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ABSTRACT
XML Encryption was standardized by W3C in 2002, and is
implemented in XML frameworks of major commercial and
open-source organizations like Apache, redhat, IBM, and
Microsoft. It is employed in a large number of major web-
based applications, ranging from business communications,
e-commerce, and financial services over healthcare applica-
tions to governmental and military infrastructures.
In this work we describe a practical attack on XML En-

cryption, which allows to decrypt a ciphertext by sending re-
lated ciphertexts to a Web Service and evaluating the server
response. We show that an adversary can decrypt a cipher-
text by performing only 14 requests per plaintext byte on
average. This poses a serious and truly practical security
threat on all currently used implementations of XML En-
cryption.
In a sense the attack can be seen as a generalization of

padding oracle attacks (Vaudenay, Eurocrypt 2002). It ex-
ploits a subtle correlation between the block cipher mode
of operation, the character encoding of encrypted text, and
the response behaviour of a Web Service if an XML message
cannot be parsed correctly.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code breaking

General Terms
Security

1. INTRODUCTION
The W3C XML Encryption specification [6] today marks

the de-facto standard for data encryption in complex dis-
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tributed applications. The use of XML as core data syn-
tax, e.g. for major business, e-commerce, financial, health-
care, governmental and military applications, has resulted in
broad adoption of XML Encryption to protect confidential
data—especially, but not exclusively, in the context of Web
Services. On the technical level, the XML Encryption speci-
fication precisely describes the process and syntax to be used
when applying a cryptographic algorithm for data encryp-
tion to arbitrary XML-structured data. Moreover, it also
describes how to process this syntax in order to decrypt the
encrypted contents at the data recipient’s side. XML En-
cryption does not describe a new cryptographic algorithm
itself, but merely allows a set of standard block ciphers,
namely AES and Triple-DES (3DES), to be used at will. In
order to be able to encrypt messages which are longer than
the input size of the block cipher, the cipher-block chaining
(CBC) mode of operation is used.

In this paper, we present an attack technique that en-
ables an adversary to decrypt arbitrary data that have been
encrypted according to the XML Encryption specification.
Based on a cryptographic weakness of the CBC mode, we
are able to perform a chosen-ciphertext attack which re-
covers the entire plaintext from a given ciphertext. The
only prerequisite for this attack consists in availability of
an “oracle” telling us whether a given ciphertext contains a
“correctly formed”plaintext. “Correctly formed”means here
that the plaintext contains a valid encoding (e.g. in UTF-
8 or ASCII) of a message. In practice, this oracle may be
provided for instance by a Web Service that returns suitable
error messages, or that provides some other side-channel al-
lowing us to distinguish correct from invalid ciphertexts, like
a different timing of data processing, for instance.

To prove the practical relevance of our attack, we apply it
examplarily to a realistic Web Service based on the Apache
Axis2 [18] XML framework. Axis2 is one of the most popular
frameworks to support the building of Web Services client
and server applications. We show that a moderately opti-
mized implementation of the attack is able to decrypt 160
bytes of encrypted data within 10 seconds by issuing 2,137
queries to the Web Service. The complexity of the attack
grows only linearly with the ciphertext size, thus recovering
a larger plaintext of 1,600 bytes takes about 100 seconds and
23,000 queries.

Despite the fact that the details of the attack, and thus
our results in context of the Axis2 framework, are of course
rather application-specific, we want to stress that the attack
itself is generic, and can be adapted to other scenarios like
alternate XML frameworks and possibly even other systems



beyond XML Encryption as well. For instance, we have
verified that the attack works against redhat JBoss [9] as
well without any modifications.
In general chosen-ciphertext attacks can be avoided by

ensuring the integrity of the ciphertext. One would there-
fore expect our attack can easily be thwarted by using XML
Signature [7] to ensure integrity (note that XML Signature
specifies not only classical public-key signatures, but also
“secret-key signatures”, i.e., message authentication codes).
However, for several reasons this is not true, since we can
show how to perform our attack even if either public-key
or secret-key XML Signatures over the ciphertext are used.
We achieve this either by applying classical Signature Wrap-
ping [10] techniques, or by using a new attack technique
that we call Encryption Wrapping. Thus, fixing current
implementations or developing secure new implementations
without changing the XML Encryption standard seems non-
trivial. We illustrate this in more detail in the countermea-
sures section below.

Responsible disclosure. The attack described in this pa-
per was announced to the W3C XML Encryption Working
Group and to several providers and users of implementations
of XML Encryption in February 2011. This includes The
Apache Software Foundation (Apache Axis2), redhat Linux
(JBoss), IBM, Microsoft, and a governmental CERT. All
have acknowledged the validity of our attack. The CERT
has disclosed our attack to governmental CERTs of other
countries. Furthermore, redhat has immediately forwarded
a short announcement to the vendor-sec mailing list.
We are providing advice to developers that are working on

fixes. As already mentioned, this is difficult without chang-
ing the standard itself (see Section 6 for details).

Related Work and Our Contribution. It is well-known
that the CBC encryption mode is malleable unless addi-
tional methods for ensuring integrity are applied. This was
exploited by Vaudenay [19], who showed that it is possible
to decrypt a ciphertext which is encrypted in CBC mode
by issuing a small number of queries to a so-called padding
oracle. Subsequent work refines the idea of Vaudenay [19],
for instance to other padding schemes and modes of opera-
tions [1, 14], random or secret initialization vectors [20], at-
tacks on real-world systems like IPSec [3, 4] and ASP.NET,
JSF CAPTCHA, the Ruby on Rails framework, and an
OWASP security system [15, 5]. Duong and Rizzo [15, 5]
also make the observation that a padding oracle does not
only allow to decrypt ciphertexts, but also to obtain valid
encryptions of arbitrary plaintexts. It is even possible to
describe padding schemes which are secure against padding
oracle attacks [1, 13], a corresponding formal security model
was given by Paterson and Watson [13].
By their nature, padding oracle attacks work only for cer-

tain padding schemes. In particular, the above attacks are
not applicable to XML Encryption, since the standard spec-
ifies a different padding scheme.
In contrast, we use the encoding of data as a side-channel

that allows to attack encryption schemes using a weak mode
of operation, which allows to exploit the in most cases in-
evitable fact that an adversary is able to observe whether a
decrypted plaintext is processed by an application after de-
cryption, or discarded since the encoding could not be rec-
ognized. Note that this works independent of the padding
scheme, and thus potentially also in scenarios where padding

oracle attacks are not applicable. Mitchell [11] has already
outlined such a generalization of padding oracle attacks, but
without giving any specific example.

