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Abstract

In the recent years, XML Encryption became a target of
several new attacks [19, 18, 17]. These attacks belong to
the family of adaptive chosen-ciphertext attacks, and al-
low an adversary to decrypt symmetric and asymmetric
XML ciphertexts, without knowing the secret keys. In
order to protect XML Encryption implementations, the
World Wide Web Consortium (W3C) published an up-
dated version of the standard.

Unfortunately, most of the current XML Encryption
implementations do not support the newest XML En-
cryption specification and offer different XML Security
configurations to protect confidentiality of the exchanged
messages. Resulting from the attack complexity, evalu-
ation of the security configuration correctness becomes
tedious and error prone. Validation of the applied coun-
termeasures can typically be made with numerous XML
messages provoking incorrect behavior by decrypting
XML content. Up to now, this validation was only man-
ually possible.

In this paper, we systematically analyze the chosen-
ciphertext attacks on XML Encryption and design an al-
gorithm to perform a vulnerability scan on arbitrary en-
crypted XML messages. The algorithm can automati-
cally detect a vulnerability and exploit it to retrieve the
plaintext of a message protected by XML Encryption. To
assess practicability of our approach, we implemented
an open source attack plugin for Web Service attacking
tool called WS-Attacker. With the plugin, we discovered
new security problems in four out of five analyzed Web
Service implementations, including IBM Datapower or
Apache CXF.

∗This is the full version of the paper with same title that was
published at the 9th USENIX Workshop on Offensive Technolo-
gies (WOOT’15): https://www.usenix.org/conference/
woot15/workshop-program/presentation/kupser

1 Introduction

The W3C standard XML Encryption ensures confiden-
tiality of XML data, directly on the message level. It is
used in security-critical scenarios like business and gov-
ernmental applications, banking systems or healthcare
services. Given the importance of the scenarios XML
Encryption is deployed, its security becomes a crucial
point.

XML Encryption is mainly used with two encryption
algorithms: AES-CBC and RSA-PKCS#1 v1.5.1 These
two standards recently became targets of attacks in many
practical scenarios ranging from IPSec [8, 9] and TLS [2]
to web applications and Captchas [29]. In 2011, it was
shown that the XML Encryption standard is also vul-
nerable to attacks affecting confidentiality of symmetric
ciphertexts [19]. One year later, further attacks affect-
ing public key encryption in XML Encryption were de-
scribed [18]. The attacks belong to the family of adaptive
chosen-ciphertext attacks. They are applicable when the
attacker is able to modify an inspected ciphertext (i.e.,
the ciphertext is not authenticated), send it to the server
for processing, and observe the server’s response. Based
on this response, the attacker can decide whether the de-
crypted request was valid or invalid. To distinguish valid
from invalid requests, he can use side channels, for ex-
ample, by observing response error message or measur-
ing response times.

In order to protect the servers against these attacks the
newest XML Encryption specification proposes to use
encryption schemes that are not vulnerable to adaptive
chosen-ciphertext attacks: AES-GCM and RSA-OAEP.
However, these schemes are not widely deployed in to-
day’s XML Security frameworks and different measures
have to be applied to vulnerable servers.

Typically, XML Encryption is deployed together with

1In addition, the PKCS#1 standard contains version 2.1, also called
RSA-OAEP. In our paper, with PKCS#1 we refer to version 1.5, unless
defined otherwise.
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XML Signatures, which can be used to protect data in-
tegrity and authenticity. Nevertheless, in many cases, the
XML Signature protection can be circumvented using
XML Signature Wrapping and XML Encryption Wrap-
ping techniques [33]. The idea behind these techniques is
very simple: the attacker moves the signed or encrypted
data to a different document part so that the encrypted
data becomes unprotected. However, the complexity of
the XML structure and XML processing makes it diffi-
cult to prevent from these attacks, which is underlined
by a large body of research [32, 25, 33, 31, 24, 27]. This
allows the attacker to force the server to decrypt unpro-
tected elements, and thus practically execute the chosen-
ciphertext attacks.

