A new Approach towards DoS Penetration Testing
on Web Services

Andreas Falkenberg
SEC Consult Deutschland
Unternehmensberatung GmbH, Germany
a.falkenberg @sec-consult.com

Abstract—SOAP-based Web services is a middleware technol-
ogy marketed as the solution to easy data exchange between
heterogeneous IT architectures. The large number of scenarios,
in which this technology is used, has introduced demands for
new extensions raising its complexity. However, this has also
introduced a large variety of new attacks.

In this paper, we investigate an automatic evaluation of Web
service specific Denial of Service (DoS) attacks. We present a
new fully automated plugin for the WS-Attacker penetration
testing tool implementing major DoS attacks. Our tool determines
the attack success without having physical access to the target
machine, using a novel blackbox approach. We give an overview
of our design decisions and present the evaluation results using
common Web service frameworks and systems.

Index Terms—SOAP-based Web services, WS-Security, Denial-
of-Service, Penetration Testing Tool, WS-Attacker

I. INTRODUCTION

Web services are marketed as the solution to all inter-
operability issues between heterogeneous systems. The Web
service paradigm is a concept composed of an array of new
standards based on established Internet technologies and pro-
tocols, such as XML [1], SOAP [2], and HTTP. The flexibility
demands in this paradigm caused continuous development
of new standards addressing e.g. secure data exchange [3],
identity management [4], or policies [5].

Due to a wide array of complex Web services standards,
a new class of attacks emerged over the last years. These
Web service specific attacks strictly target the Web service
processing stack. It has been shown e.g. that it is possible
to break integrity, authenticity [6], [7] and confidentiality of
the exchanged messages [8], [9], or availability of the Web
services systems [10].

Attacks aiming at the availability of a computer resource
— so called Denial of Service (DoS) attacks — gained lot of
attention in the recent time. With many recent high profile
DoS attacks on companies such as VISA [11], PayPal [12]
and various government agencies [13], DoS attacks pose a
serious threat to today’s IT infrastructure. Depending on the
impact of a DoS attack, the response time of the target is
slowed down — or even worse — the availability of the computer
resource might be interrupted temporarily. For example, very
recent DoS attacks based on weak hash-mapping algorithm
implementations (called HashDoS attacks) showed that a huge
impact can be achieved with only small request messages [14],
[15], [16].

Christian Mainka, Juraj Somorovsky, Jorg Schwenk,

Horst Gortz Institute for IT Security
Ruhr University Bochum, Germany

{Christian.Mainka, Juraj.Somorovsky, Joerg.Schwenk} @rub.de

DoS attacks can be performed using a huge number of
different techniques. Especially those targeting systems us-
ing XML-based message formats can misuse different XML
properties. Due to the complexity of XML documents and
the resource intensive nature of XML parsing, even a small
malformed message can be used to occupy a significant
amount of resources. The DoS attacks on Web services can
exploit parsing mechanisms, transformations, or resolution of
external entities!. Table I lists common Web service DoS
attacks.

Coercive Parsing SOAP Array Attack

Oversized XML Attack

Hash Collision Attack

XML External Entity DoS

XML Entity Expansion

Oversized Cryptography

Recursive Cryptography

XML Signature:
Transformation DoS

XML Signature:
Key Retrieval DoS

TABLE I: Web service specific DoS attacks.

With deployments in critical infrastructures [17], [18] and
major industries [19], Web services are an attractive target for
attackers aiming at the availability. Thus it is of crucial impor-
tance for Web service developers and providers to possess an
automated penetration testing tool that automatically evaluates
whether a Web service is vulnerable to these attacks or not.
This motivated us for the development of a new DoS attack
plugin for the WS-Attacker framework [20]°.

Contribution. In this paper, we first present general re-
quirements for the evaluation of DoS attacks. Thereby, we
assume that the attack executor (pentester) does not have any
possibility to run a specific program on the attacked system.
He can only send his payloads to the server and evaluate the
response times. Based on this assumption, we developed an
approach supporting such evaluations. Basically, our plugin
works in two phases: In the first phase, our plugin sends to
the server untampered payloads. In the second phase, tampered
requests with attack payloads are sent. In a parallel thread, the
plugin simulates a 3rd party client that continuously sends
request to the tested Web service during the first and the
second phase. The timings of all requests are logged. Results
of these measurements are automatically evaluated to compute
and depict the resulting attack impact.