Our attack on XML Encryption is highly efficient, as it
needs only 14 queries per byte on average to break XML
Encryptions. For comparison, the related attack of Rizzo
and Duong [15] issues 128 oracle queries per byte on average
in order to break CAPTCHA.

2. PRELIMINARIES
Throughout the paper we write {0, 1}ℓ to denote the set

of all bit strings of length ℓ. For a, b ∈ {0, 1}ℓ, we write |a| to
denote the length of a (i.e., |a| = ℓ), a⊕ b to denote the bit-
wise XOR of a and b, and a||b to denote concatenation of a
and b. We write {0, 1}∗ shorthand for {0, 1}∗ =

⋃
∞

i=0{0, 1}
i.

2.1 Block Ciphers
The XML Encryption standard specifies AES and Triple-

DES (3DES) as block ciphers. Since our attack does not ex-
ploit specific properties of these algorithms, but works with
any cipher in a similar way, we will consider an abstract
block cipher in the following.

To this end, we define a block cipher as a pair of algorithms
(Enc,Dec). The encryption algorithm c = Enc(k,m) takes as
input a key k ∈ {0, 1}ℓ and an ν-byte plaintext m ∈ {0, 1}n,
where n = 8 · ν,1 and returns a ciphertext c ∈ {0, 1}n. The
decryption algorithm m = Dec(k, c) takes a key k and a
ciphertext c, and returns m ∈ {0, 1}n. For instance, if AES
is used then we have n = 128 and thus ν = 16.

2.2 Padding Scheme
Suppose we want to encrypt an XML message m ∈ {0, 1}∗

of arbitrary bit-length |m|. Since XML data is represented
by UTF-8 characters, we may always assume that |m| is an
integer multiple of 8. However, |m| does not need necessarily
be an integer multiple of the block size n of the block. Thus
a padding algorithm π with inversion algorithm π−1 must
be applied to the message, to obtain a padded message m′ =
π(m) whose bit-length |m′| is an integer multiple of n.

The XML Encryption standard specifies the usage of the
following padding scheme π:

1. Calculate the smallest non-zero number plen of bytes
that must be suffixed to the plain text to bring it up
to a multiple of the block size n.

2. Append plen− 1 arbitrary pad bytes to m.

3. Set the last byte equal to plen.

For instance, the example given in [6] considers a three-byte
message m = 0x616263 and a block cipher with n = 64, so
that ν = 8. In this case, we have

π(m) = m′ = 0x616263????????05,

where ?? is an arbitrary byte value.
To remove the padding, one simply reads the last byte of

m′ and removes the required number of bytes to obtain m.

1Throughout the paper we assume that the block size n is
always an integer multiple of 8.



Figure 1: Illustration of the CBC mode of operation

with the padding scheme from Section 2.2.

2.3 Cipher-Block Chaining
Cipher-block chaining (CBC) is the most popular block-

cipher mode of operation in practice, and the only mode
specified in the XML Encryption standard. It processes a
message m′, whose length is an integer multiple dn of the
block size of (Enc,Dec), as follows.

• An initialization vector iv ∈ {0, 1}n is chosen at ran-
dom. The first ciphertext block is computed as

x := m′

1 ⊕ iv, C(1) := Enc(k, x). (1)

• The subsequent ciphertext blocks C(2), . . . , C(d) are
computed as

x := m′

i ⊕ C(i−1), C(i) := Enc(k, x) (2)

for i = 2, . . . , d.

• The resulting ciphertext is C = (iv, C(1), . . . , C(d)).

See Figure 1 for an illustration of this scheme. The decryp-
tion procedure reverses this process in the obvious way.
In the sequel we will write C = Enccbc(k, π(m)) to denote

encryption and π(m) = Deccbc(k, C) to denote decryption in
CBC mode.

3. BASIC IDEA OF THE ATTACK
In this section, we describe the basic idea behind our at-

tack, and give a toy example which illustrates how to apply
this idea in a simplified scenario. In Section 4 we will show
how to adapt this idea to the “real world”.

3.1 CBC-Mode is Malleable
One ingredient to our attack described below is that ci-

phertexts encrypted in CBC mode can be modified by an
adversary such that the resulting ciphertext is related to
the original ciphertext in a certain way. This works for any
block cipher.
Suppose a ciphertext C = (IV, C(1), . . . , C(d)) encrypt-

ing a message m = (m(1), . . . ,m(d)) in CBC mode is given.
Then a related ciphertext can be constructed as follows. Let
IV ′ := IV ⊕msk for some msk ∈ {0, 1}n. Then the cipher-
text

(IV ′, C(1))

is a valid encryption of the message m(1)⊕msk. This can be
seen by inspecting Equations (1). Similarly, Equations (2)
show that the ciphertext

(C(i−1) ⊕msk,C(i))

is a valid encryption of the message m(i) ⊕ msk for all
i ∈ {2, . . . , d}. Here we use that the decryption algorithm
interprets Ci−1 ⊕ msk as an initialization vector, if the ci-
phertext starts with this value.

In our attack described below, we choose different values
formsk and send the resulting ciphertext to the XML server.
The response (i.e., the type of error message or application
response) of the server allows us to learn the plaintext con-
tained in a given ciphertext.