Contribution. In this paper, we first summarize possi-
ble countermeasures against the attacks on XML Encryp-
tion. We present problems connected with various con-
figurations XML Encryption is deployed with, and how
to circumvent these countermeasures. We present a sys-
tematic methodology on verifying interfaces using XML
Encryption. Based on this methodology, we implement
an automatic plugin for the WS-Attacker Web Service
penetration testing framework [26] that allows one to au-
tomatically analyze Web Services interfaces and execute
attacks on XML Encryption.

We use our new plugin to analyze different Web Ser-
vices frameworks and their application of XML En-
cryption. One could think that widely used Web ser-
vice frameworks and commercially used XML Secu-
rity Gateways are aware of the threat to XML Encryp-
tion. However, our evaluation shows that it is possi-
ble to attack frameworks like Apache CXF,2 IBM Dat-
apower3 (if not configured correctly) and Axway Gate-
way4. All these frameworks implemented several meth-
ods to protect Web Services from the attacks. The protec-
tion mechanisms by Apache CXF could be successfully
circumvented using XML Encryption and XML Signa-
ture Wrapping techniques. Axway Gateway and IBM
Datapower offer several security configurations. How-
ever, only a few of them could be successfully applied to
prevent the attacks.

Our paper once again shows that usage of insecure
cryptographic algorithms (AES-CBC, RSA-PKCS#1)
in complex scenarios can lead to sustainable and se-
vere consequences (e.g., backward compatibility at-
tacks [17]), which can be used to expose confidential data
even if specific countermeasures are applied. We thus en-
courage protocol and standard designers to use provably

2http://cxf.apache.org
3http://www-03.ibm.com/software/products/en/

datapower-gateway
4http://www.axway.com

secure cryptography and prevent future specification vul-
nerabilities.

Even though our library is currently embedded in the
WS-Attacker framework, the implemented algorithms
are of general importance and can be used to analyze fur-
ther XML Security standards (e.g., SAML) as well.5

Responsible Disclosure. We communicated our find-
ings to the Web Services developers. Vulnerabilities
in Apache CXF are summarized under CVE-2015-0226
and CVE-2015-0227. Security best practices resulting
from our discussions with IBM Datapower developers
are addressed in their Flash alert [1]. Problems reported
to the Axway security team are still under investigation.

2 Foundations

This section describes the foundations needed for au-
tomatically attacking XML Encryption in SOAP-based
Web Services.

In the following, we assume the reader is familiar
with basic concepts behind symmetric and asymmetric
cryptography. Details behind the concrete cryptographic
algorithms (RSA-PKCS#1 [23], AES-CBC [10], AES-
GCM [11]) are not needed to understand this paper. We
stress again that with RSA-PKCS#1, we refer to version
1.5, unless defined otherwise.

2.1 SOAP-based Web Services

The SOAP standard describes the message exchange
with a Web Service [15]. A basic SOAP message con-
sists of an Envelope element with two child elements
named Header and Body. The SOAP Header ele-
ment can contain meta information, for example, times-
tamps, signatures or encryption details. The SOAP Body
element stores the payload that is processed by the Web
Service operation.

Listing 1 depicts a SOAP message example.

<s o a p e n v : E n v e l o p e>
<s o a p e n v : H e a d e r />
<soapenv:Body>

<addUser>
<name>Bob< / name>

< / addUser>
< / soapenv:Body>

< / s o a p e n v : E n v e l o p e>

Listing 1: Exemplary SOAP message invoking an
addUser operation on the Web Service.

5During the development of our plugin, we strictly separated the
code that is generally applicable to XML attacks, and the code that is
only used to apply the attacks on Web Services.
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soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:SignatureMethod

ds:Reference

ds:DigestMethod

ds:DigestValue

ds:SignatureValue

soap:Body

ns1:addUser

ns1:name

URI=”#body”

wsu:Id=”body”

Protected by DigestValue

Protected by SignatureValue

Figure 1: Simplified signed SOAP message example.

2.2 XML Signature
XML Signature is a W3C recommendation that de-
fines a syntax for using digital signatures in XML mes-
sages [16]. It is used for ensuring integrity and authentic-
ity of XML message fragments or even the whole XML
messages.