Uhttp://ws-attacks.org
Zhttp://sourceforge.net/projects/ws-attacker/

We implemented the above described approach and several
Web service specific DoS attacks as a WS-Attacker plugin.
We evaluated our plugin using five major Web service frame-
works: Apache Axis2 Java [21], Apache CXF [22], IBM
Datapower [23], Metro [24], and .NET [25]. Our results show
that the DoS penetration testing tool works as expected, giving
a clear indication whether or not a tested Web service is
vulnerable — without false positives. For example, our tests
revealed that the latest versions of the Axis2 Java, Apache
CXF, and the Metro Framework were vulnerable to the imple-
mented attacks.

Related Work. Nowadays, there exists a large number of
penetration testing tools for Web applications. However, most
of the tools concentrate on the typical attack threats such as
XSS, SQLI, or typical DoS attacks. Web service specific DoS
attacks are not in scope of those tools.

The closest relation to our approach can be found in the
tools SoapUI®, WSFuzzer*, and WSFAggressor [26]. SoapUI
and WSFuzzer are Web service frameworks developed specifi-
cally for testing Web services platforms. However, these tools
support only few DoS specific attacks and do not introduce
any specific attack evaluation.

Very recently, an approach for automated penetration eval-
uation of Web service specific attacks has been published
by Oliveira et al. [26]. As a result of their research, they
implement a tool called WSFAggressor, which is also based
on WS-Attacker, containing a large number of DoS attacks.
However, in order to evaluate the attack success, this tool
requires access to the tested system. This prerequisite is not
given by evaluating specific hardware devices such as IBM
Datapower [23], or pentesting sensitive customers’ servers.
Moreover, this tool misses some important attack techniques
such as HashDoS [14]. In contrary, our tool implements a new
approach that allows a security expert to easily and accurately
decide whether a Web service is vulnerable to the major Web
service specific DoS attacks — without having an access to the
tested system.

II. FOUNDATIONS

In the following, we present the relevant underlying tech-
nologies of Web services.

A. Extensible Markup Language (XML)

XML [1] is a self-describing, universal, and platform-
independent markup language. It is the most common format
for the transmission of data between heterogeneous applica-
tions. Listing 1 shows an example XML file, which stores a
fictitious order in a bookshop.

<?xml version="1.0" encoding="ISO—8859—1"7>
<order>
<customerID>1234</customerID>
<ISBN>1234567234 —3</ISBN>
<Price>10.00 </Price>
</order>

Listing 1: An exemplary XML file.

3http://www.soapui.org
“http://sourceforge.net/projects/wsfuzzer

An XML file can be prepended by a Document Type
Definition (DTD) [1], which can be used to define the structure
of the XML document, or to declare custom internal or
external entities.

B. XML Parsing

There are various approaches to parse an XML document.
DOM-based parsers create a tree structure of the whole XML
document, called the document object model (DOM). Any
programmer accessing the XML document can easily traverse
through the XML tree, access, insert, and delete nodes. A
node can be an element, an attribute, a text content, or a
comment. The main disadvantage of this parsing approach is
the high resource utilization. The size needed for an XML
tree representation exceeds the original size multiple times.
The whole document must be read before the programmer
can access its contents.

SAX parsers are event-based. A SAX parser only operates
on parts of the XML tree at a time. Whenever the parser
encounters an XML node, an event is triggered. It is the
program’s task to handle these events in order to process the
XML document. The main advantage of event-based parsing is
the low utilization of resources. Furthermore, once an event is
triggered the event handlers can immediately start processing
the data, without having to wait for the parser to reach the
end of the XML document. However, some operations will
get more complex compared to a DOM parser, e.g. sorting an
XML document requires multiple passes since the SAX parser
only reads sequentially forward.

StAX parsers also use the streaming based approach. How-
ever, instead of automatically triggering events while parsing
the document, the StAX parser waits for method calls that
trigger certain parsing operations.

C. SOAP Based Web Services

SOAP is an XML standard used to exchange messages
between Web services. It is completely independent from
the underlying transport protocol. Predominantly, the HTTP-
Protocol is used for transporting SOAP messages. A SOAP
message is composed of an Envelope element that contains
a Header and a Body element. The SOAP header contains
directives for achieving security objectives such as confiden-
tiality and integrity. The SOAP body contains the action to be
performed. Listing 2 shows a simple SOAP message, which
queries a stock quote service.

<?xml version="1.0"7>
<soap:Envelope
<soap:Header />
<soap:Body>
<stockQuote>
<symbol>GOOG</symbol>
</stockQuote>
<soap:Body>
</soap:Envelope>

Listing 2: An exemplary SOAP message.
WSDL files are used to describe the Web service and the

structure for SOAP message exchange. The interaction be-
tween server and client is shown in Figure 1. The process

1.WsSDL
file

2. SOAP request
P

Client Web service

3. SOAP response
Fig. 1: Web service message exchange pattern.

is started by receiving a WSDL file. Based on the WSDL file
a SOAP message is generated by the client and sent to the
Web service. The Web service processes the request and then
returns a SOAP response.

