
On The (In-)Security Of JavaScript Object
Signing And Encryption

Dennis Detering
CSPi GmbH

dennis.detering@cspi.com

Juraj Somorovsky
Horst Görtz Institute for IT Security,

Ruhr-University Bochum
juraj.somorovsky@rub.de

Christian Mainka
Horst Görtz Institute for IT Security,

Ruhr-University Bochum
christian.mainka@rub.de

Vladislav Mladenov
Horst Görtz Institute for IT Security,

Ruhr-University Bochum
vladislav.mladenov@rub.de

Jörg Schwenk
Horst Görtz Institute for IT Security,

Ruhr-University Bochum
joerg.schwenk@rub.de

ABSTRACT
JavaScript Object Notation (JSON) has evolved to the de-facto stan-
dard file format in the web used for application configuration,
cross- and same-origin data exchange, as well as in Single Sign-
On (SSO) protocols such as OpenID Connect. To protect integrity,
authenticity, and confidentiality of sensitive data, JavaScript Object
Signing and Encryption (JOSE) was created to apply cryptographic
mechanisms directly in JSON messages.

We investigate the security of JOSE and present different appli-
cable attacks on several popular libraries. We introduce JOSEPH
(JavaScript Object Signing and Encryption Pentesting Helper) –
our newly developed Burp Suite extension, which automatically
performs security analysis on targeted applications. JOSEPH’s au-
tomatic vulnerability detection ranges from executing simple signa-
ture exclusion or signature faking techniques, which neglect JSON
message integrity, up to highly complex cryptographic Bleichen-
bacher attacks, breaking the confidentiality of encrypted JSON
messages. We found severe vulnerabilities in six popular JOSE li-
braries. We responsibly disclosed all weaknesses to the developers
and helped them to provide fixes.

KEYWORDS
JOSE, JSON Web Encryption, JSON Web Signature, Key Confusion,
Bleichenbacher Attack, Burp Suite

1 INTRODUCTION
Many applications available on the World Wide Web rely on secure
communication channels on lower layers, such as Internet Protocol
Security (IPSec) [14] or Transport Layer Security (TLS) [8]. These
mechanisms provide end-to-end encryption in point-to-point sce-
narios, where the complete data is securely transported between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROOTS, November 16–17, 2017, Vienna, Austria
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5321-2/17/11. . . $15.00
https://doi.org/10.1145/3150376.3150379

two communication partners. However, IPSec and TLS become in-
sufficient in complex scenarios where communication is redirected
over untrusted third-party intermediates (proxies), or only specific
message parts have to be protected. These cases demand additional
security technologies on the application layer which provide the
fundamental security concepts integrity, authenticity, and confi-
dentiality of arbitrary elements directly on the message level.

In practice, the Extensible Markup Language (XML)-based se-
cure object formats XML Signature [11] and XML Encryption [9]
enjoy great popularity. They have been adopted in many widely
deployed protocols and systems using, for example, Security Asser-
tion Markup Language (SAML)-based Single Sign-On [49]. One of
the main disadvantages of XML [55] is its high complexity; XML
parsers need to support XML namespaces, Document Type Defini-
tions (DTD), different node types, canonicalization, or processing
of cryptographic algorithms. XML complexity and its manifold
features have led to various errors and vulnerabilities, allowing
attackers to perform simple Denial-of-Service attacks [39] or to
decrypt encrypted XML contents [22].

An alternative to XML is the JSON [6]. JSON is a platform-
independent data format which operates with only four primi-
tives and two structured types [6]. Its simplicity and small set of
formatting rules facilitate a developer’s effort by implementing
JSON-based data structures and reducing network load. With the
increased usage of JSON in REST services and protocols like OAuth
and OpenID Connect security provided by encryption, digital sig-
natures, and Message Authentication Code (MAC) algorithms is a
desired goal. This demand has been addressed by the JOSE work-
ing group, which proposed five new Request for Comments (RFC)
specifications [24–28].

In this paper we investigate the security of JavaScript Object
Signing and Encryption (JOSE). We analyze several vulnerabilities
and their practical exploitability based on real world library imple-
mentations. Signature Exclusion and Key Confusion are addressed by
JSON Web Signature [26] and are used to force the receiving party
to accept invalidly signed messages. The Bleichenbacher Million
Message Attack is a well-known vulnerability, but has not yet been
investigated with a special focus on JSON Web Encryption imple-
mentations [28]. This attack exploits specific system behavior to
recover the encrypted plaintext message. We found vulnerabilities
in the latest versions of major JOSE libraries. All in all, six Common

https://doi.org/10.1145/3150376.3150379


Vulnerabilities and Exposures (CVE) identifiers have been assigned
and all issues were fixed in cooperation with the maintainers.

To support library developers and security researchers by eval-
uating JOSE libraries we developed a Burp Suite extension to test
implementations for their resistance of the examined attacks. Fur-
thermore, the extension provides several features to assist inmanual
testing and is easily extensible to add further discovered attacks
and checks.

Contributions.

• We analyzed both simple and complex state-of-the-art at-
tacks on JavaScript Object Signing and Encryption.

• We discovered six vulnerabilities in widely used software
libraries and responsibly disclosed them to the developers.

• We provide our open source Burp Suite extension called
JavaScript Object Signing and Encryption Pentesting Helper
(JOSEPH) [7].

2 JAVASCRIPT OBJECT SIGNING AND
ENCRYPTION

The JavaScript Object Notation is a “lightweight, text-based, language-
independent data interchange format [...] derived from the EC-
MAScript Programming Language Standard” [6]. In May 2015, the
JavaScript Object Signing and Encryption (JOSE) working group [1]
standardized two security standards: JSONWeb Signature (JWS) [26]
and JSON Web Encryption (JWE) [28]. Along with the these stan-
dards JSON Web Key (JWK) [25], JSON Web Algorithm (JWA) [24],
and JSON Web Token (JWT) [27].1 These standards have already
been integrated into several major protocols, frameworks, and ap-
plications. This include SSO protocols like OpenID Connect [43],
the Automatic Certificate Management Environment (ACME) pro-
tocol [3] used by Let’s Encrypt [18], the IBM DataPower Gateway
solution [16], and Apache’s CXF Webservice framework [2].

The JSON Web Algorithm enumerates cryptographic algorithms
and identifiers represented in JSON-based data structures [24]. It
describes the semantics and operations used with the JSON Web
Signature, JSON Web Encryption, and JSON Web Key specifica-
tions. JSONWeb Key represents a cryptographic key in a JSON data
structure as used in the JSON Web Signature and JWE specifica-
tions [25]. The specification lists and describes several parameters
registered in the IANA registry for use with JWKs. JSONWeb Token
is used to transfer claims2 in a compact, URL-safe representation
using the JWS/JWE Compact Serialization between two parties [27].
“The claims in a JWT are encoded as a JSON object that is used
as the payload of a JSON Web Signature (JWS) structure or as the
plaintext of a JSON Web Encryption (JWE) structure, enabling the
claims to be digitally signed or integrity protected with a Message
Authentication Code (MAC) and/or encrypted” [27, Abstract].

In the following, we describe JSON Web Signature and JSON
Web Encryption standards due to the relevancy to our work.