3.2 A Toy Example
In this section we describe a simple attack on ciphertexts

encrypted in CBC mode, which allows to recover the plain-
text message, if a certain oracle (to be described below) is
given. The actual attack on XML Encryption from Section 4
is based on the same idea, but in addition handles some
technical obstacles that arise when the theoretical concept
is adopted to the “real world”.

In the following let us assume that a plaintext consists
only of 8-bit characters (e.g. ASCII), and that no padding
scheme is used (i.e., the length of the encrypted data is al-
ways an integer multiple of the block-length of the cipher).
Let us partition the set of all characters into two sets A
and B. We say that A contains “Type-A” characters, and
B contains “Type-B” characters. In this toy example we as-
sume that A = {w} contains only a single character w. For
instance, w = 0x00 may be the NULL character.

Definition 1. We say that a ciphertext C is well-formed
w.r.t. key k, if the plaintext m = Deccbc(k, C) contains only
Type-B characters.

Let us assume that we are given a (not necessarily well-
formed) ciphertext

C = (IV, C(1)) = Enccbc(k,m)

consisting of an initialization vector IV and a single en-
crypted block C(1), which encrypts a message m. Further-
more, suppose that we may query an oracle O. The oracle
takes as input CBC-encrypted ciphertexts C = (IV, C(1)).
It computes the decryption Deccbc(k, C) and replies as fol-
lows.

• O(C) = 1, if the plaintext m = Deccbc(k, C) contains
only Type-B characters.

• O(C) = 0, otherwise.

We will show how to use this oracle to recover the message
m contained in C = (IV, C(1)) byte-by-byte. To this end,
we proceed in three steps.

1. Use the oracle to compute an initialization vector IV ′

such that C′ = (IV ′, C(1)) is well-formed.

2. Use the oracle to recover the CBC decryption interme-
diate value x = Dec(k, C(1)).

3. Recover the message m by computing m = IV ⊕ x.



It is easy to compute an initialization vector IV ′ such that
the ciphertext C′ = (IV ′, C(1)) is well-formed. To this end,

we can first query the oracle whether O((IV, C(1))) = 1. In
this case we can set IV ′ := IV . Otherwise we set IV ′ to
a random bit string. The probability Π that this yields a
well-formed ciphertext depends on the number ν of bytes
per block. For the current definition of A, the probability is
equal to

Π(ν) = (1− 1/256)ν .

Thus, when using AES we have Π(16) = (1 − 1/256)16 ≈
0.94, while using 3DES we have Π(8) ≈ 0.97. Thus, we can
expect that we find a suitable IV ′ after a few trials. We
query the oracle to test whether we are successful.
Now we have a well-formed ciphertext (IV ′, C(1)). Next

we show how to recover an arbitrary byte xj of the CBC de-
cryption intermediate value x = Dec(k, C(1)). To this end,
let us write IV ′ = (IV ′

1 , . . . , IV
′

ν) and IV ′′ = (IV ′′

1 , . . . , IV ′′

ν )
to denote the individual bytes of IV ′ and IV ′′. Next we
modify the initialization vector IV ′ by XOR-ing a byte-mask
msk to the j-th byte of IV ′, until a mask msk is found such
that

Deccbc(k, (IV
′′, C(1))) = IV ′′ ⊕ Dec(k, C(1)) = IV ′′ ⊕ x

contains a character from A = {w}. Since we have only
modified the j-th byte of IV ′, we can conclude that

w = IV ′′

j ⊕ xj .

Thus we can recover xj by computing xj = w ⊕ IV ′′

j . Since
this procedure works for all j, we can thus determine x byte-
wise.

Algorithm 1 Recovering xj .

Input: A single-block ciphertext C′ = (IV ′, c(1)) and an
index j ∈ {1, . . . , ν}.

Output: The j-th byte xj of x = Dec(k, C(1)).
1: msk := 0x00

2: repeat

3: msk := msk + 1
4: IV ′′ := IV ′ ⊕ 08(j−1)||msk||0n−8j

5: until O((IV ′′, C(1))) = 1
6: return xj := w ⊕ IV ′′

j

Finally, if we are given x = Dec(k, C(1)), then we can
recover the message m contained in the original ciphertext
(IV, C(1)) by computing m = IV ⊕ x. The process of recov-
ering x1 is illustrated in Figure 2.

4. ATTACKING XML ENCRYPTION
In this section we show how to apply the attack described

above on a real world Web Service framework. We have cho-
sen Apache Axis2 [18], since it is one of the major frame-
works. We start with some basics on how encryption in XML
documents works, and how Axis2 handles incoming XML-
based messages. These messages are formatted according to
the SOAP standard [8], the details of this format are not rel-
evant here and thus omitted. Then we describe how we can
use such an Axis2-based Web Service endpoint as an oracle
OAxis for our attack. Finally, we describe algorithms that ex-
ecute the attack using this oracle by first preparing a given
multi-block ciphertext (by e.g. adjusting the padding) and

Figure 2: Using the malleability of CBC and the

oracle O to recover x1.

<EncryptedData
Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod
Algorithm=’http://www.w3.org...#aes256-cbc’>

</EncryptionMethod>
<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<KeyName>John Smith</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>A23B45C56...</CipherValue>
</CipherData>

</EncryptedData>

Figure 3: Example of an XML Encryption metadata

block

then recovering the plaintext byte-wise from such a prepared
ciphertext.

4.1 XML and XML Encryption
XML. The eXtensible Markup Language [2], or XML for
short, is a syntax for serializing tree-shaped data structures.
An essential characteristic of the XML syntax is that the
use of the ’<’ and ’>’ characters is allowed only for the
declaration of XML element nodes. Hence, if a text node
happens to contain any of these characters prior to XML se-
rialization, it must be escaped to a different set of characters
(here: &lt; and &gt;). In the same way, the ampersand (&)
is escaped to &amp;. These properties of XML are relevant
to the attack description.