D. Processing a Web Service Request on Server Side

In order to define the attack surface for Web service specific
attacks the life cycle of a Web service request is shown.
Figure 2 explains the inner workings of the receiving Web
service in detail. The workflow is based on the Web service
framework Apache Axis2 [21].

Network Web service processing stack Business logic

InHandlers (|ntercepmr)
Transport ‘handler A‘
listener
phase 1

OutHandlers (interceptor)

SOAP

o

(Message
»~ request

receiver

‘handler B‘

_phase n

Business
logic
Service
class

/' SOAP Transport ‘handler C‘ ‘handler D‘
[~ response *‘ N - J

sender

Message
receiver

. phase x phase m)

Fig. 2: Web service message flow based on the Axis2 frame-
work.

A SOAP request coming from the network is first processed
by the transport listener. The SOAP request is then passed
through a pipeline of predefined or custom handlers. Each
handler is responsible for a specific message processing part.
For example a security handler decrypts encrypted message
parts and validates signatures. If the SOAP message was
passed through all the handlers successfully, the message
receiver receives the SOAP message and hands the relevant
data over to the application logic.

The exact names of the process steps and their order heavily
depend on the used Web service framework. Even though
the processing might differ depending on the framework, the
main concept doesn’t change. Web service specific attacks
are targeting the Web service processing pipeline. Attacks
affecting a component outside the Web service processing
stack are not considered.

III. WEB SERVICE SPECIFIC DOS ATTACKS

Denial of Service (DoS) attacks come in a wide array of
variations. The entire application stack of a system can be vul-
nerable to DoS attacks at some point. However, as described in
Section II-D, only DoS attacks are considered that attack the

Web service processing pipeline. DoS attacks such as SYN-
Flooding or DoS attacks on the database system behind a
Web service are not Web service specific and therefore not
considered.

In the following, a brief description of common Web service
specific DoS attacks is given:

1) Coercive Parsing Attack
The attacker sends an XML document that contains
a deeply nested XML structure. When a DOM-based
parser processes the XML document, an out of memory
exception or a high CPU load can occur [27].

2) SOAP Array Attack
The SOAP Array Attack forces the attacked Web service
to declare a very large SOAP array. This can exhaust the
memory of the attacked Web service [28].

3) XML Attribute Count Attack
The XML Element Count Attack attacks the server by
sending a SOAP message with a high attribute count
[29].

4) XML Element Count Attack
The XML Element Count Attack attacks the server by
creating a SOAP message with a huge number of non-
nested elements [27].

5) XML Entity Expansion Attack
The XML Entity Expansion Attack causes a DoS sce-
nario by forcing the server to recursively resolve entities
defined within a Document Type Definition (DTD). This
attack is also known as XML Bomb or Billion laughs
Attack [30].

6) XML External Entity DoS Attack
The XML External Entity Attack causes a DoS scenario
by forcing the server to resolve a large external entity
defined within a DTD. Please note that if an attacker is
able to execute the External Entity attack, an additional
attack surface might appear [31].5

7) XML Overlong Names Attack
In an XML Overlong Name Attack an attacker injects
overlong XML nodes in the XML document. Overlong
nodes can be overlong element names, attribute names,
attribute values, or namespace definitions [29].

8) Hash Collision Attack — HashDoS
A hash table is a data structure, which maps arbitrary
keys to values. Within XML documents hash tables
are e.g. used to store attributes and their corresponding
values or XML namespace definitions of an element.
The basic hash table principle is shown in Figure 3.
The value of a certain key is mapped to a storage
bucket through a hash function that takes the key as
input. Ideally each key should result in a unique bucket.
However in some cases different keys result in the same
bucket assignments, causing a collision. A collision
will lead to resource intensive computations within the
bucket. When a weak hash function is used an attacker
can intentionally create hash collisions that will lead to

Shttp://www.agarri.fr/blog

Hash-

Key ; Buckets
function

Kevin Yii Index Key Value
— 01
John Doex 02 | e KevinYii |004925445864
I 03

04

05

06 | @ JohnDoe | 00123456789

Fig. 3: Hash table principle.

a DoS scenario [14].

A good evaluation of the attacks’ impacts on the memory
and CPU usage on the Web services servers is given in [26].

IV. AUTOMATIC TESTING OF DOS ATTACKS FOR WEB
SERVICES

In this section, we present general requirements and the re-
sulting concept behind the newly created Web service specific
DoS penetration testing tool. We explain the internal program
workflow during the attack execution, its implementation, and
the GUI presenting the attack results.