1When referring to all five RFC specifications as a group the abbreviation JOSE will
be used in the following.
2A claim is “a piece of information asserted about a subject [and] is represented as a
name/value pair consisting of a Claim Name and a Claim Value” [27, Section 2]

2.1 JSONWeb Signature
JSON Web Signature specifies methods and algorithms to protect
integrity and authenticity of JSON-based data [26]. The available al-
gorithms include, for example, HMAC, RSA-PKCS#1 v1.5 or ECDSA
with SHA-256, SHA-384, or SHA-512.

JWS Serialization. The JWS specification defines two types of
serialization methods to represent a JWS. The JWS JSON Serializa-
tion is “a representation of the JWS as a JSON object [and] enables
multiple digital signatures and/or MACs to be applied to the same
content” [26, Section 2]. Listing 1 presents an example using the
general JWS JSON Serialization syntax and “demonstrates the ca-
pability for conveying multiple digital signatures and/or MACs for
the same payload” [26, Appendix A.6]. The first digital signature
has been generated with the RSA algorithm and the second one
by using ECDSA. The header element contains the ID of the pub-
lic key used for the signature computation. It can include further
information such as algorithms or issuer information.

1 {

2 "payload": "eyJpc3MiOiJqb2UiLA0 ... 19yb290Ijp0cnVlfQ",

3 "signatures":[{

4 "protected": "eyJhbGciOiJSUzI1NiJ9",

5 "header": {"kid":"2010-12-29"},

6 "signature": "cC4hiUPoj9E ... etdgtv3hF80EGrhuGe77Rw"

7 },{

8 "protected": "eyJhbGciOiJFUzI1NiJ9",

9 "header": {"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"},

10 "signature": "DtEhljbEg88VWAKAM ... mWQxfKTUJqPP3-Kg6NU1Q"

11 }]

12 }

Listing 1: JSON Web Signature in its General JWS JSON
Serialization representation [26, Appendix A.6.4]

The JWS Compact Serialization is a compact and URL-safe string
representation. An example is depicted in Listing 2, showing the
three base64url-encoded and concatenated resulting strings [30].
All samples used in this paper are shown in its JWS Compact Seri-
alization representation.

1 eyJhbGciOiJSUzI1NiJ9 # Header

2 .

3 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9le

4 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ # Payload

5 .

6 cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZja6h

7 AAuHIm4Bh-0Qc_lF5YK ... I8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB

8 p0igcN_IoypGlUPQGe77Rw # Signature

Listing 2: JSON Web Signature in its JWS Compact
Serialization representation [26, Appendix A.2.1]

Signature Computation. To create a compact JWS, the following
steps have to be performed (see also the graphical illustration in
Figure 1):

(1) Create the JSON object containing the desired header pa-
rameters and compute the encoded header value by using
BASE64URL(UTF8(JWS Protected Header)) (red)

(2) Compute the encoded payload BASE64URL(JWS Payload) (green)



Figure 1: Process of generating a JSONWeb Signature

(3) Compute the JWS signature in the manner defined for the
particular algorithm by using the previously generated en-
coded values, concatenated with a dot, as input:
ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.' ||

BASE64URL(JWS Payload)) (white)
(4) Compute the encoded signature BASE64URL(JWS Signature)

(blue)
(5) Create the JWS Compact Serialization output by concatenat-

ing the three encoded values with a dot:
BASE64URL(UTF8(JWS ProtectedHeader)) || '.' ||

BASE64URL(JWS Payload) || '.' ||

BASE64URL(JWS Signature)

Note that some steps may vary slightly if the JWS JSON Serial-
ization is used.

2.2 JSONWeb Encryption
JSON Web Encryption provides authenticated encryption to ensure
confidentiality, authenticity, and integrity of an arbitrary sequence
of octets using JSON-based data structures [28]. The available al-
gorithms are AES-GCM, AES-KW, or AES-CBC with HMAC (with
different key sizes).

There are two required parameters to be implemented for com-
pliance, namely the alg (algorithm) parameter and the enc (en-
cryption algorithm) parameter. The alg parameter identifies the
cryptographic algorithm or method used to transmit the value of
the Content Encryption Key (CEK), while the enc parameter holds
the identifier of the content encryption algorithm used to perform
authenticated encryption on the plaintext [28].

JWE Serialization. The JWE specification defines two types of
serializationwhich are closely related to the serializations for JWS: a
compact variant for constrained environments, called JWE Compact

Serialization, and the JWE JSON Serialization. Figure 2 depicts one
example of a JWE in its JWE Compact Serialization representation.
In this example, the plaintext “Live long and prosper.” is encrypted
using the RSA PKCS#1 v1.5 algorithm for key encryption and AES-
128 CBC with HMAC SHA-1 for the content encryption.

Message Encryption. The process of generating a JWE strongly
depends on the used algorithms and contains up to 19 steps, de-
scribed in detail in [28, Section 5.1]. One example of how a JWE
might be generated is graphically illustrated in Figure 2:

(1) Create the JSON objects building the header(s) and encode
them using base64url (red).

(2) Generate Content Encryption Key. Depending on the key
encryption algorithm specified in the alg header parameter,
the CEK can contain a randomly generated secret which is
encrypted with the recipient’s key, or a public key share used
for the elliptic curve key agreement [28] (purple). These are
two exemples of the existing five Key Mangement Modes
which describe the CEK generation process [28, Section 2].

(3) Encode the CEK value using base64url. Generate an Initial-
ization Vector (IV) and encode it with base64url (blue). If
compression is enabled, the plaintext must be compressed.

(4) Use the selected encryption algorithm to process the plain-
text (green) using the CEK and IV values from the previous
steps. Compute the authentication tag over the ciphertext
andAdditional Authenticated Data (AAD) (if present) (white).
The result is the ciphertext (yellow) and the authentication
tag (orange). These values are all encoded using base64url.

3 BURP SUITE
Burp Suite is “an integrated platform for performing security test-
ing of web applications” [44] developed by PortSwigger Ltd. and



Figure 2: Process of generating a JSONWeb Encryption

enjoys great popularity amongst security testers. It allows for a
combination of advanced manual and fully automated security
testing of web-based services and is extensible through a built-in
modular plugin system. Burp Suite consists of the following key
components:

Intercepting Proxy. “An intercepting proxy, which [enables a user
to] inspect and modify traffic between [the] browser and the target
application” [44] by operating as a man-in-the-middle. The proxy
tool gives full control over any request with the ability to forward,
modify, or drop them. Apart from listing interesting details, such as
the response length, status code, MIME type, etc., the HTTP history
enables the user to review all previously recorded requests and
responses.

Spider. “An application-aware spider, for crawling content and
functionality” [44]. This tool aims to aid in the reconnaissance of a
test by passively compiling a list of URLs found in HTTP responses,
thus creating a comprehensive site map of the target’s application,
with the additional information of its actual reachability.

Web Application Scanner. “An advanced web application scanner,
for automating the detection of numerous types of vulnerability”
[44]. The vulnerability scanner is only available in the professional
version of the Burp Suite and can both actively and passively scan
the target for a large list of known security issues [45].

Intruder. “An intruder tool for performing powerful customized
attacks to find and exploit unusual vulnerabilities” [44]. Its main

characteristic is to inspect specific entry points, such as parameters
or headers, by performing, for instance, brute force, fuzzing,3 or
enumeration checks.