The signing process undertakes the following flow:
For each XML fragment to be signed, a Reference el-
ement is created and the DigestValue of the element
referenced by the URI attribute is computed using the al-
gorithm specified in the DigestMethod element. Af-
terwards, the SignedInfo element is signed using the
algorithm defined in the SignatureMethod element.

For embedding an XML Signature into a SOAP mes-
sage, the Signature element is placed as a child of a
WS Security header as shown in Figure 1.

2.3 XML Encryption
XML Encryption is a W3C recommendation that defines
structures for ensuring confidentiality on the XML mes-
sage level. Similarly to XML Signature, it is possible to
encrypt whole XML documents or only parts of them.

In most cases, a hybrid encryption scheme is used.
Asymmetric encryption is used to encrypt a symmetric
session key. The session key is then used to encrypt XML
data. Figure 2 gives an example of a SOAP message con-
taining a hybrid ciphertext. This message consists of the
following parts.

soap:Envelope

soap:Header

wsse:Security

EncryptedKey

EncryptionMethod

KeyInfo

CipherData

CipherValue

ReferenceList

Reference

soap:Body

EncryptedData

EncryptionMethod

CipherData

CipherValue

URI=”#EncData”

Algorithm=”rsa-1 5”

Algorithm=”aes128-cbc”

wsu:Id=”EncData”

Symmetric decryption

Asymmetric decryption

Figure 2: Simplified encrypted SOAP message example.

(1.) The EncryptedKey element with an encrypted
session key k.

(2.) The EncryptedData element with payload data
encrypted using the session key k.

A SOAP-based Web Service processes such
an XML document as follows. It locates the
EncryptionMethod and KeyInfo elements
within the EncryptedKey element to retrieve the
used algorithm and asymmetric decryption key. The
server then decrypts the content of the CipherValue
element using RSA-PKCS#1 [23]. After successful
decryption, the content is further used as a session key k.

Afterwards, the server searches for the
EncryptedData elements according to the URI in the
DataReference element. It determines the needed
symmetric algorithm from the EncryptionMethod
element and decrypts the content of the CipherValue
element with the session key k. Finally, the decrypted
payload data is parsed, and put back into the XML
document tree. The server can then process the plain
SOAP message and respond to the client.

If an error occurs during one of the decryption steps or
during the parsing process, the server typically responds
with an error message to the client.
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2.4 WS-Attacker

WS-Attacker is a modular framework for Web Services
penetration testing [26]. It is free, open source, and avail-
able on GitHub.6 WS-Attacker uses a plugin architecture
to execute XML-specific attacks on Web Services auto-
matically. In its current version, WS-Attacker supports
the following attacks: (1.) SOAPAction Spoofing [26],
(2.) WS-Addressing Spoofing [26], (3.) XML Denial-
of-Service Attacks [13], (4.) and XML Signature Wrap-
ping [5].

3 Attacks on XML Encryption

The analyzed attacks on XML Encryption belong to the
family of adaptive chosen-ciphertext attacks. In the fol-
lowing, we give a brief description of an adaptive chosen-
ciphertext attack scenario and present basic ideas behind
these attacks. Afterwards, possible countermeasures and
their problems are summarized.

3.1 Adaptive Chosen-Ciphertext Attacks

In an adaptive chosen-ciphertext attack scenario, the at-
tacker’s goal is to decrypt a ciphertext C without any
knowledge of the (symmetric or asymmetric) decryption
key. To this end, he iteratively issues new ciphertexts
C′,C′′, . . . that are somehow related to the original cipher-
text C. He sends the ciphertexts to a receiver, and ob-
serves its responses. The receiver responses leak specific
information about the validity of the decrypted message.
With each response the attacker learns some plaintext in-
formation. He repeats these steps until he decrypts C.
See Figure 3 for the description of this scenario.

ReceiverReceiver

valid / invalid

valid / invalid

...

SenderSender

AttackerAttacker

CC

CC

C'C'

C''C''

m=dec(C)m=dec(C)

Figure 3: Adaptive chosen-ciphertext attack scenario:
the attacker uses the receiver as an oracle which responds
whether the message was valid or invalid.