A. Requirements

Various requirements have to be met by a Web service spe-
cific DoS penetration testing tool to generate reliable results.

Measuring Attack Success Using a Blackbox Approach:
Since the tester has no physical or virtual access to the targeted
system, the attack success can only be decided by observing
the server response time RT. The RT' is defined as follows:

IrT = TFirstByteS erver TLastByteChent

Measurement of the RT begins as soon as the last byte of
the request is sent to the server. It ends when the first byte
of the response from the server is received. We refer to this
scenario as the blackbox approach. The blackbox approach is
chosen because it minimizes the prerequisites to run the tool
and maximizes the field of application.

Automated Crafting and Sending of Attack Messages: The
automated penetration test starts with the tester picking its
target and choosing the DoS attack he wants to run against the
target. If required for the attack to function properly, attack
specific parameters have to be entered by the tester. From
there on the entire vulnerability testing process has to be
performed automatically without any user interaction required.
This includes the automated crafting and sending of messages
with attack payloads based on the parameters supplied by the
tester. These requests are referred to as tampered requests in
the following. On the other hand, regular requests are referred
to as untampered requests.

Fitness for Various Load Patterns: Depending on the goal of
the tester, an attack will be run under various load patterns. In
order to allow this flexibility, fitness for various load patterns
is required. During initialization of the attack, the tester should
be able to set:

o Number of threads sending tampered requests in parallel.

o Number of tampered requests per thread.

« Milliseconds between sending each tampered request.

o Attack specific parameters — only if applicable — e.g.
length of payload.

Please note that our tool was designed to be run from a
single machine. Thus, the following restrictions apply:

o All requests are sent from the same IP. The simulation
of a Distributed Denial of Service (DDoS) attack is not
possible.

o The number of parallel requests is limited by the band-
width of the machine running the Web service specific
DoS penetration testing tool.

However, DDoS simulation was not in scope of our work
and these restrictions should not prevent a penetration tester
from testing. An effective DoS attack can be mounted on a
vulnerable machine with very few requests.

Fitness for Different Test Scenarios: Depending on the goal
of the tester, the following two testing scenarios should be
supported.

First, the tool should show the tester whether or not the
tested Web service is vulnerable to the selected attack. A Web
service is vulnerable to an attack if the difference between the
response time R7T; of a tampered request and the response
time RT, of an untampered regular request exceeds a defined
threshold.

Second, the tool should evaluate the attack effect on 3rd
party users. Once a Web service was found to be vulnerable
to an attack, the prerequisites for a successful DoS attack
are given. However, sending a single tampered request to a
vulnerable Web service is usually not enough to cause a DoS
scenario that affects 3rd party users. Only if the response time
of regular requests from 3rd party users increases during an
attack a valid DoS attack was performed. When testing under a
given load scenario, the tool should make statements in regard
to the following two points:

o Are 3rd party users effected by the attack?
o For how long are 3rd party users affected (even after the
attack is finished)?

Exclusion of Subattacks: Some attacks are composed of
different subattacks. However a tester might want to test for
only one of these subattacks. The DoS penetration testing tool
has to provide mechanisms that allows this flexibility.

Elimination of Errors: Depending on the attack set up,
different errors might get induced in the results of an attack.
The following two main error sources are defined that get elim-
inated by the automated Web service specific DoS penetration
testing tool.

o Errors due to server high load: Depending on the load
scenario, defined in Section IV-A, the attacks might be
performed with a high number of requests in parallel.
Already a high number of requests might cause an
increased RT' or even halt the server. However, these
increased RT's are not caused by the attack payload itself,

they are just caused by the shear number of requests.
Therefore, an increase in RT's induced by high request
numbers should be eliminated.
o Errors due to increased message sizes: When sending
a tampered request, the size of the message usually
increases due to the injected payload. Based on the
definition of RT, an increase in message size will lead
to a higher RT'. This error source has to be eliminated.
Despite being able to cancel out two error sources, the
following two error sources will remain:
o A significant change in network response time while
attack is running due to 3rd party traffic.
o A significant change in SOAP message processing time
on the server due to 3rd party traffic.
These error sources are beyond the scope of this tool. In the
following, we always assure that these two errors do not occur.

