vulnerabilities found to the liable security teams as well
as to the Computer Emergency Response Team (CERT)1. In case
we got a response from the developers, the time to fix the reported
issues ranged from between a few days and several months. Fur-
thermore, we supported the developer teams during fixing the re-
ported issues.

8.1 Summary
In this survey we provided a security analysis of 22 SaaS-CPs,

see Table 1. We discovered vulnerabilities, resulting in unautho-
rized access to restricted resources of a victim, in 20 of them. As
shown in Table 1, one single SaaS-CP was susceptible to /0Sig and
none of them against CF. Almost 50% of the SaaS-CPs (10/22)
were vulnerable against XXEA but only one was vulnerable against
XSLTA. Six of the evaluated SaaS-CPs did not correctly evaluate
the timestamps within the token, making RA attacks applicable.
Some of these six SaaS-CPs did verify the freshness parameters
only partly and some of them did not verify them at all, allowing
the unlimited usage of the tokens for an infinite amount of time.
11 SaaS-CPs were vulnerable against XSW. This is a surprisingly
huge amount with respect to the large scale study of SAML frame-
work implementations in 2012 [35]. 17 out of the 22 SaaS-CP were
vulnerable against TRC. During our evaluation, we found some

1https://cert.org

Service Provider AM1 AM2 AM3
/0Sig CF XXEA XSLTA RA XSW TRC CInj Summary

Salesforce × × × × × × × × ×
Google Apps × × × × × × × × ×
Zoho × × × × × X × × X
Zendesk × × × × × × X × X
Clarizen X × X × X X X × X
SAManage × × X × × X X X X
Shiftplanning × × X × × × X X X
Panorama9 × × × × × × X × X
UserVoice (Marketing) × × × × × × X × X
Instructure × × × X X X X × X
The Resumator × × X × × × X × X
BambooHR × × × × × × X X X
AppDynamics × × X × X X X × X
IdeaScale × × X × × × × X X
Panopto × × × × × X X × X
TimeOffManager × × X × X X X × X
HappyFox × × × × × X X × X
SpringCM × × × × × X × × X
ScreenSteps Live × × X × × X X × X
LiveHive × × X × X X X × X
Howlr × × × × × × X X X
CA Service Management × × X × X × X X X

Total 1 0 10 1 6 11 17 6 20/ 22

Table 1: Results of our practical evaluation. We have evaluated 22 SaaS-CPs against 8 different attacks: (1.) Signature Exclusion
(/0Sig) (2.) Certificate Injection (CInj) (3.) XML External Entity Attack (XXEA) (4.) XSLT Attack (XSLTA) (5.) Replay Attack
(RA) (6.) XML Signature Wrapping (XSW) (7.) Token Recipient Confusion (TRC) (8.) Certificate Injection (CInj). 20 of them were
vulnerable to at least one attack so that we could successfully access unauthorized resources.

very interesting aspects about the impact of the TRC attack: Some
vulnerable SaaS-CPs accepted tokens from other SaaS-CPs even if
there was no account associated with the identity I contained in
the token. The vulnerable SaaS-CP instantly creates a new account
for the corresponding identity, even if the SaaS-CP is a payed ser-
vice. Finally, about 30% of the SaaS-CPs were vulnerable against
CInj and thus enabled a backdoor, which bypassed the protection
mechanisms verificating the authentication tokens.

8.2 Details of Exploit
In the following, we want to highlight some of our findings and

picked out some of the evaluated SaaS-CPs.
Zendesk.

Zendesk [44] (Alexa Rank Global 304 / US: 174) is a web-
based ticketing software. Zendesk was not vulnerable to 7 out of 8
attacks. However, by using the TRC attack, we were able to prove
that Zendesk did not perform the recipient verification (D) on a
received token. Due to this single missing verification, an attacker
is able to redeem tokens generated for other SaaS-CPs for logging
in at Zendesk and breaking the SSO authentication.
Zoho.

Zoho [45] (Alexa Rank Global 605 / US: 423) is offering a web-
based office suite alongside project management, CRM and other
services. Although Zoho offered a comparatively good overall-
security concerning their SAML token verification (7 out of 8 at-
tacks failed), we discovered a discrepancy within the program logic
of their SSO Verificator and their SSO Processor. Due to this dis-
crepancy, we were able to log in as arbitrary users and thus escalate
our privileges making the XSW attack scenario applicable. This
was very surprising to us, because Zoho did a very good job in pre-
venting other SSO attacks (e.g., RA, TRC, . . .), but were vulnera-

ble only to XSW although a lot of research in this area is already
published [35]
Clarizen.