Two major examples of these attacks are Vaudenay’s
attack on CBC-based symmetric encryption [35] and

6https://github.com/RUB-NDS/WS-Attacker

Bleichenbacher’s attack on RSA-PKCS#1-based public-
key encryption [23, 4]. Cryptographic details behind
these attacks are not relevant to our paper. It is just neces-
sary to know that the attacks against these cryptographic
algorithms are applicable whenever an oracle is given
that decrypts a ciphertext and responds with 1 (valid) or 0
(invalid) according to the validity of the decrypted mes-
sage. A typical reason for answering with 0 is that the
decrypted message contains an invalid padding. Thus,
the attacks are also known as padding oracle attacks.

Recently, two works on XML Encryption were pub-
lished that are based on the attacks of Vaudenay and Ble-
ichenbacher:

Attack on symmetric ciphertexts in XML Encryp-
tion [19]: The attack on symmetric CBC-ciphertexts
generalizes the idea behind Vaudenay’s padding oracle
attacks [35]. The attacker exploits the behavior of XML
servers, which need to parse XML messages after they
are decrypted. In case the message cannot be parsed, the
server responds with a failure, which gives the attacker
a hint on message validity. This enables to perform a
highly efficient attack and decrypt one encrypted byte by
issuing only 14 server queries on average.

Attack on asymmetric ciphertexts in XML Encryp-
tion [18]: The attack on asymmetric ciphertexts com-
pletely breaks confidentiality of the exchanged symmet-
ric keys encrypted with the RSA-PKCS#1 [23] padding
scheme. The gained symmetric key enables the attacker
to decrypt the symmetric ciphertext in the XML mes-
sage. The attacker can determine validity of the mod-
ified RSA-PKCS#1 ciphertext by an invalid server re-
sponse, which is triggered when, for example, the RSA-
PKCS#1 ciphertext decrypts to a symmetric key of an
invalid length.

3.2 XML Signature as a Countermeasure

The attacks on XML Encryption are only applicable if:

(1.) The server supports RSA-PKCS#1 or Cipher Block
Chaining (CBC) mode of operation.

(2.) The attacker can force the server to process modi-
fied ciphertexts and receive responses based on the
message validity.

The first aspect can be solved by deploying ciphers se-
cure against adaptive chosen-ciphertext attacks. XML
Encryption supports RSA-OAEP and AES-GCM [12].
However, these two ciphers are not well-integrated in
common Web Service frameworks.7 This forces the de-
velopers to use RSA-PKCS#1 and CBC [17].

7For example, only one out of five frameworks analyzed in Sec-
tion 5 implements AES-GCM: Apache CXF.
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soap:Envelope

soap:Header

wsse:Security

Signature

Reference

EncryptedKey

DataReference

soap:Body

EncryptedData

URI=”#signed”

Id=”signed”

Id=”original”

URI=”#original”

Decrypted Ciphertext

Verified Body element

Figure 4: Encrypted SOAP message protected by an
XML Signature.

The second point can be solved by protecting authen-
ticity of the exchanged ciphertexts with XML Signa-
tures. However, this countermeasure brings several prob-
lems [33, 30], which are briefly discussed in the follow-
ing. For this purpose, please consider Figure 4, which
depicts an encrypted and signed SOAP message.

3.2.1 XML Signature Wrapping (XSW)

The XML Signature Wrapping attack was first presented
in 2005 [27]. The basic idea behind this attack is to move
signed elements in a different part of the XML tree and
force the processing logic to evaluate newly defined ele-
ments.

An XML Signature Wrapping attack example applied
on the message shown in Figure 4 is depicted in Fig-
ure 5. In this message, the attacker first moves the
original Body element to the SOAP Header. Af-
terwards, he defines a new Body element, and forces
the EncryptedKey DataReference to point to the
EncryptedData element within the newly defined
SOAP Body. A vulnerable Web Service processes such
a message as follows:

(1.) It first verifies XML Signature over the original
SOAP Body element. Since the content of this ele-
ment was not modified, the signature is valid.

(2.) It decrypts the newly defined EncryptedData el-
ement with Id="oracle", since this element is
referenced in EncryptedKey.