Repeater. “A repeater tool for manipulating and resending indi-
vidual requests” [44]. With this tool, the user is able to easily test
for replay attacks or manually manipulate certain parts of a request.

Sequencer. “A sequencer tool for testing the randomness of ses-
sion tokens” [44]. By collecting a list of samples for a session, Cross-
Site Request Forgery (CSRF), or other security-relevant tokens, this
tool estimates the degree of randomness and analyzes its quality –
including the standard FIPS4 tests.

Extender. An extensionApplication Programming Interface (API)
“allowing [one] to easily [develop custom] plugins, to perform com-
plex and highly customized tasks within Burp” [44]. Burp Suite in
general is closed source and only exposes certain interfaces and
functions for public access [47]. Its functionality can be extended
with plugins developed in Java, Python by using JPython, or Ruby
by using JRuby. Developers have the opportunity to publish their
bundled extensions to the BApp Store [46], Burp Suite’s own appli-
cation store containing extensions written by its community.

3“Fuzz testing or Fuzzing is a Black Box software testing technique, which basically con-
sists in finding implementation bugs using malformed/semi-malformed data injection
in an automated fashion [53].”
4Federal Information Processing Standards (FIPS) are standards and guidelines devel-
oped by the National Institute of Standards and Technology (NIST) [41].



4 SELECTED ATTACKS ON JOSE
The following sections describe selected attacks against JWT, JWS,
and JWE. For each attack, the basic idea and underlying problem is
explained.

4.1 Signature Exclusion
Signature Exclusion is an attack, where an adversary is able to re-
move the signature of a signed message and to trick the application
into falsely accepting this message as valid. The JWA specifica-
tion [24] defines the algorithm type none, intended for use in “con-
texts where the payload is secured by means other than a digital
signature or MAC value, or need not be secured” [24]. These so
called Unsecured JWSs are of the exact same format as other JWSs,
with the only difference of using the empty octet sequence as its
JWS Signature value.

It was first discovered by Tim McLean that many libraries do not
adequately check if Unsecured JWSs are allowed, and that they treat
them as a valid token with a correct signature [33]. An attacker
might easily abuse this to craft a valid JWS or JWT with arbitrary
content by replacing the alg header value with none and removing
the signature, thus performing arbitrary actions on a system or
impersonating other users.

An example of a vulnerable library is given in Listing 3. In order
to check whether a given algorithm is supported and to load its
related class, the PHP JOSE [40] library relies on the mandatory alg
header value and checks the existence of a class with this name on
a certain location using the namespace definition. Listing 3 shows
the implementation of the getSigner() function, which performs
this check (l. 4) and returns a new instance if the class exists (l. 5).
If invalid, an InvalidArgumentException is thrown, stating that
the given algorithm is not supported (l. 7). In case of the “None”
signer, the verify() function returns true if the signature is empty
(Listing 4).

1 protected function getSigner () {

2 $signerClass = sprintf('Namshi \\JOSE\\ Signer \\%s

\\%s',

3 $this ->encryptionEngine , $this ->header['alg'])

;

4 if (class_exists($signerClass)) {

5 return new $signerClass ();

6 }

7 throw new InvalidArgumentException(sprintf("The

algorithm '%s' is not supported for %s",

$this ->header['alg'], $this ->encryptionEngine

));

8 }

Listing 3: PHP JOSE getSigner() function (version
2.1.3).5

5See: https://github.com/namshi/jose/blob/master/src/Namshi/JOSE/JWS.php for full
file.

1 public function verify($key , $signature , $input) {

2 return $signature === '';

3 }

Listing 4: PHP JOSE verify() function of the None
signer.

With version 2.1.3, an allowUnsecure flag has been introduced
and set to false by default (Listing 5, l. 2) in order to mitigate
any unexpected use of an Unsecured JWS. An additional condi-
tion checks whether the algorithm value of the header is None and
whether allowUnsecure is permitted (Listing 5, ll. 4-6). As a re-
sult, the creation of a Signer instance will be mitigated and the
verification process is stopped with an exception.

1 public static function load($jwsTokenString ,

2 $allowUnsecure = false)

3 [...]

4 if ($header['alg'] === 'None' && !$allowUnsecure) {

5 throw new InvalidArgumentException(sprintf('The

token "%s" cannot be validated in a secure

context , as it uses the unallowed "none"

algorithm ', $jwsTokenString));

6 }

Listing 5: A vulnerable version of the PHP JOSE library.6

The problem with this amendment is how the algorithm value has
been checked. An attacker might have used different capitaliza-
tion to bypass this check, since the class name is matched in a
case-insensitive manner.

The issue has been detected and fixed with version 5.0.2 by using
the native strtolower() function to perform a case-insensitive
check of the algorithm value. Listing 6 shows the GIT diff call of
the related file.

1 - if ($header['alg '] === 'None ' && !$allowUnsecure) {

2 + if (strtolower($header['alg ']) === 'none ' && !

$allowUnsecure) {

Listing 6: Commit diff excerpt of the PHP JOSE library
showing the changes to fix the case-sensitivity of the
algorithm value.7

4.2 Key Confusion
Key Confusion, also known as Algorithm Substitution, is an attack
where an adversary is able to trick the application into using a
specific known cryptographic key for an unexpected algorithm.
This is problematic in cases where both symmetric and asymmetric
algorithms are supported. Symmetric algorithms use a shared secret
to sign a given message and verify its related signature, whereas
asymmetric algorithms use a secret private key to generate a sig-
nature and the corresponding public key to verify its validity. The
JWA specification defines four different cryptographic algorithms
with different key sizes for digital signatures and MACs. The only
6See: https://github.com/namshi/jose/commit/127b4415e66d89b1fcfb5a07933db0b5ff5cd636
for full commit.
7See: https://github.com/namshi/jose/commit/be2db86f5224cc7d34ef98f9a315c6b45bc4fc4e
for full commit.

https://github.com/namshi/jose/blob/master/src/Namshi/JOSE/JWS.php
https://github.com/namshi/jose/commit/127b4415e66d89b1fcfb5a07933db0b5ff5cd636
https://github.com/namshi/jose/commit/be2db86f5224cc7d34ef98f9a315c6b45bc4fc4e


symmetric Keyed-Hash Message Authentication Code (HMAC) al-
gorithm is required for compliant implementations and the asym-
metric algorithms based on RSA and ECDSA are recommended,
thus the probability of symmetric and asymmetric algorithms being
implemented (and used) together is considered realistic.

Figure 3: Attack scenario for the Key Confusion Attack

Tim McLean has discovered that many libraries rely solely on
the user-controlled algorithm header parameter alg to distinguish
which algorithm is used for verification [33]. He has observed that
the JOSE libraries use the same basic structure for the verify()
function:

verify(string token , string verificationKey)

Depending on the implementing system and which algorithm is
used, the verification function is either called with the shared
HMAC secret key or with the server’s public key (e.g., RSA):

# System using HMAC

verify(clientToken , serverHMACSecretKey)

# System using an asymmetric algorithm (e.g. RSA)

verify(clientToken , serverRSAPublicKey)

The vulnerability occurs if the system is expecting a token signed
with one of the asymmetric algorithms. An attacker might abuse
the structure of the verification API to craft an HMAC signature by
using the server’s public key as a shared secret. On the server side,
the system passes the token and the RSA public key to the verify()
function to check its validity. The underlying JOSE library, however,
bases its verification decision on the alg header – which in this
case is HMAC. Therefore, it generates a new HMAC with the given
public key and compares it to the provided signature. An exemplary
attack workflow is illustrated in Figure 3.