Clarizen [15] (Alexa Rank Global 30.396 / US: 16.044) is a
project management SaaS-CP. During our evaluation, we discov-
ered that the provider did not verify whether a digital signature for
the token is present – Clarizen was vulnerable to the /0Sig attack
and it was the only SaaS-CP where this attack worked. Interest-
ingly, we could use this vulnerability to take a deeper look into
Clarizen’s token verification logic, because we could modify every
parameter that normally would have been signed. We determined
which of the provided timestamps N0, . . . ,N4 were validated and
found that Clarizen verified only the timestamp value of N0 and
ignored the values of N1, . . . ,N4. Unfortunately, this value N0 was
not included in the digital signature, and thus could be altered by an
attacker even if no /0Sig attack was performed. This enabled RAs.
IdeaScale.

IdeaScale [21] (Alexa Rank Global 62,332 / US: 21,785) is a
web-based innovation management platform. IdeaScale did a very
good job implementing their SAML token verification and thus
passed all tests targeting their SSO Verificator and SSO Proces-
sor. Unfortunately, they did not as well in securing the incoming
HTTP requests changing the configuration of the web application.
Thus, an attacker was able to bypass all security mechanisms of the
SSO module by injecting an attacker-controlled certificate directly
into the User Database. We thus categorized the Certificate Injec-
tion (CInj) attack scenario as applicable. CInj is a good example
to show how important the relations between the different modules
are. Even if the SSO module resists all known attacks, it can be still
bypassed by injecting wrong keys into the database via a vulnerable

Session Management module.
Additionally, IdeaScale was vulnerable to the above-described

XML External Entity Attack (XXEA), providing a debug-functiona-
lity of received SAML tokens displaying the contents of the locally
pointed-to file.
TimeOffManager.

TimeOffManager [39] (Alexa Rank Global 162,258 / US: 121,438)
is a web-based leave management solution.

TimeOffManager gives a good example for an XXEA attack. At
first, we wanted to detect if the SaaS-CP is vulnerable to XXEA.
To verify this, we simply created a token containing the External
Entity <!ENTITY send SYSTEM ’http://attacker.com’>. Be-
cause our attacker.com server received a GET request, we knew
that External Entities were resolved. Nevertheless, when we tried
to read the file /etc/hostname, it did not work. We wondered why
it was impossible and after some tries, we detected that TimeOff-
Manager uses a load balancer and delegates our requests to differ-
ent systems. On some of them, the /etc/hostname file did not
exist, and therefore we got an error, on others, it worked and we
could read it. The high percentage of affected SaaS-CPs can be
explained by the fact, that the External Entities are turned on by
default in the most XML parsers (even if they are rarely needed).
Instructure.

Instructure [22] (Alexa Rank Global 5,015 / US: 1,237) is an
educational technology based company. While investigating their
SSO authentication flow, we discovered that Instructure processes
arbitrary XSLT instructions if they are contained in the XML Sig-
nature within the SAML token. This for itself is very dangerous,
because XSLT could be used to access files on the machine or ex-
ecute system commands. Interestingly we found out, that if we
use XSLT to load an XML file from our own server (http://
attacker.com/a.xml) that includes an XXEA attack, this XXEA
is processed by Instructure. If an XXEA is contained directly within
the token sent to Instructure, it is ignored. This indicates, that there
are multiple XML parsers involved while processing one single
SAML token, and each parser must be protected. Instructure was
the only SaaS-CP vulnerable against XSLT. However, it shows how
complex the different modules are. Even if the XML Parser for-
bids the usage of External Entities and provides protection against
XXEA, the SSO Verificator can by exploited in the next step in
order to start XXEA.

9. LESSONS LEARNED
The results of our evaluation revealed a multitude of existing se-

curity flaws in real-life SaaS-CPs. In this section we try to investi-
gate the reasons why so many systems could be compromised.
Verification of security critical parameters.

In Section 2.4 we presented the information contained in an au-
thentication token: Identity (I), Freshness (N), Destination
(D) and Signature or HMAC (σ). Considering Table 1, one can say
that the importance of the correct verification of σ is well under-
stood and correctly implemented. Therefore, the most SaaS-CPs
resist both /0Sig and CF attacks.