B. DoS Attack Success Evaluation

Based on the above given requirements, we developed a
DoS attack success evaluation. Its basic idea is presented
in Figure 4. In Phase 1 a user-defined load pattern is sent

Phase 1 Phase 2

Send defined

load pattern Send defined
with ; load pattern :

untampered |p{ Wit X' | ylwith tampered |y Wait S
padded seconds requests seconds ?
requests

Attack

report

[attack is running]

Simulated [attack finished]

3rd party requests

Phase 3

Fig. 4: Architecture of the DoS attack success evaluation used
in our tool.

to the target Web service with untampered requests that are
padded to the size of tampered requests®. After a user-defined
waiting period the same load pattern is sent to the target again,
but this time with tampered requests. In order to conduct a
vulnerability test, the tool calculates the ratio of the median
RT of tampered requests R7; to untampered regular requests
RT,.. This method will guarantee that any ratio significantly
higher or lower than one must have been caused by the payload
of the tampered requests. All other major error sources such
as increase in RT' due to different message sizes or different
network loads are eliminated by the design.

In parallel to these two processes, phase 3 continuously
sends test requests to the target Web service in constant user-
defined intervals. These requests simulate 3rd party users that
visit the targeted Web service while the attack is running. If the
RT of 3rd party users increases one can speak of a successful
DoS attack, not just a vulnerability test.

%The expansion of the message size of the untampered requests poses no
problem. Even if the untampered message would cause a DoS scenario, it
would show up in the attack results, effectively avoiding false positives.

To formalize the definition of attack success the following
two attack success metrics are defined:

Test for vulnerability: Attack success is measured using the
metric “Attack-RT-ratio” (ART R). The ARTR is defined as
follows:
e RTip:: Median of the RT of the last ten tampered
requests.
e RTjg,: Median of the RT of the last ten untampered
(regular) requests.
o Calculate the ratio:

ARTR = RTyo: / RTor

If less than ten (un)tampered requests are available, the
maximum number of requests is taken to calculate the ratio.

An attack success is defined as follows:

| Metric value: | Rating:
ARTR < 3 payload ineffective
ARTR > 3 and payload effective
ARTR < 6
ARTR > 6 payload highly effective

TABLE II: Metric “Attack- RT-ratio” ARTR.

The threshold values were chosen based on pretests on
vulnerable and non-vulnerable Web services.

Test for Attack Effect on 3rd Party Users: Attack success
is measured using the metric “3rd-Party- RT -after-attack”. The
“3rd-Party- RT-after-attack” is defined as follows: Median RT
of all simulated 3rd party requests after starting to send first
tampered request. Attack success is defined as follows:

| Metric value: | Rating: |
3rd-Party- RT -after-attack < 2sec

no or small effect on
3rd party users

3rd party users are
affected

3rd party users are
heavily affected

TABLE III: Metric “3rd-Party- RT'-after-attack”.

3rd-Party- RT -after-attack > 2sec and
3rd-Party- RT'-after-attack < 5sec
3rd-Party- RT'-after-attack > 5sec

Two seconds is our threshold that is still acceptable for a
response. Every RT' above 2 seconds is considered a success
because the users annoyance level increases exponentially.

C. Implementation

The Web service specific DoS penetration testing tool was
implemented as a plugin for the WS-Attacker framework,
which is an extensible open source Web service specific
penetration testing framework [20]. It comes with the required
functionality to process WSDL files and SOAP messages. New
attacks can be added using the Java plugin architecture.

The Denial of Service plugin is split into two main com-
ponents, the MVC DoS extension and the DoS attack classes.
The general relation between these two components is shown
in Figure 5.

Dos attack class MVC DoS extension

| Create tampered request | —P Initialize
, v ; v
| Create untampered request | (
, v ‘
| Create request padding | Perform attack as defined in
\ / DoS in Figure 4
) v .
| Call MVC DoS Extension l‘j
v \ \ il
| Set WS-Attacker results |

L—— Create WS-Attacker attack results |

Fig. 5: Internal workflow of Denial_of_Service plugin

DoS Attack Classes: A DoS attack class provides the attack
specific implementation details. This includes the following
four points:

e Setup of custom attack parameters:
Depending on the attack, custom attack specific parame-
ters are required. They allow the tester to customize the
attack payload according to its testing scenario.

o Tampered request creation:
Every DoS attack class has to implement its own tam-
pered request creation method by overriding the method
createTamperedRequest(). There are no restrictions of
how the request is structured. HTTP header fields can
be set to arbitrary values. The SOAP request itself can
be set freely. It doesn’t even have to be valid XML since
the request is sent via the Java class HttpClient’. The
return value is an object of the class RequestObject that
holds all data that is required for a valid HTTP request.

o Untampered request creation:
The creation of an untampered request is not mandatory
for a developer. The class AbstractDosPlugin already
provides a default implementation. However, based on
the attack type, the untampered request might have to a
have a specific structure in order to cancel out certain
errors. In this case, the developer has to override the
method createUntamperedRequest() provided by the class
AbstractDosPlugin.

o Create attack padding:
For reasons of error correction, as defined in Sec-
tion IV-A, the tampered request and untampered request
have to have the same size. Hence, the smaller one out of
the two requests has to be padded to the size of the larger
request. The class AbstractDosPlugin already provides a
default implementation for the request padding.