Tim McLean has put much effort in informing the public and
especially the maintainers of many JOSE libraries via blog post [33],
Twitter [36], proposal to the JOSE working group [35], and direct
mail [34]. As a result, the corresponding security considerations
have been added to the JWS specification in RFC 7515 [26].

4.3 Bleichenbacher Million Message Attack
In 1998, Daniel Bleichenbacher published a novel adaptive chosen
ciphertext attack against protocols based on the RSA encryption
standard PKCS#1 [5]. Bleichenbacher exemplarily applied his attack
to the SSL v3.0 protocol with experimental results of recovering
an encrypted message from between 300 thousand and 2 million
chosen ciphertexts. Due to an average of roughly 1 million nec-
essary messages, this attack is referred to as the Million Message
Attack (MMA).

In 2002, the W3C consortium published the XML Encryption
standard [10]. Up until today, the RSA with PKCS#1 v1.5 padding
algorithm is one of the two mandatory key transport mechanisms
to be implemented for compliance. In 2012, Jager et al. described
several attacks against the PKCS#1 v1.5 key transport mechanism,
based on the known Bleichenbacher attack [20]. They were able to
“recover the secret key used to encrypt [the] transmitted payload
data [by exploiting] differences in error messages and in the timing
behavior” [20].

Starting with the very first draft of the JWA specification in
2012, the RSA PKCS#1 v1.5 algorithm was one of the listed key
management algorithms for JWE. Jager et al. have shown that
their attacks are applicable on the early JWE implementations as
well [20].

Figure 4: Attack scenario for the Bleichenbacher Million
Message Attack

The basic idea of the Bleichenbacher attack is to send several
chosen ciphertexts to the server and observe its response. If the at-
tacker is able to distinguish between a validly and invalidly padded
message – based on detailed error messages, measurable timing
differences or other side channels – he can retrieve sensitive infor-
mation about the encrypted plaintext. Abusing an involved party
as an oracle for the PKCS#1 v1.5 padding, classifies this attack as
Padding Oracle Crypto Attack as specified in CAPEC-463 of the
Common Attack Pattern Enumeration and Classification (CAPEC)
database [38]. “An attacker is able to efficiently decrypt data with-
out knowing the decryption key if a target system leaks data on
whether or not a padding error happened while decrypting the
ciphertext” [38]. The only prerequisite to apply this attack is that
an attacker is able to capture a single ciphertext and has the ability
to send arbitrary ciphtertexts to the intended receiver, as illustrated
in Figure 4.

PKCS#1 v1.5 Encryption Padding. The PKCS#1 encryption padding
version 1.5 is specified in RFC 2313 [31] and used to pad the data
to be encrypted using the RSA public-key cryptosystem out to the
length of the modulus N . This is done by concatenating a randomly
generated padding string PS to the given message k , before apply-
ing the RSA encryption function m 7→ me mod N . The PKCS#1
v1.5 conforming RSA input messagem is of the following format
and interpreted as an integer, such that 0 < m < N :

m := 00| |02| |PS | |00| |k
The leading zero byte 0x00 “ensures that the encryption block,
converted to an integer, is less than the modulus” [31, Section 8.1]
and the second byte 0x02 specifies the block type as a public-key
encryption operation. The random padding string PS is of the length
l − 3 − |k | with a minimum length of |PS | ≥ 8 and does not contain



any zero byte 0x00. l in this case denotes the byte-length of the
modulus N . The subsequent zero byte 0x00 is used to separate the
padding string and the data k .

Attack Description. The Bleichenbacher MMA exploits the mal-
leability of the RSA encryption scheme, which allows the following
binding of a randomly generated integer s [5]:

c ′ ≡ (c · se )mod N = (me · se )mod N = (ms)e mod N

Given an oracle ϑ (c ′) responding with true or false according to
the PKCS#1 v1.5 conformity, an attacker will learn that the first
two bytes ofms are 0x00 and 0x02 if the response is true. Mathe-
matically, this leads to 2B ≤ msmod N < 3B, where B = 28(l−2) [5].
By incrementing the value s and querying the oracle, the adversary
learns on every positive result that

2B ≤ ms − rN < 3B

for some computed r , which allows him to reduce the set of possible
solutions. We refer to [5] for more details.

5 JOSEPH
JOSEPH is the name of our developed Burp Suite extension and
stands for JavaScript Object Signing and Encryption Pentesting Helper.
The following sections aims to give an overview of its structure
and features.

5.1 Design, Structure & Extensibility
The look-and-feel of JOSEPH’s graphical user interface is adapted
to the other parts of the Burp Suite. The basic idea is to create a
familiar environment to quickly utilize its features and to reduce
the need of any previous training. Its goal is to follow the principle
of simplicity while still offering as much flexibility as possible.

Proxy and Editors. The HTTP history tab of the Burp Suite proxy
lists all processed HTTP messages and enables the user to re-
view the performed requests and recorded responses. By enabling
the JOSEPH extension, the functionality of the HTTP history is
amended to search for JWS and JWE patterns and to highlight
matching messages with a cyan colored background, alongside
with a specific comment. In addition to the highlighting, the native
request/response editors are supplemented to include a JWS/JWE
tab with sub tabs for displaying the separate components of a dis-
covered JOSE value. Where useful, the base64url encoded content
is shown in its decoded ASCII format. When used within the Re-
peater tool or during an active interception, the JWS/JWE editors
are editable and may be used to modify the JOSE parameter value
of the request before sending it. Furthermore, the JWS editor is
extended by an additional Attacker tab, allowing a user to update
the given request with attack related modifications.

The JOSEPH tab. When enabling the extension, an extra JOSEPH
tab appears on the main navigation of Burp Suite. This tab contains
different sections for the features of the extension, namely the At-
tacker, a Manual tab, Preferences, and the Decoder. The Decoder is a
simple helper utility to encode/decode base64url strings and dis-
play them in an ASCII or hexadecimal format. The Burp Suite itself

Figure 5: Screenshot of the attacker tab within the Repeater

has its own Decoder tool, but base64url is not one of the available
encoding formats and the public API for extensions does not offer
any possibility to add additional formats. The Preferences tab serves
to configure several options of JOSEPH’s behavior. JOSEPH uses
its own logging functions, for which the verbosity level can be set
to Debug, Info, or Error. A second option allows to enable/disable
the highlighting feature of messages containing JOSE values in the
HTTP history. The third option aims to increase the flexibility of this
extension. The user is able to dynamically maintain a list of names
which are used to search for JOSE values in parameters at different
locations and HTTP headers. The preferences can be persistently
saved into a configuration file on the hard disk to survive a restart
or crash of the Burp Suite. The Manual tab is used for special cases
where non-standard JOSE implementations need to be tested and
JOSEPH is not able to automatically recognize and handle it. In this
case, the user is still able to apply the attacks to it.