Surprisingly large is the number of implementations that provide
a faulty validation of N (6/22) and D (17/22). One reason for this
could be the redundancy of these parameters. Developers seem to
be confused about choosing the correct parameters for the verifi-
cation. In some of these cases they validated parameters that are
not protected by the digital signature and thus can be altered by an
attacker. It has to be taken into account that a guideline describing
how to correctly verify an authentication token and its relevant pa-
rameters already exists [32, Section 7.1]. However, our evaluation

shows that it seems to be unknown to most developers, or it should
be enlarged with example attacks for a better common understand-
ing.
XML Signature Wrapping.

50% of the evaluated implementations were vulnerable to XSW.
This result was not expected by the authors of this paper because
a large scale study was published in 2012 [35]. Due to the good
contact to some of the development teams, we learned that counter-
measures were taken. However, not all existing attack vectors were
considered. Based on this knowledge, we recognized the need of
automated analysis.
XML External Entity and XSLT Attack.

Most implementations do not implement their own XML parser
and XML Transformation, but use available free libraries. Unfortu-
nately, in case the used libraries allow the usage of External Entities
or XSLT within the token, XXEA and XSLTA are applicable. Since
both features are rarely needed, their usage should be disabled by
default. In case this functionality is needed, it can be still config-
ured accordingly and then re-enabled.
The security of the entire system.

We want to stress the fact that it is important to consider the se-
curity of the entire system and not only the security of one module.
Instead, it is essential to study the relations between the different
modules and evaluate possible cross-module attacks – attacks af-
fecting the security of more than one module. By this means, the
high impact of attacks like CInj can be mitigated.

10. RELATED WORK
SAML. The Security Assertion Markup Language (SAML) was de-
veloped for the secure exchange of XML-based authentication and
authorization messages. With respect to SSO, SAML can be ap-
plied within federated identity management. Unfortunately, a di-
versity of attacks have been discovered in the last years.

In 2003, Groß [18] analyzed the security of the SAML Browser
Artifact Profile and found several adaptive attacks. Additionally,
Groß analyzed the revisited version of SAML [31] and found fur-
ther logical flaws [19]. Nonetheless, the attacks described by Groß
(with the exception of Replay attacks) require a MitM attacker,
which controls the communication channel between the client and
the SaaS-CP. Such a MitM attacker is deliberately not included in
our attacker capabilities and is not needed for the attacks described
in this paper. Related vulnerabilities have been analyzed and found
in the Liberty SSO by Pfitzmann and Waidner [30]. In 2006 Y.
Chan introduced a new parallel session attack to bypass all levels
of authentication by exclusively breaking the weakest one among
them [8].

In 2008, Armando et al. [2] built a formal model of the SAML
V2.0 Web Browser SSO protocol and analyzed it with the model
checker SATMC. The practical evaluation revealed an existing se-
curity issue in the SAML interface of Google, allowing a malicious
SP to impersonate any user at any Google application. The discov-
ered attack was used as basis for our TRC attack. Later on, the same
authors identified another attack on Google’s SAML interface [1].
They manipulated the RelayState parameter in the query string of
an HTTP request in order to exploit an existing XSS vulnerability
on Google.

In 2011 Somorovsky et al. reported critical security flaws re-
garding the XML Signature validation in the Amazon Cloud [34]
allowing the impersonation of any user. In 2012 an in depth secu-
rity analysis of XML Signature regarding the critical XSW attack
was published [35]. As a result, the authors of the study examined
14 major SAML frameworks and showed that 11 of them had XSW

http://attacker.com/a.xml
http://attacker.com/a.xml

and /0Sig flaws allowing the impersonation of any user.
In 2014 Morgan et al. published a whitepaper regarding the

security of XML parser and the exploitation of XXE vulnerabili-
ties [26].
Single Sign-On. Another study regarding the security of SSO
systems has been published in 2012 by Wang et al. [40]. The au-
thors examined REST-based authentication protocols like OpenID
and found serious logic and implementation flaws resulting in iden-
tity theft. Later on, the authors developed a tool InteGuard detect-
ing invariances in the communication and preventing logical flaws
in SSO systems [42].