MVC DoS Extension: The MVC DoS extension provides
the DoS attack-specific functionality that is required by every
DoS attack plugin. It expects a plugin that implements the
class AbstractDosPlugin as input. Once started, the DoS attack
is performed according to the activity diagram defined in
Figure 4. When developing a new DoS attack, there should

http://hc.apache.org/httpclient-3.x/

be no need to change any part of the MVC DoS extension.
All attack-dependent parts can be set in the DoS attack class
that implements the attack.

D. Attack Result Presentation

The results of an attack are presented to the tester in a
graph and in a numerical fashion, using the two attack success
metrics defined before. In the following, the results of an XML
Coercive Parsing attack on a vulnerable test target are shown.

The test was conducted using slightly modified default
attack parameters. During attack setup, the number of parallel
threads was increased to three and the number of requests per
thread was increased to ten. All other attack parameters were
left at their default values (in such a configuration, the number
of nested elements is set to 75,000).

The results of the attack success metric are as follows:

[Metric: | Result: [Rating:]
ARTR 1052 payload highly effective
3rd-Party-RT'- 59 sec | 3rd party users are heavily
after-attack affected

TABLE IV: Attack Success Metric of full DoS test.

Both metrics indicate a strong attack impact.

The graphical presentation of the successful test is shown
in Figure 6. The graph is automatically created by the test
tool after an attack is finished. The red and the green bars
indicate the number of requests sent per interval (1 second).
The individual connected data points state the mean RT of
all requests sent in the used interval. Figure 6 shows that RT;
(response time by tampered requests) is significantly higher
than RT, (response time by regular requests), proving that
the target is vulnerable and verifying the results of ARTR.
Furthermore, Figure 6 clearly shows an increase of R1" of the
simulated 3rd party requests RT3,.4 after the attack (blue line).
The RT3,-q increased from around 90 ms on average to over
59 sec after the attack started. In total, the server was not able
to respond to requests for a period of over 20 sec under the
defined payload, resulting in a successful DoS attack.

V. EVALUATION

The implemented DoS attacks were tested using four
common Web service frameworks: Axis2 Java [21], Apache
CXF [22], ASP.NET [25] and Metro [24]. Each of this frame-
work was installed on the same Windows 7 machine (Core
i5, 4GB RAM) using Java7 (Oracle 1.7.0_03). Additionally,
we attacked the IBM DataPower X150 [23], an XML Security
Gateway, which comes with dedicated hardware. The attacked
servers provided a simple echo service or were running one
of its distributed sample services, which itself consumes no
notable CPU/RAM. For the following evaluation, we left out
the SOAP Array attack as the tested frameworks do not support
this kind of data structure.

Response time of tampered requests ‘

is higher. The Web service is vulnerable.

210.000 \‘
200.000 ? ?n?b
150.000 |
180.000 ||
170.000 |
160.000
150.000
140.000
130,000
120.000
110.000
100.000
50,000
80.000
70.000

Response Time in ms

after attack. This indicates a
successful DoS attack.

/

Simulated 3" party requests timeout

il

50.000
50.000
40.000
30.000
20,000
10.000

0 (eilaelatesre

(025) |endalul Jad sisanbay Jaquinp

L]
8
7
[
)
4
3
2
1
0

11:45:30 11:45:40 11:45:50 11:46:00

& Mean Response Time Tampered Requests

o+ Mean Response Time Untampered Requests

- Mean Response Time Simulated 3rd Party Requests

11:46:10

11:46:20 11:46:30 11:46:40 11:46:50

Time

Sent Tampered Requests per Second

Sent Untampered Requests per Second

Fig. 6: Automatically generated results graph of a successful test on an vulnerable system

Attack name

Coercive Parsing
DIBX31A Hash Collision
DJBX33A Hash Collision
DIBX33X Hash Collision
XML Attribute Count
XML Element Count
XML Entity Expansion
XML External Entity
XML Overlong Names

X | x| XS] x | x| S]] Apache CXF

X | X | X[x| x| x|~ Axis2 Java

XX | X[x| X]|X]|N] || Metro

XX |[x|x|x|x|x|x|x|| ASPNET

XX | X[x|[x|x|x|x|x]|| XI50

TABLE V: Vulnerability scan results.