One of the main features of JOSEPH is the attack engine, enabling
the user to apply the investigated attacks and test implementations
for their vulnerability. If a message is detected to contain a JOSE
value, this message can be sent to the JOSEPH extension by right
clicking on the message and selecting Send to JOSEPH from the
context menu.Within the JOSEPHAttacker, a new tab will be added,
showing some very basic information about the token and a list of
available attacks to choose from. If a specific attack is loaded, a short
description of the selected attack will be displayed and, if necessary
as defined by the attack itself, additional form elements will appear
requesting additional information needed to perform the attack.
For the attack and its results, a separate window is opened in order
to concurrently use other tools of the Burp Suite in case the attack
in case the attack takes a relatively long time. This new window is
structured similarly to Burp Suite’s native Intruder tool and shows
several details, such as the response status, length, time, an attack
related payload type, and short information about the payload itself.

5.2 Test Cases
Apart from supporting manual testing, the Burp Suite extension
comprises three (semi-)automatic checks to test for Signature Exclu-
sion, Key Confusion, and the Bleichenbacher MMA vulnerabilities.



Signature Exclusion. Testing an implementation for signature
exclusion is quite straightforward and does not require additional
input from the tester. Only a single original message is required
without any further prerequisites. Based on the original message,
the signature value is removed to fulfill the empty octet sequence
requirement and the alg value is modified to the none algorithm
in four spelling variations – the payload and other header values
remain unchanged. Based on the JWA specification in RFC 7518
[24] and the analyzed PHP JOSE library by Alessandro Nadalin
[40], the following four spelling variations have been chosen: None,
none, NONE, nOnE.

Key Confusion. The Key Confusion attack needs the target’s
public key as input parameter. The most challenging part from an
attacker’s perspective is to use the exact same string representation
of the public key as used by the verifying system. Usually, (RSA)
public keys are stored in Privacy Enhanced Mail (PEM) formatted
files or as a JWK data set. Both formats are supported by the de-
veloped JOSEPH Burp Suite extension. Various string operations
are performed on the given input in order to increase the probabil-
ity of finding the correct string representation used by the server.
Basically, several different variables with/without the PEM header
and footer, and with/without line feeds and spaces are generated.
Additionally, some vectors remove the first 24 bytes, which is the
most simple textual conversion from a PKCS#8 formatted public
key to a PKCS#1 format, specifically used for RSA keys. All vectors
are tested with all three available key sizes of the HMAC algorithm,
to encompass even more variations.

Bleichenbacher MMA. Testing an implementation for the Million
Message Attack (MMA) requires the public key of the receiving
party as additional input by the tester and is performed in two
steps:

(1) Testing for the existence of a Padding Oracle. The first
step is to perform several checks to determine whether an
oracle exists that exposes information about the PKCS#1 v1.5
conformity of a given ciphertext. This is performed by using
various test vectors to generate encrypted messages with
the provided public key, such as using differed sizes of the
symmetric key, removing or adding 0x00 bytes at specific
positions and using wrong first and second bytes.
The responses need to be manually reviewed by the tester
and assigned to a list of responses indicating valid messages,
due to the fact that response and error messages might vary
significantly, depending on the used implementation (and
underlying programming language). This, therefore, renders
a fully automated solution imprecise and inflexible.

(2) Decryption of the ciphertext with the Padding Oracle.
For the actual decryption process using the previously iden-
tified and adjusted Padding Oracle, the original algorithm
from Bleichenbacher is used [5]. In our implementation we
partially reused the code from WS-Attacker [32].

6 EVALUATION
6.1 Library Selection
Overall, nine libraries have been analyzed as part of this research,
which were mainly taken from the overview at https://jwt.io (Table
1). The focus has been set on the PHP and Python platforms. With
our help, maintainers of vulnerable libraries investigated related
JOSE libraries they have developed in Ruby and C. Based on their
investigation further vulnerabilities have been found. We list them
in the table as well.

The Ruby and C libraries have been passively investigated, after
vulnerabilities in other libraries of the same maintainers have been
discovered.

Table 1: List of Evaluated Libraries

Name Platform Link

jose-PHP PHP https://github.com/nov/jose-php
json-jwt PHP https://github.com/emarref/jwt
jose PHP https://github.com/namshi/jose
jwt PHP https://github.com/lcobucci/jwt
php-jwt PHP https://github.com/firebase/php-jwt
jwcrypto Python https://github.com/latchset/jwcrypto
python-jose Python https://github.com/mpdavis/python-jose
pyjwkest Python https://github.com/rohe/pyjwkest
pyjwt Python https://github.com/jpadilla/pyjwt
json-jwt Ruby https://github.com/nov/ json-jwt
jose C https://github.com/ latchset/ jose

All tests of the attacks against implementations of the JOSE spec-
ifications explained have been performed on the library level. Thus,
additional operations on received messages or specific counter-
measures in web applications using those libraries might possibly
prevent practical exploitability or extend the attack surface, but
were not taken into consideration in this research. Apart from
auditing the publicly available source codes, a minimal testing envi-
ronment has been set up as an HTTP wrapper to process incoming
requests, which calls the corresponding functions of the JOSE li-
brary to be tested and generate a JSON-formatted response. The
necessary configurations, function calls, and arguments have been
taken from the library’s documentation or examples. For Python
libraries the microframework Flask8 were used, whereas for PHP
libraries, a combination of the web server nginx and the PHP-FPM9

FastCGI implementation were used.

6.2 Vulnerable Libraries
Overall, this research revealed critical vulnerabilities in six JOSE
libraries (see Table 2). All tested libraries were resistant against our
Signature Exclusion attempts, which is presumably due toMcLean’s
previous research and his effort in informing as many library main-
tainers as possible [33]. In our analysis, we additionally focused on
the evaluation of HMAC timing attacks, which exploit measurable
timing differences in comparing two strings using native functions.
Based on those differences, which form a so-called covert timing
channel, an attacker is able to gradually identify the correct byte
8URL: http://flask.pocoo.org/
9URL: https://php-fpm.org/

https://jwt.io
https://github.com/nov/jose-php
https://github.com/emarref/jwt
https://github.com/namshi/jose
https://github.com/lcobucci/jwt
https://github.com/firebase/php-jwt
https://github.com/latchset/jwcrypto
https://github.com/mpdavis/python-jose
https://github.com/rohe/pyjwkest
https://github.com/jpadilla/pyjwt
https://github.com/nov/json-jwt
https://github.com/latchset/jose
http://flask.pocoo.org/
https://php-fpm.org/


at a specific position of the unknown original signature and thus
determine a valid signature to an arbitrary message. Since timing at-
tacks are difficult to perform over a network, we have not included
an implementation of the HMAC timing attack into the developed
Burp Suite extension.

Table 2: List of Vulnerable Libraries

CVE No. Vulnerability Library Version

CVE-2016-5429 HMAC Timing Attack jose-php (PHP) < 2.2.1
CVE-2016-5430 Bleichenbacher MMA jose-php (PHP) < 2.2.1
CVE-2016-5431 Key Confusion Attack jose-php (PHP) ≤ 2.2.1
CVE-2016-7037 HMAC Timing Attack JWT (PHP) < 1.0.3
CVE-2016-6298 Bleichenbacher MMA jwcrypto (Python) < 0.3.2
CVE-2016-7036 HMAC Timing Attack python-jose (Python) < 1.3.2
– Bleichenbacher MMA json-jwt (Ruby) < 1.6.5
– Bleichenbacher MMA jose (C) < v4

In the following, the vulnerabilities discovered by JOSEPH are
outlined in more detail.