In 2012 Sun and Beznosov [37] have examined three major OAuth
SSO systems (Facebook, Microsoft, and Google) and 96 OAuth
SPs by analyzing the HTTP traffic going through the browser. Their
empirical studies uncovered several vulnerabilities caused by im-
plementation flaws in SPs. In 2013, Bai et al. [4] have proposed
AuthScan, a framework to automatically extract the authentication
protocol specifications from implementations. They have found
multiple security flaws in several important SSO protocols (e.g.
Facebook Connect, BrowserID, and Windows Live Messenger Con-
nect). However, they have not investigated SAML implementa-
tions. In 2014 Evans et al. [43] developed a fully automated tool
named SSOScan for analyzing the security of OAuth implementa-
tions and described five attacks, which can be automatically tested
by the tool. However, none of these researches examined the se-
curity of SAML based SSO systems and none of the tools support
the analysis of SAML related messages. Additionally, none of the
previous papers considered security in regard to the different rel-
evant authentication components within the target system and the
relations between these components.
Authentication in the Cloud. In 2012 a research study con-
sidering existing attacks regarding the authentication in the Cloud [33]
was published. However, this research does not provide in depth
security analysis of the authentication modules within the Cloud
and the relation between these modules. Additionally, attacks like
TRC, CInj and XXEA are not part of this research.

11. DISCUSSION
Authentication Components. In this paper, we pointed out the
different components responsible for authentication in the cloud.
Some attacks target exactly one component, other attacks abuse the
interaction between two of them. The presented attacks neverthe-
less targeted each component at least once. Keeping this in mind, it
is important to know that SSO authentication is not just one com-
ponent but many and that interaction between these components
must be understood and protected thoroughly. Google and Sales-
force showed that this is possible and SSO authentication can be
secured by a correct technical implementation. For classical User-
name/Password authentication, this might not be the case, because
the prohibition of weak passwords is a difficult task.
SAML Security Survey. While most of the presented SAML at-
tacks are already known [29, 35, 2, 26], it is very surprising that the
majority of SaaS related attacks is also already covered by previ-
ous literature: The SAML standard itself [32] even discusses a lot
of the attacks in this paper, but obviously this is not clear enough.
One reason for this might be that the SAML standard is very large
and includes a lot of edge use-cases. We recommend to extend its
security considerations to highlight the issues for different attacker
types and the impact in case that a verification is not provided. As
an example, the XXEA attacks require AM1, and can therefore be
performed with the least knowledge of the SaaS-CP, but those at-
tacks are not mentioned in the standard. Attacks regarding the Ses-

sion Management are not considered either.
Attack Automatism. The evaluation results show that the de-
scribed attacks are not very well understood in the wild. Only
Salesforce and Google were not vulnerable. As a future work, we
plan to develop an online service that automatically performs the
attacks and is able to report them with sufficient details. Our cur-
rent tools allow semi-automatic tests only. For a fully-automatic
test, it is necessary to configure the SaaS-CP correctly so that our
tools can be applied. This is similar to the SSOScan approach [43],
but for SAML it is much more complicated due to the great flexi-
bility allowed by the specification. By this means, many different
token permutations are possible and should be considered during
testing. Additionally, it is not just enough, to find the SSO login
button, because there exist several different SAML profiles [7] and
each SaaS-CP needs different parameters within the SAML token.

12. REFERENCES
[1] Alessandro Armando, Roberto Carbone, Luca Compagna,

Jorge Cuéllar, Giancarlo Pellegrino, and Alessandro
Sorniotti. From Multiple Credentials to Browser-Based
Single Sign-On: Are We More Secure? In SEC, pages
68–79, 2011.

[2] Alessandro Armando, Roberto Carbone, Luca Compagna,
Jorge Cuéllar, and M. Llanos Tobarra. Formal Analysis of
SAML 2.0 Web Browser Single Sign-On: Breaking the
SAML-based Single Sign-On for Google Apps. In
Proceedings of the 6th ACM Workshop on Formal Methods
in Security Engineering, FMSE 2008, pages 1–10,
Alexandria and VA and USA, 2008. ACM.

[3] Armando, Alessandro and Carbone, Roberto and Compagna,
Luca and Cuéllar, Jorge and Tobarra, M. Llanos. SAML:
CVE-2008-3891. http://www.cvedetails.com, September
2008.

[4] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan
Venkatraman, Prateek Saxena, Jun Sun, Yang Liu, and
Jin Song Dong. AUTHSCAN: Automatic extraction of web
authentication protocols from implementations. NDSS,
February, 2013.

[5] A. Barth. HTTP State Management Mechanism. RFC 6265
(Proposed Standard), April 2011.