XML Encryption. Along with specifying XML, the W3C
fostered the standardization of means to apply cryptographic
primitives like digital signatures and encryption to arbitrary
XML data. The resulting specifications were the W3C XML
Signature recommendation [7] and the W3C XML Encryp-
tion recommendation [6].

We focus on the XML Encryption specification, of which
a syntax example is given in Figure 3. As can be seen,
the XML Encryption specification describes the encryption
metadata, such as encryption key identifiers, algorithms, en-
cryption schemes, etc. The most important part, however, is
the <CipherValue> element, which contains the ciphertext
of the original data.

When receiving an encrypted message, it is processed as
follows. At first, it is necessary to search the whole XML
document for <EncryptedData> elements. For each of these,
the metadata elements containing key information must be
parsed, processed, and used to gain the proper cryptographic



key required for decryption. The mechanism for this task is
out of scope for this paper, it can be assumed that the pro-
cessing application has means to determine and gather the
correct key based on the information from the <KeyInfo> el-
ement. Next, the content of the <CipherValue> is extracted
and decoded in order to gather the ciphertext. Then, the
decryption itself can be performed, using the algorithm spec-
ified in <EncryptionMethod>. Finally—and this is a crucial
step for the attack described below—the decrypted contents
are parsed and put back to the XML document tree. If
an error occurs during the decryption or subsequent pars-
ing process, this error is propagated to the XML processor,
which typically raises an exception for the application to
handle.
Since XML Encryption can be applied to arbitrary sub-

trees of an XML document tree, there are different types
of encryption modes depending on the nature of the en-
crypted contents. Encrypted Element implies that a single
XML element including all of its descendant nodes has been
encrypted. Encrypted Content states that the ciphertext
may contain arbitrary node types, e.g. multiple subsequent
XML elements, comments, processing instructions etc. En-
crypted Text Content is a special case of encrypted content,
and implies that the ciphertext is completely made of text
contents.
Though the Type attribute of the <EncryptedData> ele-

ment gives a hint on which of these three cases applies, the
common XML decryption frameworks in general do not treat
them differently. Decryption, parsing, and processing works
identical for all these cases.

4.2 Character Encondings
The XML Encryption standard prescribes that charac-

ters and symbols are encoded according to the UTF-8 code,
which specifies a bit-representation of characters from var-
ious alphabets (latin, greek, cyrillic, hebrew, arabic, and
countless more) plus many special symbols (e.g. from math-
ematics or music). The most important subset of UTF-8
characters consists of latin characters, arabic numerals, and
some special symbols like line feed and carriage return.
It is important to know that for these characters UTF-8 is
identical to ASCII.
The ASCII code represents characters as single bytes, and

allows to encode 27 = 128 different characters, as depicted in
Figure 4. Note that the encoding uses only 7 out of 8 bits,
the most-significant bit is always equal to 0 for all ASCII
characters.
Figure 4 lists also a classification of ASCII characters into

“Type-A” and “Type-B” characters, which is not relevant
yet, but will be useful to explain our attack.

4.3 The Axis2 Web Services Framework
In recent years many Web Services frameworks emerged

[17, 16, 9]. One of the most popular open source Web Ser-
vices Framework is Apache Axis2 [18]. The Rampart module
of Axis2 contains an implementation of the WS-Security [12]
standard, which allows to apply XML Encryption and XML
Signature in SOAP messages.
To use a module in the Axis2 framework, the module must

be engaged to the Axis2’s message flow. A flow is a collection
of modules, where each module takes the incoming SOAP
message context, processes it, and passes it to the next mod-
ule. When the SOAP message comes to the end of the flow,

it is forwarded to a Message Receiver. The Message Re-
ceiver invokes the function implemented in the Service class
and passes the result to the output flow.

The Axis2 flow consists typically of three modules, namely
Transport, Security, and Dispatch. The Security module
processes the security elements. In particular, encrypted
elements are first decrypted and then parsed by an XML
parser in order to update the SOAP message context. The
decrypted and validated content is then passed on to the
Dispatch module. Each module in the flow and the Message
Receiver can stop the SOAP message processing if an error
occurs. In this case the processing is terminated and an
appropriate SOAP fault is returned.

We distinguish between two types of server responses. We
say that a security fault is returned, if the server replies
with a WSDoAllReceiver: security processing failed

message. If an application-specific error or no error mes-
sage is returned, then we say that the server replies with an
application response.

4.4 Axis2 Security Faults
To construct our Axis2-based oracle OAxis, we evaluate the

SOAP faults returned by the security handler of an Axis2
server. This handler returns a security fault fault when-
ever a problem during the processing of security elements in
a message occurs. This fault can have several reasons, which
can be divided into two categories:

Decryption error. This results from incorrect padding.

Recall that the last byte of a padded plaintext must
include a valid padding number in the range from 0x01

(indicating only the last byte is padded) to 0x10 (in-
dicating the whole last block is a padding block).

Parsing error. This error may have two reasons.

Either the plaintext contains an “invalid” character.
Invalid charactes are all ASCII characters from 0x00

to 0x1F, except for 0x09 (horizontal tab), 0x0A (line
feed), and 0x0D (carriage return).

The other reason is that the syntax of the decrypted
XML part is not valid. The latter means that the
special escape character 0x26 (&) is not followed by a
valid entity reference, or the bracket 0x3C (<) is not
properly closed.

Since in both cases the same error message is returned, we
cannot distinguish between them.

4.5 An Axis-based Oracle
We classify the set of ASCII characters in two categories,

which we call “Type-A” and “Type-B” characters. This clas-
sification is depicted in Figure 4. We denote with A the set
of all Type-A characters, and with B the set of all Type-
B characters. Observe that A contains primarily “invalid”
characters, plus the reserved XML characters “&” and “<”.