Key Confusion. Almost all analyzed libraries in place were found
to have protection mechanism against Key Confusion attacks. How-
ever, we identified that the jose-php library, implementing one of
the recommended countermeasures of passing an additional param-
eter with a list of allowed algorithms to the verification function
(see Listing 7), sets the expected algorithms parameter to null by
default. This leads to the problem that developers are not forced
to specify expected algorithms and that old vulnerable code is still
working when upgrading to the new version, without any warning
or notification of the existing issue.

private function _verify($public_key_or_secret ,

$expected_alg = null)

Listing 7: Signature of the verify function of jose-php

Bleichenbacher MMA. Four of the analyzed libraries were found
to be vulnerable to the Bleichenbacher Million Message Attack, by
either applying an error-based or a timing-based padding oracle.
The jose-php library structurally outsources every single step of
the decryption process – decryption of the CEK, derivation of the
encryption and MAC keys, the actual decryption of the ciphertext,
and the integrity check with the authentication tag – into its own
functions.10 The success of each step is checked within its function
and immediately throws an Exception on failure, giving precise
information about which part failed. Listing 8 shows the three
relevant parts and their occurrence in the code.

throw new JOSE_Exception_DecryptionFailed('Master key

decryption failed ');

throw new JOSE_Exception_DecryptionFailed('Encryption/Mac

key derivation failed ');

10See: https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/
src/JOSE/JWE.php#L47

throw new JOSE_Exception_DecryptionFailed('Payload

decryption failed ');

Listing 8: Exceptions thrown during the decryption process
in the jose-php library

This behavior can be used by an attacker to successfully build
an error-based Padding Oracle to distinguish between an invalid
PKCS#1 v1.5 padding (“Master key decryption failed”) or a valid
one. Even if an implementing developer does not directly pass the
Exception messages to the end user, immediately throwing an
Exception causes distinguishable timing difference in the process-
ing [37] – offering the ability to create a time-based validity ora-
cle. However, it was not possible to programmatically exploit this
vulnerability to apply the MMA attack by using Bleichenbacher’s
original algorithm. Further investigation revealed that the underly-
ing phpseclib library11 does not strictly validate the PKCS#1 v1.5
format as defined in the specification [29].

Apart from the desired prefix 0x00 02, the phpseclib only checks
whether the second byte is not > 2, which leads to messages begin-
ning with 0x00 00 and 0x00 01 also being treated as valid. Accord-
ing to a describing comment within the source code,12 this deviation
has been added for compatibility reasons with PKCS#1 v2.1. The
original Bleichenbacher algorithm is not able to correctly deal with
false positives, which resulted in an endless loop of searching for
compliant messages in our tests.

Nonetheless, the given vulnerability in the jose-php library can
be practically exploited with a modified version of Bleichenbacher’s
algorithm. In [37], the researchers had to cope with a similar prob-
lem. They were able to amend the original algorithm to work with
a much weaker oracle, which responded with true if a decrypted
message started with 0x?? 02, where 0x?? represents an arbitrary
byte [37]. Such modifications could also be used for the jose-php
library but has been set out of scope for this paper.

The JWCrypto library had the same issue of exposing informa-
tion of specific failing steps during the decryption process. The
most relevant Exceptions are depicted in Listing 9.

raise InvalidJWEKeyLength(keylen , len(cek))

raise InvalidJWEData('Decryption Failed ')

raise InvalidJWEData('Failed to verify MAC')

Listing 9: Exceptions raised during the decryption process
in the JWCrypto library

The Decryption Failed Exception indicated an invalid first or sec-
ond byte of the PKCS#1 v1.5 format and could be successfully used
to build an error-based padding oracle to apply the Bleichenbacher
attack. In all test cases with different key sizes of 512, 1024, and 2048
bits, and all specified encryption algorithms, the Content Encryption
Key could be recovered within less than 100,000 requests to the
server and used to decrypt the hidden message. Figure 6 depicts

11PHP Secure Communications Library, URL: http://phpseclib.sourceforge.net
12See: https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#
L2496

https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWE.php#L47
https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWE.php#L47
http://phpseclib.sourceforge.net
https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2496
https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2496


an exemplary recovering of the CEK and displays the decrypted
hidden message.

Figure 6: Screenshot showing the decrypted CEK and hidden
message of a successful Million Message Attack.

The C library (jose) and the Ruby library (json-jwt) both suf-
fered from leaking information about the correct padding format
due to timing differences in the decryption process of the CEK,
thus being vulnerable to the Bleichenbacher MMA. Both libraries
are maintained by previously informed developers (regarding the
issues in the jose-php and jwcrypto libraries), thus the mitigation
was performed in the same disclosure process. Unfortunately, the
developers did not request CVE identifiers for these libraries.

7 RELATEDWORK
Security Research on JOSE. Tim McLean focused on a security

analysis of JSONWeb tokens and discovered the Signature Exclusion
andKey Confusion vulnerabilities [33]. Many JOSE implementations
were fixed after his disclosure. Apart from the theoretical threat
description, no proof-of-concept or testing tool has been published.

In 2017 Nguyen et al. analyzed the application of various crypto-
graphic attacks on JOSE libraries [42]. For example, they found that
an invalid curve attack is applicable on the go-jose library. Sanso ex-
tended the analysis of practical invalid curve attacks. He found two
additional libraries to be vulnerable: node-jose and jose2go [48].

XML Security. JOSE is closely related to the XML security speci-
fications XML Signature and XML Encryption. These specifications
suffered from several vulnerabilities and attacks in the past [50].
It has been shown how to break XML Encryption with adaptive
chosen-ciphertext attacks [19, 23, 32] or how to break XML Signa-
ture implementations with XML SignatureWrapping and Exclusion
attacks [51, 52].

Further attacks on XML Signatures were researched by James
Forshaw in his whitepaper Exploiting XML Digital Signature Imple-
mentations [13].

Burp Suite Extensions. Even if the standards for XML Signature
and XML Encryption already exist for some years, the only two
publicly available Burp Suite plugins appeared just recently. The
SAML Raider [4] is a Burp Suite extension for testing SAML infras-
tructures with the two core functionalities: manipulating SAML
messages andmanaging X.509 certificates [4]. It comes with a preset
of common XML Signature Wrapping attacks to test against services.
The Extension for Processing and Recognition of Single Sign-On Proto-
cols, short EsPReSSO [15], focuses on Single Sign-On protocols and
is the first plugin supporting the recognition and manipulation of
messages containing JSON Web Tokens. There exists no extension
for the Burp Suite aiding security analyses of JSON Web Signature
and JSON Web Encryption implementations, and offering a preset
of known attacks.

8 CONCLUSIONS AND FUTUREWORK
We showed how known cryptographic attacks can be successfully
adapted on JOSE, bypassing the security of digital signatures or
encrypted payload. We discovered that although JavaScript Object
Signing and Encryption is a set of young specifications, the library
developers repeat the same mistakes leading to security gaps. Ac-
cording to our evaluation, covering libraries written in PHP, Python,
Ruby, and C, six of them were found to be vulnerable.

To close the gap between a specification and an implementa-
tion, we implemented JOSEPH – a Burp Suite extension able to
recognize, visualize, manipulate JSON messages, as well as to semi-
automatically carry out different attacks.