[6] Bitium. Bitium Partners, 2014. [online]
https://www.bitium.com/site/apps/.

[7] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler.
Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS Standard, 15.03.2005, 2005.
http://docs.oasis-open.org/security/saml/v2.0/
saml-profiles-2.0-os.pdf.

[8] Yuen-Yan Chan. Weakest Link Attack on Single Sign-On
and Its Case in SAML V2.0 Web SSO. In Computational
Science and Its Applications - ICCSA 2006, volume 3982 of
Lecture Notes in Computer Science, pages 507–516.
Springer Berlin Heidelberg, 2006.

[9] Christian Mainka. Detecting and exploiting XXE in SAML
Interfaces, 2014. [online]
http://web-in-security.blogspot.de/2014/11/
detecting-and-exploiting-xxe-in-saml.html.

[10] Christian Mainka, Vladislav Mladenov, Florian Feldmann,
Julian Krautwald. Instructure Advisory IAC00722 - SAML
Ruby gem vulnerability.
https://help.instructure.com/entries/46981014-Instructure-
Advisory-IAC00722-SAML-Ruby-gem-vulnerability, Feb
2014.

https://www.bitium.com/site/apps/
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://web-in-security.blogspot.de/2014/11/detecting-and-exploiting-xxe-in-saml.html
http://web-in-security.blogspot.de/2014/11/detecting-and-exploiting-xxe-in-saml.html

[11] Christian Mainka, Vladislav Mladenov, Florian Feldmann,
Julian Krautwald. Multiple CVEs: VU 190556, VRF
HXR9YUNY,VRF HXRAH4O0,VU 774084,VRF
HXRAND04. Not published yet, 2014.

[12] Christian Mainka, Vladislav Mladenov, Florian Feldmann,
Julian Krautwald. Responsible Disclosure Policy,
Contributors.
http://www.zendesk.com/company/responsible-disclosure-
policy, Feb
2014.

[13] Christian Mainka, Vladislav Mladenov, Florian Feldmann,
Julian Krautwald. SAML attacks on Canvas interface.
https://help.instructure.com/entries/26920510-Instructure-
Advisory-IAC44584-SAML-Signature-Wrapping, Feb
2014.

[14] Christian Mainka, Vladislav Mladenov, Florian Feldmann,
Julian Krautwald. SAML attacks on Clarizen interface.
http://www.clarizen.com/security-log.html, Feb 2014.

[15] Clarizen. Clarizen - The way to work, 2014. [online]
http://www.clarizen.com/.

[16] CloudReviews. CloudReviews, 2014. [online]
http://www.cloudreviews.com/cat/apps.html.

[17] Andreas Falkenberg, Christian Mainka, Juraj Somorovsky,
and Jorg Schwenk. A New Approach towards DoS
Penetration Testing on Web Services. 2013 IEEE 20th
International Conference on Web Services, 0:491–498, 2013.

[18] T. Groß. Security analysis of the SAML Single Sign-on
Browser/Artifact profile. In Annual Computer Security
Applications Conference. IEEE Computer Society, 2003.

[19] Thomas Groß and Birgit Pfitzmann. SAML artifact
information flow revisited. Research Report RZ 3643
(99653), IBM Research, 2006. http://www.zurich.ibm.
com/security/publications/2006.html.

[20] Frederick Hirsch, David Solo, Joseph Reagle, Donald
Eastlake, and Thomas Roessler. XML Signature Syntax and
Processing (Second Edition). W3C recommendation, W3C,
June 2008.

[21] ideascale. ideascale, 2014. [online]
http://ideascale.com/.

[22] Instructure. Canvas, 2014. [online]
http://www.instructure.com/.

[23] Michael Kay. XSL Transformations (XSLT) Version 2.0
(Second Edition). W3C proposed edited recommendation,
W3C, April 2009.
http://www.w3.org/TR/2009/PER-xslt20-20090421/.

[24] Michael McIntosh and Paula Austel. XML signature element
wrapping attacks and countermeasures. In SWS ’05:
Proceedings of the 2005 Workshop on Secure Web Services,
pages 20–27, New York, NY, USA, 2005. ACM Press.

[25] Peter M. Mell and Timothy Grance. SP 800-145. The NIST
Definition of Cloud Computing. Technical report,
Gaithersburg, MD, United States, 2011.