Based on this classification, we can construct an oracle
OAxis, which is similar to the oracle O from Section 3.2, as
follows. OAxis takes as input a CBC-encrypted ciphertext
C = (IV, C(1)), which consists of an initialization vector IV

and a single ciphertext block C(1) ∈ {0, 1}n. It embeds the
ciphertext C into a SOAP message, sends this document to
the Axis2 server, and replies as follows.



Dec. Hex Char. Type Dec. Hex Char. Type Dec. Hex Char. Type Dec. Hex Char. Type

Block 0 Block 2 Block 4 Block 6
0 00 NUL A 32 20 SPC B 64 40 @ B 96 60 ‘ B
1 01 SOH A 33 21 ! B 65 41 A B 97 61 a B
2 02 STX A 34 22 " B 66 42 B B 98 62 b B
3 03 ETX A 35 23 # B 67 43 C B 99 63 c B
4 04 EOT A 36 24 $ B 68 44 D B 100 64 d B
5 05 ENQ A 37 25 % B 69 45 E B 101 65 e B
6 06 ACK A 38 26 & A 70 46 F B 102 66 f B
7 07 BEL A 39 27 ’ B 71 47 G B 103 67 g B
8 08 BS A 40 28 ( B 72 48 H B 104 68 h B
9 09 HT B 41 29 ) B 73 49 I B 105 69 i B

10 0A LF B 42 2A * B 74 4A J B 106 6A j B
11 0B VT A 43 2B + B 75 4B K B 107 6B k B
12 0C FF A 44 2C , B 76 4C L B 108 6C l B
13 0D CR B 45 2D - B 77 4D M B 109 6D m B
14 0E SO A 46 2E . B 78 4E N B 110 6E n B
15 0F SI A 47 2F / B 79 4F O B 111 6F o B

Block 1 Block 3 Block 5 Block 7
16 10 DLE A 48 30 0 B 80 50 P B 112 70 p B
17 11 DC1 A 49 31 1 B 81 51 Q B 113 71 q B
18 12 DC2 A 50 32 2 B 82 52 R B 114 72 r B
19 13 DC3 A 51 33 3 B 83 53 S B 115 73 s B
20 14 DC4 A 52 34 4 B 84 54 T B 116 74 t B
21 15 NAK A 53 35 5 B 85 55 U B 117 75 u B
22 16 SYN A 54 36 6 B 86 56 V B 118 76 v B
23 17 ETB A 55 37 7 B 87 57 W B 119 77 w B
24 18 CAN A 56 38 8 B 88 58 X B 120 78 x B
25 19 EM A 57 39 9 B 89 59 Y B 121 79 y B
26 1A SUB A 58 3A : B 90 5A Z B 122 7A z B
27 1B ESC A 59 3B ; B 91 5B [ B 123 7B { B
28 1C FS A 60 3C < A 92 5C \ B 124 7C | B
29 1D GS A 61 3D = B 93 5D ] B 125 7D } B
30 1E RS A 62 3E > B 94 5E ^ B 126 7E ~ B
31 1F US A 63 3F ? B 95 5F _ B 127 7F DEL B

Figure 4: ASCII Character Encoding Table and Classification of Characters.

• OAxis(C) = 1, if the Axis2 server returns a security

fault.

• OAxis(C) = 0, otherwise.

As described in Section 4.3, the Axis2 server will return no
security fault, if

• the decryption π(m) = IV ⊕Dec(k, C(1)) yields a mes-
sage with valid padding, and

• the plaintext m = π−1(Deccbc(k, C)) has a valid XML
structure. That is,

– if m contains an XML tag <a> for some string
a, then it must also contain the corresponding
closing tag </a>,

– if m contains the & ampersand character, then
it must be a valid entity reference, like &gt; for
instance,

– m does not contain any characters from 0x00 to
0x1F, except for 0x09 or 0x0A or 0x0D.

Otherwise a security fault is returned. This allows us to
use OAxis in a way similar to the oracle O from Section 3.2.

4.6 UsingOAxis to recover plaintexts
In this section we describe an algorithm that uses the OAxis

oracle to decrypt a given ciphertext C = (IV, C(1), . . . , C(d)).
Note that C may consist of multiple blocks (i.e., d ≥ 1). Due
to the rather complex structure of the set A and some opti-
mizations to reduce the number of oracle queries, this pro-
cedure is rather complex. For better readability, we present

only simplified algorithms, which illustrate the basic attack
idea better. However, we have implemented the optimized
algorithms. We will furthermore make the (in practice rea-
sonable) assumption that the plaintexts contains only ASCII
characters, but no characters from the extended character
set of UTF-8. The attack can however be extended to arbi-
trary UTF-8 characters.

First we need a new definition of well-formedness.

Definition 2. We say that a single-block ciphertext C =
(IV, C(1)) is well-formed w.r.t. key k, if

m = (m1, . . . ,mν) = Deccbc(k, C)

has a single byte padding (i.e. mν = 0x01) and consists only
of Type-B characters (i.e. mj ∈ B for all j ∈ {1, . . . , ν−1}).

The algorithm is a composition of two sub-procedures,
which we call FindIV and FindXbyte.

• The FindIV procedure prepares the ciphertext for our
attack. It takes as input a multi-block ciphertext C =
(IV, C(1), . . . , C(d)) and an index i ∈ {1, . . . , d}, and
returns an initialization vector iv such that the cipher-
text c = (iv, C(i)) is well-formed.

• The FindXbyte procedure takes as input an index j ∈
{1, . . . , ν} and a well-formed (w.r.t. the target key)

single-block ciphertext c = (iv, c(1)) such that c(1) =

C(i) (as provided by the FindIV procedure). It returns
the j-th byte xj of the CBC decryption intermediate
value

x = (x1, . . . , xν) = Dec(k, C(i)).



Using these procedures, Algorithm 2 recovers the plain-
text m contained in C. The algorithm loops through all
d ciphertext blocks of C, each time performing essentially
three steps.