There exist more known attacks against cryptographic systems
and possible pitfalls. Such attacks are adaptive chosen-ciphertext
attacks on CBC mode [50, 54], Bleichenbacher attack on RSA signa-
tures [17], or invalid curve attacks [21]. With respect to the future
work, the analysis of such attacks on JOSE is considered essential.
Furthermore, the usage of JOSE in complex systems like JSON-
based web services and protocols like OpenID Connect should be
in the scope of further researches. Similar to the security analysis
of XML-based services [12] an in-depth evaluation could lead to
the discovering of new attacks.

ACKNOWLEDGMENTS
This work was partially supported by the European Commission
through the FutureTrust project (grant 700542-Future-Trust-H2020-
DS-2015-1).

REFERENCES
[1] [n. d.]. IETF jose Working Group. Javascript Object Signing and Encryption

(jose). ([n. d.]). http://datatracker.ietf.org/wg/jose/
[2] Apache Software Foundation. [n. d.]. JAX-RS JOSE. ([n. d.]). http://cxf.apache.

org/docs/jax-rs-jose.html
[3] Richard Barnes, Jacob Hoffman-Andrews, and James Kasten. 2016. Auto-

matic Certificate Management Environment (ACME). Internet-Draft draft-ietf-
acme-acme-04. Internet Engineering Task Force. https://tools.ietf.org/html/
draft-ietf-acme-acme-04 Work in Progress.

[4] R. Bischofberger and E. Duss. [n. d.]. SAML Raider - SAML2 Burp Extension. ([n.
d.]). https://github.com/SAMLRaider/SAMLRaider

[5] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology (CRYPTO ’98).
Springer-Verlag, London, UK, UK, 12. http://dl.acm.org/citation.cfm?id=646763.
706320

[6] T. Bray. 2014. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard). (March 2014). http://www.ietf.org/rfc/rfc7159.txt

http://datatracker.ietf.org/wg/jose/
http://cxf.apache.org/docs/jax-rs-jose.html
http://cxf.apache.org/docs/jax-rs-jose.html
https://tools.ietf.org/html/draft-ietf-acme-acme-04
https://tools.ietf.org/html/draft-ietf-acme-acme-04
https://github.com/SAMLRaider/SAMLRaider
http://dl.acm.org/citation.cfm?id=646763.706320
http://dl.acm.org/citation.cfm?id=646763.706320
http://www.ietf.org/rfc/rfc7159.txt


[7] Dennis Detering. [n. d.]. JOSEPH – JavaScript Object Signing and Encryption
Pentesting Helper. ([n. d.]). https://github.com/RUB-NDS/JOSEPH

[8] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). (Aug. 2008). http://www.ietf.org/rfc/
rfc5246.txt Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685.

[9] Donald Eastlake, Joseph Reagle, Takeshi Imamura, Blair Dillaway, and Ed Simon.
2002. XML Encryption Syntax and Processing. W3C Recommendation (2002).

[10] Donald Eastlake, Joseph Reagle, Takeshi Imamura, Blair Dillaway, and Ed Simon.
2002. XMLEncryption Syntax and Processing. W3CRecommendation. (December
2002). https://www.w3.org/TR/xmlenc-core/

[11] Donald Eastlake, Joseph Reagle, David Solo, Frederick Hirsch, and Thomas
Roessler. 2008. XML Signature Syntax and Processing (Second Edition). W3C
Recommendation (2008).

[12] Andreas Falkenberg, Meiko Jensen, Prof. Dr-Ing Jörg Schwenk, and Juraj So-
morovsky. [n. d.]. WS-Attacks. ([n. d.]). http://www.ws-attacks.org/

[13] James Forshaw. 2013. Exploiting XML Digital Signature Implementations. In
Hack In The Box - Kuala Lumpur 2013.

[14] S. Frankel and S. Krishnan. 2011. IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap. RFC 6071 (Informational). (Feb. 2011). http://www.
ietf.org/rfc/rfc6071.txt

[15] T. Guenther. [n. d.]. Extension for Processing and Recognition of Single Sign-On
Protocols (EsPReSSO). ([n. d.]). https://github.com/RUB-NDS/BurpSSOExtension

[16] IBM Deutschland GmbH. [n. d.]. IBM DataPower Gateway. ([n. d.]). http:
//www-03.ibm.com/software/products/de/datapower-gateway

[17] Intel Security. [n. d.]. BERserk Vulnerability. ([n. d.]). http://www.intelsecurity.
com/resources/wp-berserk-analysis-part-1.pdf

[18] Internet Security Research Group (ISRG). [n. d.]. Let’s Encrypt. ([n. d.]). https:
//letsencrypt.org/

[19] T. Jager, S. Schinzel, and J Smorovksy. 2012. Bleichenbacher’s Attack Strikes
Again: Breaking PKCS#1 v1.5 in XML Encryption. In Proceedings of the 17th
European Symposium on Research in Computer Security (ESORICS 2012).

[20] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. 2012. Bleichenbacher’s
Attack Strikes Again: Breaking PKCS#1 v1.5 in XML Encryption. In ESORICS
(Lecture Notes in Computer Science), Sara Foresti, Moti Yung, and Fabio Martinelli
(Eds.), Vol. 7459. Springer. http://dblp.uni-trier.de/db/conf/esorics/esorics2012.
html#JagerSS12

[21] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. 2015. Practical Invalid Curve
Attacks on TLS-ECDH. Springer International Publishing, Cham. https://doi.org/
10.1007/978-3-319-24174-6_21

[22] Tibor Jager and Juraj Somorovsky. 2011. How To Break XML Encryption. In The
18th ACM Conference on Computer and Communications Security (CCS).

[23] Tibor Jager and Juraj Somorovsky. 2011. How To Break XML Encryption. In The
18th ACM Conference on Computer and Communications Security (CCS).

[24] M. Jones. 2015. JSON Web Algorithms (JWA). RFC 7518 (Proposed Standard).
(May 2015). http://www.ietf.org/rfc/rfc7518.txt

[25] M. Jones. 2015. JSONWeb Key (JWK). RFC 7517 (Proposed Standard). (May 2015).
http://www.ietf.org/rfc/rfc7517.txt

[26] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Signature (JWS). RFC
7515 (Proposed Standard). (May 2015). http://www.ietf.org/rfc/rfc7515.txt

[27] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Token (JWT). RFC 7519
(Proposed Standard). (May 2015). http://www.ietf.org/rfc/rfc7519.txt

[28] M. Jones and J. Hildebrand. 2015. JSON Web Encryption (JWE). RFC 7516
(Proposed Standard). (May 2015). http://www.ietf.org/rfc/rfc7516.txt

[29] J. Jonsson and B. Kaliski. 2003. Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1. RFC 3447 (Informational). (Feb.
2003). http://www.ietf.org/rfc/rfc3447.txt

[30] S. Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard). (Oct. 2006). http://www.ietf.org/rfc/rfc4648.txt

[31] B. Kaliski. 1998. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational).
(March 1998). http://www.ietf.org/rfc/rfc2313.txt Obsoleted by RFC 2437.