[26] Timothy D. Morgan and Omar Al Ibrahim. XML Schema,
DTD, and Entity Attacks - A Compendium of Known
Techniques. 2014.

[27] Ruhsan Onder and Zeki Bayram. XSLT version 2.0 is
turing-complete: A purely transformation based proof. In
Implementation and Application of Automata, pages
275–276. Springer, 2006.

[28] OneLogin. OneLogin Partners, 2014. [online]
http://www.onelogin.com/partners/app-partners/.

[29] OWASP Foundation. Cross-Site Request Forgery (CSRF).
https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF), 2013. [online]
https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF).

[30] Birgit Pfitzmann and Michael Waidner. Analysis of Liberty
Single-Sign-on with Enabled Clients. IEEE Internet
Computing, 7(6):38–44, 2003.

[31] S. Cantor et al. Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0, March
2005.

[32] S. Cantor et al. Security and Privacy Considerations for the
OASIS Security Assertion Markup. Language (SAML) V2.0,
March 2005.

[33] Kalayan Sudia Santosh Bulusu. AStudy on Cloud
Computing Security Challenges. Master’s thesis, School of
Computing Blekinge Institute of Technology SE-371 79
Karlskrona Sweden, January 2012.

[34] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg
Schwenk, Nils Gruschka, and Luigi Lo Iacono. All Your
Clouds are Belong to us – Security Analysis of Cloud
Management Interfaces. In The ACM Cloud Computing
Security Workshop (CCSW), October 2011.

[35] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco
Kampmann, and Meiko Jensen. On breaking saml: Be
whoever you want to be. In 21st USENIX Security
Symposium, Bellevue, WA, August 2012.

[36] C. M. Sperberg-McQueen, Henry S. Thompson, Murray
Maloney, Henry S. Thompson, David Beech, Noah
Mendelsohn, and Shudi (Sandy) Gao. W3C XML Schema
Definition Language (XSD) 1.1 Part 1: Structures. Last call
WD, W3C, December 2009.

[37] San-Tsai Sun and Konstantin Beznosov. The Devil is in the
(Implementation) Details: An Empirical Analysis of OAuth
SSO Systems. In Proceedings of the 2012 ACM conference
on Computer and communications security, CCS ’12, pages
378–390, New York, NY, USA, 2012. ACM.

[38] Talkin’ Cloud. Top 100 Cloud Services Providers (CSPs)
List And Research, 2014. [online]
http://talkincloud.com/tc100.

[39] TimeOffManager. TimeOffManager, 2014.
[40] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me

onto Your Accounts through Facebook and Google: a
Traffic-Guided Security Study of Commercially Deployed
Single-Sign-On Web Services. In IEEE, editor, Security
& Privacy 2012, 2012.

[41] Wikipedia. Cloud computing providers, 2014. [online]
http://en.wikipedia.org/wiki/Category:
Cloud_computing_providers.

[42] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen.
InteGuard: Toward Automatic Protection of Third-Party Web
Service Integrations. In NDSS, 2013.

[43] David Evans Yuchen Zhou. Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In 23rd
USENIX Security Symposium (USENIX Security 14), San
Diego, CA, August 2014. USENIX Association.

[44] Zendesk. Zendesk, 2014. [online] http://zendesk.com/.
[45] Zoho. Zoho, 2014. [online] http://www.zoho.com/.
[46] Gavin Zuchlinski. The Anatomy of Cross Site Scripting.

Hitchhiker’s World, 8, 2003.

http://www.clarizen.com/
http://www.cloudreviews.com/cat/apps.html
http://www.zurich.ibm.com/security/publications/2006.html
http://www.zurich.ibm.com/security/publications/2006.html
http://ideascale.com/
http://www.instructure.com/
http://www.onelogin.com/partners/app-partners/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://talkincloud.com/tc100
http://en.wikipedia.org/wiki/Category:Cloud_computing_providers
http://en.wikipedia.org/wiki/Category:Cloud_computing_providers
http://zendesk.com/
http://www.zoho.com/

	Introduction
	SaaS Provider Model
	sso
	Components
	SaaS Authentication flow
	SSO Authentication Token

	Attacker Model
	Methodology
	AM1 related Attacks
	sigexclusion
	certfaking
	xxeattack
	xsltattack

	AM2 related Attacks
	replay
	xsw
	trc

	AM3 related Attacks
	certinjection

	Cloud Study
	Summary
	Details of Exploit

	Lessons Learned
	Related Work
	Discussion
	References