1. First, it calls the FindIV procedure, which computes
an initialization vector iv such that c = (iv, C(i)) is a
well-formed ciphertext (Line 2).

2. Then it runs the FindXbyte procedure ν times to re-
cover all ν decryption intermediate values

x(i) = (x
(i)
1 , . . . , x(i)

ν ) = Dec(k, C(i))

(Lines 3 to 5).

3. Knowledge of x(i) = Dec(k, C(i)) allows us to recover
the i-th plaintext block as

m(i) = Dec(k, C(i))⊕ C(i−1)

= x(i) ⊕ C(i−1)

(Lines 6 and 7).

Algorithm 2 Using OAxis to recover plaintexts.

Input: C = (C(0) = IV, C(1), . . . , C(d))

Output: m = (m(1), . . . ,m(d))
1: for i = 1 to d do

2: iv := FindIV(C, i)
3: for j = 1 to ν do

4: x
(i)
j := FindXbyte(C(i), iv, j)

5: end for

6: x(i) := (x
(i)
1 , . . . , x

(i)
ν )

7: m(i) := x(i) ⊕ C(i−1)

8: end for

9: return (m(1), . . . ,m(d))

Note that the above algorithm makes exactly d calls to the
FindIV procedure and d · ν calls to the FindXbyte procedure.

4.6.1 Procedure FindIV

In this section we describe the FindIV procedure. This pro-
cedure takes as input a ciphertext C = (C(0), C(1), . . . , C(d))
and an index i, and returns an initialization vector iv such
that (iv, C(i)) is a well-formed ciphertext.
For simplicity we explain the algorithm for the case where

a block cipher with block size ν = 16 bytes is used. This
corresponds to the case where AES is used in the XML En-
cryption standard. With a few minor changes the proce-
dure can be adapted to ciphertexts of arbitrary block length.
Moreover, we suppose the input ciphertext has the following
properties:

• The plaintext of C′ = (C(i−1), C(i)) does not contain
any “Type-A” character, except for (possibly) the “<”
character.

• Each encrypted block contains only incomplete XML
elements (i.e. there exists no start tag followed by an
element content and an end tag).

If the input ciphertext meets these ciphertext properties,
then there are two more issues our FindIV procedure must
solve. First, it has to remove all occurrences of the “<” char-
acter. Thus we obtain an encrypted text content ciphertext

consisting only of characters from B. Second, it sets the
last byte of the newly created iv so that the padding byte
becomes equal to 0x01. Thus, we obtain a valid padded ci-
phertext with a single padding byte. These are exactly the
prerequisites for our FindXbyte procedure.

We start the description of our FindIV procedure with an
observation on the padding byte. The padding byte can
be modified by changing the last byte of C(i−1). When we

iterate over all the 256 possible values for the last byte C
(i−1)
ν

of C(i−1), then we implicitly modify the last byte of the
(padded) plaintext contained in (C(i−1), C(i)). Note that in
the case ν = 16 there are at most 16 valid padding bytes,
namely all values from 0x01 (one padding byte) to 0x10 (all
16 bytes are padding).

First observe that, since we know that the first bit of any
ASCII character and any valid padding byte is always equal
to 0, we can copy the first bit from the last byte of the
original initialization vector C(i−1). Our algorithm iterates
only over the remaining at most 128 possible values of the
last byte of C(i−1).

Observe now that, if the plaintext of (IV, C(i)) contains
only characters from B (no“<” character), then OAxis returns
exactly ν = 16 responses such that OAxis(C) = 0. Otherwise,
the number of OAxis(C) = 0 responses depends on the posi-
tion of the first “<” character in the block. For example, if
we get only one OAxis(C) = 0 response, then this means that
only one padding byte, namely 0x10 is valid. This implies
that the first byte of the plaintext is equal to the “<” char-
acter. Similarly, if we get three OAxis(C) = 0 responses it
means that the paddings 0x10, 0x0F, and 0x0E are valid and
the “<” character stands on the third position.

For the purpose of getting the number of valid padding
bytes we introduce the procedure in Algorithm 3, which col-
lects all the valid padding masks.

Algorithm 3 GetValidPaddingMasks

Input: IV, C(i)

Output: A set of valid padding masks Pset
1: Pset := ∅
2: for j := 0x00 to 0x7F do

3: IV ′ := IV ⊕ (0n−8||j)

4: if OAxis(IV
′, C(i)) = 0 then

5: Pset := Pset ∪ IV ′

ν

6: end if

7: end for

8: return Pset

Algorithm 3 computes a set of valid padding masks Pset.
If Pset contains ν = 16 elements, then this tells us that
the block does not include any “<” character. Otherwise, we
learn that the “<” character stands on the position pos :=
|Pset|. We can simply change the “<” character by flipping
the last bit of the IVpos. We repeat the GetValidPadding-

Masks procedure and the bit flipping until |Pset| = ν.
After extraction of all the “<” characters, we set the last

byte of iv to cause the padding 0x01. To this end, we intro-
duce another procedure, called GetIvWithPaddingMask01.
This procedure gets as input IV and Pset of ν = 16 valid
padding masks msk0x01 . . .msk0x10. Since the padding
mask msk0x10 differs from other paddings in the 4-th bit,
we can distinguish it from other padding masks. Therefore,



we can simply set the iv to:

iv := IV ⊕ (0n−8||(msk0x10⊕ 0x11))

The complete procedure is depicted in Algorithm 4.

Algorithm 4 FindIV

Input: A ciphertext C = (C(i−1), C(i))
Output: iv
1: IV := C(i−1)

2: repeat

3: Pset := GetV alidPaddingMasks(IV, C(i))
4: pos := |Pset|
5: IVpos := IVpos ⊕ 0x01

6: until |Pset| = ν
7: iv := GetIvWithPaddingMask01(PSet, IV )
8: return iv

Extension of FindIV for arbitrary XML data. In the
description of the FindIV procedure we had to make some re-
strictions on the encrypted plaintext. It is possible to over-
come these restrictions using very similar techniques. We
omit the details due to space limitations.