The results of the vulnerability scan are shown in Fig-
ure V. Green values in Table VI denote a non-successful
attack, red ones the opposite. The Axis2 Java and Apache
CXF frameworks were vulnerable to the Coercive Parsing
Attack, DJBX31A Hash Collision Attack® and XML Attribute
Count Attack. Additionally, CXF was vulnerable to the XML
Element Count Attack. Metro was only vulnerable to the
DJBX31A Hash Collision® and the XML Attack Count attack.
No vulnerabilities could be detected on the ASP.NET and the

8The reason for this is the used Java version, which is vulnerable to the
DJBX31A Hash Collision Attack. To attack a server running a newer Java
version, a different collision attack could be applied [16].

IBM XI50. For detecting these vulnerabilities, we tried to add
the payload at different positions within the SOAP message,
e.g. the XML Element Count Attack was only successful when
placing the elements as child elements of the SOAP Header
(and not within the SOAP Body).

Q

2 < § = g

S SV)

Attack name <=8 | <0 p=
Coercive Parsing ARTR 1952 1201 | 1.14
with 26,000 elements RT [ms] | 59000 | 40666 23
DJBX31A Collision ARTR | 10.48 347 | 5.09
with 4,500 attributes RT [ms] 366 248 | 215
Attribute Count ARTR 5.23 4.44 | 6.76
with 14,000 attributes RT [ms] 145 155 | 130
Element Count ARTR 1.33 7.69 | 1.07

with 45,000 elements RT [ms] 55 236 21

TABLE VI: Attack impact presented using the mean of Attack-
RT-ratio (ART R) and Response Time (RT) values.

To clarify the impact of each vulnerability, Table VI shows
the Attack-RT-ratio (ART R) of each attack. Thereby, each
attack was performed with a 180kB message size, where the
attack impact was tried to be maximized, e.g. by using as
many elements/attributes as possible (see Table VI). Aside,
we added the mean of the time that was needed to process a
tampered request. By Axis2 Java and Apache CXF the biggest
damage caused the Coercive Parsing Attack. On the other

hand, application of this attack on Metro caused no DoS.
DJBX31A Collision and Attribute Count attacks performed
by the Metro framework similarly.

Note that these results were conducted only with non ag-
gressive default settings — the message size could be increased
drastically to get a higher impact. To turn this into a real
attack, such that third party users are affected, the attacker
has to increase the number of used threads and messages per
second. This would also increase the ART' R and processing
time values.

Responsible Disclosure. We informed developers about these
findings in February 2013. The Apache CXF developers ap-
plied a fix directly in the underlying Woodstox parser (version
4.2.0). They added ability to restrict certain size limits of
parsed XML data. The other frameworks are currently being
fixed.

VI. CONCLUSION

In this paper, we presented a custom Web service specific
DoS penetration testing tool. The tool is built around a black-
box test approach. For the first time, a tester needs no access to
the tested target in order to evaluate attack success. The general
design of the attack execution routine was illustrated and the
design decisions were explained. Ten Web service specific DoS
attacks were implemented and tested on common Web service
frameworks. The results proved that the latest versions of the
Axis2 Java, Apache CXF ans Metro frameworks are vulnerable
to commonly known DoS attacks.

The future work will cover more Web service specific DoS
implementations. XML Signature and XML Encryption based
DoS attacks are yet to be implemented and tested. We hope
that developers using this tool will get aware of these specific
attacks and the tool will thus contribute to the deployment of
more secure Web services.

ACKNOWLEDGEMENTS

We would like to thank the TUVIT GmbH for giving the op-
portunity to test the tool on life systems. Moreover, we would
like to thank Colm O hEigeartaigh for helpful discussions on
this topic.

This research was partially supported by the Sec2 project
of the German Federal Ministry of Education and Research
(BMBF, FKZ: 01BY1030).

REFERENCES

[1] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-
McQueen, “Extensible markup language (XML) 1.0 (fifth edition),”
W3C, W3C Recommendation, Nov. 2008. [Online]. Available:
http://www.w3.0rg/TR/2008/REC-xml-20081126/

[2] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,
A. Karmarkar, and Y. Lafon, “Soap version 1.2 part 1: Messaging
framework (second edition),” Tech. Rep., April 2007. [Online].
Available: http://www.w3.org/TR/soap12-partl/

[3] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004),” OASIS
Standard, 2006.