[32] Dennis Kupser, Christian Mainka, Jörg Schwenk, and Juraj Somorovsky. 2015.
How to Break XML Encryption – Automatically. In 9th USENIX Workshop on
Offensive Technologies (WOOT 15). USENIX Association, Washington, D.C. https://
www.usenix.org/conference/woot15/workshop-program/presentation/kupser

[33] Tim McLean. 2015. Blog post: Critical vulnerabilities in JSON Web To-
ken libraries. (March 2015). https://www.chosenplaintext.ca/2015/03/31/
jwt-algorithm-confusion.html

[34] Tim McLean. 2015. Direct Email: Critical vulnerabilities in JSON Web
Token libraries. (March 2015). https://bitbucket.org/b_c/jose4j/wiki/
04-01-15-Transparency

[35] Tim McLean. 2015. JOSE mailing list: Critical vulnerabilities in JSON Web Token
libraries. (March 2015). http://www.ietf.org/mail-archive/web/jose/current/
msg05036.html

[36] Tim McLean. 2015. Twitter: Critical vulnerabilities in JSON Web Token libraries.
(March 2015). https://twitter.com/McLean0/status/578281292237815808

[37] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian
Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS Implementations: New
Bleichenbacher Side Channels and Attacks. In 23rd USENIX Security Symposium

(USENIX Security 14). USENIX Association, San Diego, CA. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/meyer

[38] MITRE. [n. d.]. CAPEC-463: Padding Oracle Crypto Attack. ([n. d.]). http:
//capec.mitre.org/data/definitions/463.html

[39] Timothy D. Morgan and Omar Al Ibrahim. 2014. XML Schema, DTD, and Entity
Attacks: A Compendium of Known Techniques. (May 2014). URL: http://www.
vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf.

[40] Alessandro Nadalin. [n. d.]. JSON Object Signing and Encryption library for PHP.
([n. d.]). https://github.com/namshi/jose

[41] National Institute of Standards and Technology. [n. d.]. FIPS General Infor-
mation. ([n. d.]). https://www.nist.gov/information-technology-laboratory/
fips-general-information

[42] Quan Nguyen. 2017. Practical Cryptanalysis of Json Web Token
and Galois Counter Mode’s Implementations. In Real World Crypto
Conference 2017. https://rwc.iacr.org/2017/Slides/nguyen.quan.pdf
http://www.realworldcrypto.com/rwc2017.

[43] OpenID Foundation. [n. d.]. What is OpenID Connect? ([n. d.]). http://openid.
net/connect/

[44] PortSwigger Ltd. [n. d.]. Burp Suite. ([n. d.]). https://portswigger.net/burp/
[45] PortSwigger Ltd. 2017. Burp Scanner – Issue Definitions. (2017). https:

//portswigger.net/KnowledgeBase/Issues/
[46] PortSwigger Ltd. 2017. Burp Suite – BApp Store. (2017). https://portswigger.net/

bappstore/
[47] PortSwigger Ltd. 2017. Burp Suite – Extender API. (2017). https://portswigger.

net/burp/extender/api/index.html
[48] Antonio Sanso. 2017. Critical vulnerability in JSON Web Encryption

(JWE) – RFC 7516. (2017). http://blog.intothesymmetry.com/2017/03/
critical-vulnerability-in-json-web.html.

[49] Security Services Technical Committee. [n. d.]. Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0. ([n. d.]). https:
//docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[50] Juraj Somorovsky. 2013. On the Insecurity of XML Security. Ph.D. Dissertation.
Ruhr-Universität Bochum.

[51] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka,
and Luigi Lo Iacono. 2011. All Your Clouds Are Belong to Us – Security Analysis of
Cloud Management Interfaces. In The ACM Cloud Computing Security Workshop
(CCSW).

[52] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen. 2012. On Breaking SAML: Be Whoever You Want to Be. In 21st USENIX
Security Symposium. Bellevue, WA.

[53] The Open Web Application Security Project. [n. d.]. Fuzzing. ([n. d.]). https:
//www.owasp.org/index.php/Fuzzing

[54] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications to
SSL, IPSEC, WTLS .... In Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques: Advances in Cryptology (EURO-
CRYPT ’02). Springer-Verlag, London, UK, UK, 13. http://dl.acm.org/citation.cfm?
id=647087.715705

[55] World Wide Web Consortium (W3C). [n. d.]. Extensible Markup Language (XML)
1.0 (Fifth Edition). ([n. d.]). https://www.w3.org/TR/REC-xml/

https://github.com/RUB-NDS/JOSEPH
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://www.w3.org/TR/xmlenc-core/
http://www.ws-attacks.org/
http://www.ietf.org/rfc/rfc6071.txt
http://www.ietf.org/rfc/rfc6071.txt
https://github.com/RUB-NDS/BurpSSOExtension
http://www-03.ibm.com/software/products/de/datapower-gateway
http://www-03.ibm.com/software/products/de/datapower-gateway
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf
https://letsencrypt.org/
https://letsencrypt.org/
http://dblp.uni-trier.de/db/conf/esorics/esorics2012.html#JagerSS12
http://dblp.uni-trier.de/db/conf/esorics/esorics2012.html#JagerSS12
https://doi.org/10.1007/978-3-319-24174-6_21
https://doi.org/10.1007/978-3-319-24174-6_21
http://www.ietf.org/rfc/rfc7518.txt
http://www.ietf.org/rfc/rfc7517.txt
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7519.txt
http://www.ietf.org/rfc/rfc7516.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc2313.txt
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://bitbucket.org/b_c/jose4j/wiki/04-01-15-Transparency
https://bitbucket.org/b_c/jose4j/wiki/04-01-15-Transparency
http://www.ietf.org/mail-archive/web/jose/current/msg05036.html
http://www.ietf.org/mail-archive/web/jose/current/msg05036.html
https://twitter.com/McLean0/status/578281292237815808
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
http://capec.mitre.org/data/definitions/463.html
http://capec.mitre.org/data/definitions/463.html
http://www.vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
http://www.vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
https://github.com/namshi/jose
https://www.nist.gov/information-technology-laboratory/fips-general-information
https://www.nist.gov/information-technology-laboratory/fips-general-information
https://rwc.iacr.org/2017/Slides/nguyen.quan.pdf
http://openid.net/connect/
http://openid.net/connect/
https://portswigger.net/burp/
https://portswigger.net/KnowledgeBase/Issues/
https://portswigger.net/KnowledgeBase/Issues/
https://portswigger.net/bappstore/
https://portswigger.net/bappstore/
https://portswigger.net/burp/extender/api/index.html
https://portswigger.net/burp/extender/api/index.html
http://blog.intothesymmetry.com/2017/03/critical-vulnerability-in-json-web.html
http://blog.intothesymmetry.com/2017/03/critical-vulnerability-in-json-web.html
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.owasp.org/index.php/Fuzzing
https://www.owasp.org/index.php/Fuzzing
http://dl.acm.org/citation.cfm?id=647087.715705
http://dl.acm.org/citation.cfm?id=647087.715705
https://www.w3.org/TR/REC-xml/

	Abstract
	1 Introduction
	2 JavaScript Object Signing and Encryption
	2.1 JSON Web Signature
	2.2 JSON Web Encryption

	3 Burp Suite
	4 Selected Attacks on JOSE
	4.1 Signature Exclusion
	4.2 Key Confusion
	4.3 Bleichenbacher Million Message Attack

	5 JOSEPH
	5.1 Design, Structure & Extensibility
	5.2 Test Cases

	6 Evaluation
	6.1 Library Selection
	6.2 Vulnerable Libraries

	7 Related Work
	8 Conclusions and Future Work
	References