4.6.2 Procedure FindXbyte

In this section we describe a procedure FindXbyte which
takes as input a single-block ciphertext C(i), an initialization
vector iv such that c = (iv, C(i)) is well-formed, and an
index j ∈ {1, . . . , ν} (as provided by FindIV). The procedure

returns the j-th byte of x(i) = Dec(k, C(i)). Note that we
have

Dec(k, C(i))⊕ iv = Deccbc(k, (iv, C
(i))).

If j = ν, i.e., the procedure is asked to return the ν-th

byte of x(i), then the algorithm can compute x
(i)
ν without

even querying the oracle. Recall that we know that the last
plaintext-byte contained in c is the single-byte padding 0x01.
Thus we have

(??, . . . , ??, 0x01) = Deccbc(k, (iv, C
(i)))

= x(i) ⊕ iv.

This enables us to recover x
(i)
ν as x

(i)
ν = 0x01⊕ ivν .

If j ∈ {1, . . . , ν − 1}, then we need to use the OAxis oracle

to recover x
(i)
j . We do this by modifying the initialization iv

and evaluating the response behaviour of the oracle. Let us
write iv = (iv1, . . . , ivν) to denote individual bytes of iv, and
(ivj,1, . . . , ivj,8) to denote individual bits of byte ivj . Sim-

ilarly, we write x
(i)
j = (x

(i)
j,1, . . . , x

(i)
j,8) to denote individual

bits of byte x
(i)
j .

Determining the first bit x
(i)
j,1 is easy, since the first bit

m
(i)
1,j of an ASCII-encoded character m

(i)
j is always equal to

0. Since we have

x(i) = iv(i) ⊕m(i),

which implies that x
(i)
j,1 = iv

(i)
j,1 for all i ∈ {1, . . . , d} and

j ∈ {1, . . . , ν}.
To describe our algorithm to determine the remaining bits,

let us divide the ASCII table into blocks, as depicted in
Figure 4. The first four bits of an ASCII character determine
to which block it belongs. For instance, 0x5A is a character

from Block 5, 0x35 is from Block 3, and so on. This leads us
to the following observations on the distribution of Type-A
characters.

• Only Blocks 0 to 3 contain Type-A characters.

• There is only one block which does not contain any
Type-B character, namely Block 1.

• Blocks 2 and 3 contain exactly one Type-A character,
namely 0x26 in Block 1 and 0x3C in Block 2.

• The last four bits of 0x26 and 0x3C are not equal.

We use these observations as follows. In order to determine
x
(i)
j,2, x

(i)
j,3, x

(i)
j,4, we first run Algorithm 5 to compute a set Aset

of bit masks. This algorithm initializes set Aset to the empty
set (Line 1). Then, by looping through all possible masks
msk ∈ {0x00, 0x10, 0x20, . . . , 0x70}, the algorithm modifies
the bits of the initialization vector which correspond to the

bits x
(i)
j,2, x

(i)
j,3, x

(i)
j,4 (Line 4). The algorithm queries OAxis to

test whether

m̃
(i)
j = x

(i)
j ⊕ (ivj ⊕msk)

is a Type-A character (Line 5). If true, the algorithm stores
the corresponding mask msk in Aset (Line 6).

Algorithm 5 Computing the set Aset.

Input: c = (iv, C(i)), j ∈ {1, . . . , ν}
Output: Set Aset ⊆ {0, . . . , 7}
1: Aset := ∅
2: for R = 0 to 7 do

3: msk := 0xR0

4: iv′ := iv ⊕ 08(j−1)||msk||0n−8j

5: if OAxis((iv
′, C(i))) = 1 then

6: Aset := Aset ∪ {msk}
7: end if

8: end for

9: return Aset

We can now observe that the set Aset returned by Algo-
rithm 5 contains always either one or two or three elements.

To see this, recall that the last four bits of m
(i)
j are never

modified. Therefore we have

• |Aset| = 1 if and only if the last four bits of m
(i)
j

are equal to 0x?9, or 0x?A, or 0x?D (see the Type-B
characters in Block 0).

• |Aset| = 3 if and only if the last four bits of m
(i)
j are

equal to 0x?6 or 0x?C (see the Type-A characters in
Block 2 and Block 3).

• |Aset| = 2 otherwise.

If |Aset| = 1 and Aset = {msk}, then we learn that

m
(i)
j ⊕ msk ∈ {0x19, 0x1A, 0x1D}. Now observe that there

is exactly one mask msk′ ∈ {0x25, 0x26, 0x21} such that

m
(i)
j ⊕ msk ⊕ msk′ = 0x3C is a Type-A character. Again

we can use the oracle to determine msk′. This gives us an
equation

x
(i)
j ⊕ (ivj ⊕msk)⊕msk′ = 0x3C



Plaintext Server requests Time

size (bytes) FindIV FindXbyte Total (seconds)
16 32 130 162 0.975

160 449 1688 2137 9.6
1,600 7,453 16,356 23,809 98

16,000 81,155 161,433 242,588 1,039

Figure 5: Summary of Experimental Analysis

where only x
(i)
j is unknown. Thus we can recover byte x

(i)
j .

Note that in the case |Aset| = 1 we need at most two oracle
queries to determine msk′.
If |Aset| = 2 or |Aset| = 3, then a procedure which applies

the same principle as the above, but is slightly more com-

plex, allows us to recover x
(i)
j , by issuing at most 23 oracle

queries in total.