[4] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocol
for the OASIS Security Assertion Markup Language (SAML) V2.0,”
OASIS Standard, 15.03.2005, 2005, http://docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-0s.pdf.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]
[19]

[20]

[21]

[22]
(23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri,
T. Boubez, and U. Yalginalp, “Web services policy 1.5 - framework,”
Tech. Rep., September 2007. [Online]. Available: http://www.w3.org/
TR/ws-policy/

N. Gruschka and L. Lo Iacono, “Vulnerable Cloud: SOAP Message
Security Validation Revisited,” in ICWS '09: Proceedings of the IEEE
International Conference on Web Services. Los Angeles, USA: IEEE,
2009.

J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking saml: Be whoever you want to be,” in 2/st USENIX
Security Symposium, Bellevue, WA, Aug. 2012.

T. Jager and J. Somorovsky, “How To Break XML Encryption,” in
The 18th ACM Conference on Computer and Communications Security
(CCS), Oct. 2011.

T. Jager, S. Schinzel, and J. Somorovsky, “Bleichenbacher’s attack
strikes again: breaking PKCS#1 v1.5 in XML Encryption.” in ESORICS,
ser. LNCS, S. Foresti and M. Yung, Eds. Springer, 2012.

M. Jensen, N. Gruschka, and R. Herkenhoner, “A survey of attacks on
web services,” Computer Science - R&D, vol. 24, no. 4, pp. 185-197,
2009.

B. Bosker, “Visa DOWN: WikilLeaks Supporters Take Down
Site As ’Payback’,” http://www.huffingtonpost.com/2010/12/08/
visa-down-wikileaks-suppo_n_794039.html, accessed 01 July 2012.
D. Pauli, “PayPal hit by DDoS attack after
dropping Wikileaks,” http://www.zdnet.com/news/
paypal-hit-by-ddos-attack-after-dropping- wikileaks/489237, accessed
01 July 2012.

F. Y. Rashid, “Anonymous Avenges Megaupload Shutdown With Attacks
on FBI, Hollywood Websites,” http://www.url.de/, accessed 01 July
2012.

J. Wilde and A. Klink, “Hash Collision DOS Attacks,” 28C3, http:
/lwww.nruns.com/_downloads/advisory28122011.pdf, Dec. 2011.

S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic
complexity attacks,” in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley, CA,
USA: USENIX Association, 2003, pp. 3-3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251353.1251356

D. J. Bernstein, J.-P. Aumasson, and M. BoBlet, “Hash-Flooding DoS
Reloaded: Attacks and Defenses,” 29C3, Dec. 2012.

M. Horsch and M. Stopczynski, “The German eCard-Strategy,” 2011,
technical Report.

Kantara Initiative, “Kantara Initiative eGovernment Implementation Pro-
file of SAML V2.0,” June 2010, version 2.0.

Danske Bank / Sampo Pankki, “Encryption, Signing and Compression
in Financial Web Services,” May 2010, version 2.4.1.

C. Mainka, J. Somorovsky, and J. Schwenk, “Penetration testing tool for
web services security,” in SERVICES Workshop on Security and Privacy
Engineering, Jun. 2012.

Apache Software Foundation, “Apache Axis2,” http://axis.apache.org/
axis2/java/core.

——, “Apache CXF,” http://cxf.apache.org.

IBM, “WebSphere DataPower SOA Appliances,” http://www-01.ibm.
com/software/integration/datapower.

The GlassFish Community, “Metro Web Service,” http://metro.java.net/.
Microsoft, “ASP.NET Web Services,” http://msdn.microsoft.com/en-us/
library/t745kdsh(v=vs.90).aspx.

M. Vieira, N. Laranjeiro, and R. A. Oliveira, “Experimental Evaluation
of Web Service Frameworks in the Presence of Security Attacks,” June
2012.

M. Jensen, N. Gruschka, and R. Herkenhoner, “A survey of attacks on
web services,” Springer-Verlag, 2009.

mitre.org, “CAPEC-256: SOAP Array Overflow,” http://capec.mitre.org/
data/definitions/256.html, 2012.

N/A, “Protecting Enterprise, SaaS & Cloud based Applications — A
Comprehensive Threat model for REST, SOA and Web 2.0, Intel
Corporation, Tech. Rep., 2009.

A. Veithen, “Apache Axis2 Security Advisory - CVE-2010-
1632, http://svn.apache.org/repos/asf/axis/axis2/java/core/security/
CVE-2010-1632.pdf, 2010.

N. Bhalla and S. Kazerooni, “Web Services Vulnerabilities,”
http://www.blackhat.com/presentations/bh-europe-07/Bhalla- Kazerooni/
Whitepaper/bh-eu-07-bhalla-WP.pdf, Security Compass, February
2007, accessed 01 July 2010.