4.7 Attack Variations
A priori knowledge about the plaintext could improve the

attack significantly. For instance, knowing the XML Schema
which defines the structure of the XML document, one could
skip decryption of blocks that contain the known plaintext,
like XML element tags, and focus on the blocks that contain
unknown contents. In the same line, if the attacker knows a
priori that an encrypted text is, for instance, a credit card
number, he can rule out any potential plaintext character
that is not a digit.
Furthermore, it is obvious that knowledge of the x(i) bytes

also allows an attacker to encrypt arbitrary messages. To
this end, the attacker proceeds “from right to the left”, i.e.,
starting with the last ciphertext block (see also [15]).

5. EXPERIMENTAL ANALYSIS
In order to investigate the feasibility and performance of

our approach we developed a proof-of-concept implemen-
tation of the algorithms decribed in the previous section.
We have implemented slightly optimized variants of the pre-
sented algorithms.
We measured the time and the number of server requests

sent for different ciphertext sizes. Our implementation uses
Java 6 and for the SOAP message handling, using a single
thread. As a Web Services server, we used the recent Apache
Axis2 Version 1.5.3 with Apache Rampart 1.5 module. Both
application and Axis2 server were running on a single ma-
chine. For completeness, the machine was equipped with
Linux Ubuntu 10.10 and Intel Core2 Duo P9700 processor
(2 cores with 2.80 GHz).

Setting. We implemented a simple Java class and deployed
it on the Apache Axis2 server to create a Web Service end-
point. We secured the generated Web Services endpoint
with the default XML Encryption setting so that the Axis2
server accepted only the SOAP messages with encrypted
SOAP body. We used the AES block cipher with 128-bit
key (but everything works the same way with 256-bit key).
We generated messages of various length and structure.

The shortest messages consisted of 10 characters, thus fitted
in a single AES block, and no ’<’ characters. Larger SOAP
messages contained two ’<’ characters in each cipher block.
The symmetric key was encrypted with the public key of the
Axis2 server and put into the header of the SOAP message.

Results. The results of our analysis with messages of size 1,
10, 100, and 1000 blocks are depicted in Figure 5. The first
two columns in the table describe the plaintext length. The
third column shows the number of requests sent by FindIV

and FindXbyte. The overall time for the attack execution is
listed in the last column.

Analysis. Our results show the practicality of our attack.
A single encrypted block can be decrypted with only 162
requests in less than one second. Moreover, it is also feasible
to decrypt larger ciphertexts, decrypting 16,000 bytes takes
only 17 minutes.

As we executed the tests on a single machine, the tim-
ing results are only approximate. For instance, one has to
consider the delay by transporting the SOAP message over
the network to the server and back. On the other hand, us-
age of a more powerful server would speed up the message
processing.

In any case the experimental results show that the attack
is applicable in practical real world scenarios, not only for
very short messages but also for larger plaintexts.

6. COUNTERMEASURES

6.1 XML Signature on Ciphertext
The XML Signature standard [7] describes a method to

digitally sign all request messages for ensuring their integrity,
either using a public-key digital signature scheme or a secret-
key message authentication code. A candidate countermea-
sure would be to apply XML Signatures in order to ensure
the integrity of messages, and thus to thwart our attack.
However, in the following we illustrate that unfortunately it
is not that trivial in practice.

XML Signature Wrapping. It is well-known that many
Web Services implementations are vulnerable to XML Sig-
nature Element Wrapping attacks [10]. These attacks allow
to modify a ciphertext without breaking the security of the
digital signature scheme or message authentication code.

XML Encryption Wrapping. Beyond the classical XML
Signature Wrapping attacks, we furthermore developed a
novel class of attacks that allow to mount our attack even if
signature wrapping attacks are not applicable. We call these
attacks XML Encryption wrapping. To illustrate the idea,
consider a standard scenario where the SOAP body contains
data encrypted with a symmetric key. This symmetric key
is encrypted with the server’s public key and put into the
SOAP header. Along with the encrypted key the SOAP
header includes a reference list, which tells the server which
elements must be decrypted using the symmetric key. The
whole SOAP body including the encrypted data is signed.
We observed that it is possible to copy the encrypted data
to the SOAP header and insert a new element to the en-
crypted data reference list. This forces the server to process
both EncryptedData elements, and thus allows to bypass
the XML Signature validation to perform the attack.

Analysis. We have evaluated Apache Axis2 and JBossWS
regarding their resistance against XML Signature Wrapping
and Encryption Wrapping attacks. Our experiments showed
that all Rampart configuration examples and all JBoss stan-
dard examples are vulnerable, and conjecture therefore that
the majority of all practical applications is vulnerable to this
attack.



6.2 Unified Error Messages
The possibly most obvious countermeasure to our attack

consists in unifying the SOAP fault messages sent in re-
sponse to invalid SOAP request messages so that an attacker
can not distinguish between a decryption error and an appli-
cation level error. However, this approach has some serious
drawbacks.
At first, meaningful error messages are generally consid-

ered as “good programming practice”. In fact, they are nec-
essary for developers that have to implement client-side ap-
plications for encryption-enabled Web Services.
Secondly, even with unified SOAP fault messages, there

are additional side-channels that can be exploited for deter-
mining what type of error a certain request message trig-
gered. For instance, measuring the time consumed until a
(unified) SOAP fault message arrives may already indicate
the level in the application stack at which the error occurred.
Finally, we stress that this countermeasure is not effective

when XML Encryption wrapping attacks as described above
are applicable, since copying the encrypted data to a deeper
level in the SOAP header would exclude them from XML
Schema validation and business logic processing. Thus, the
server responds with a SOAP fault if and only if the en-
crypted data in the SOAP header are incorrect.

6.3 Changing the Mode of Operation
One possibility to avoid our attack is to use a symmetric

cryptographic primitive that does not only provide confiden-
tiality, but also integrity. This can for instance be achieved
by replacing the CBC mode of operation with a mode that
provides message integrity. Adequate choices have for in-
stance been standardized in ISO/IEC 19772:2009. We con-
sider this solution as very recommendable for future versions
of the XML Encryption standard. Unfortunately, this may
bring deployment and backwards compatibility issues.
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