This allows the attacker to insert arbitrary content into
the EncryptedData element and execute the attack

soap:Envelope

soap:Header

wsse:Security

Signature

Reference

soap:Body

EncryptedData

EncryptedKey

DataReference

soap:Body

EncryptedData

URI=”#signed”

Id=”signed”

Verified Body element

Id=”attack”

Id=”oracle”

Id=”original”

URI=”#oracle”

Decrypted Ciphertext

Figure 5: XML Signature Wrapping attack applied on an
encrypted and signed message shown in Figure 4.

on symmetric cipher. Note that applying the XSW at-
tack technique requires to find a valid position to move
the originally signed element [31, 26]. Therefore, the at-
tacker has to send several messages until the message is
accepted.

3.2.2 XML Encryption Wrapping (XEW)

The XML Encryption Wrapping attack follows a simi-
lar principle as XML Signature Wrapping [33, 30] and
enforces the decryption logic to decrypt unauthenticated
XML contents. The attacker achieves this by defining
new EncryptedData in the SOAP Header element,
see Figure 6.

As can be seen in the figure, the attacker does
not move the original SOAP Body element with
its content. This enables the Web Service to ver-
ify and decrypt the original SOAP Body. How-
ever, the Web Service additionally decrypts also
a newly defined EncryptedData element with
Id="oracle", since the EncryptedKey element
contains a DataReference with URI="#oracle".

There are few variations of this attack. It is for
example also possible to define a completely new
EncryptedKey element with a DataReference
URI="#oracle". This is applicable to servers
processing only one EncryptedData for each
EncryptedKey element.
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soap:Envelope

soap:Header

wsse:Security

Signature

Reference

EncryptedKey

DataReference

DataReference

EncryptedData

soap:Body

EncryptedData

URI=”#signed”

Id=”signed”

Verified and decrypted Body element

Id=”oracle”

Id=”original”

URI=”#oracle”

URI=”#original”

Decrypted Ciphertext

Figure 6: XML Encryption Wrapping attack applied on
a signed and encrypted message forces the recipient to
process unverified EncryptedData.

3.2.3 Protecting EncryptedKey Element

EncryptedKey element is typically not protected by
XML Signatures in Web Services scenarios, as shown in
Figure 4. However, by modifying the EncryptedKey
content the symmetric key changes, which leads to a
failure in symmetric data decryption. If the server re-
sponds with unified error messages, the attacker is not
able to distinguish whether an error results from invalid
EncryptedKey or invalid EncryptedData decryp-
tion.

Jager et al. have shown several ways to distin-
guish the source of decryption failure [18]. One
of them is to provoke direct messages by defin-
ing a new EncryptedKey element without any
DataReference. This results in decryption of a sym-
metric key, however this symmetric key is not used fur-
ther for symmetric data decryption. Thus, the server re-
sponds with a failure if and only if the EncryptedKey
is invalid. This allows an attacker to distinguish valid
from invalid asymmetric ciphertexts.

A valid countermeasure against the attacks on
PKCS#1 ciphertexts is to generate a random symmetric
key every time the decryption fails, and use this key for
further processing steps [4]. This prevents from distin-
guishing valid from invalid PKCS#1 ciphertexts in proto-
cols like TLS. However, Jager et al. have shown that this
countermeasure does not apply to XML Encryption [18]:
the attacker can use validity of CBC ciphertexts as a side
channel to distinguish valid from invalid PKCS#1 cipher-
texts. This attack results in several millions of server

queries and becomes impractical. See [18] for more de-
tails.

4 Automatic XML Encryption Attack

We have implemented the described attacks on XML En-
cryption as a plugin for WS-Attacker. This section gives
a high-level overview on our implementation and high-
lights some noteworthy facts and problems we faced dur-
ing our design and implementation phases.

4.1 About Attack Complexity
Before we describe how to break XML Encryption au-
tomatically, we need to spot on the complexity of the
attack and its prerequisites. The root of the complex-
ity is founded in different XML Security components,
for example, timestamps, signed, as well as encrypted
elements. To be more precise, an XML document can
contain XML Signatures that do not protect encrypted
elements but are used to prevent replay attacks. If the
to be decrypted XML document contains a nonce or a
timestamp that is signed, XSW must be applied to this
document part. There can also be XML Signatures that
protect encrypted elements as shown in Figure 4. To be
able to run the XML Encryption attack, XSW or XEW
must be applied on this document part.

Regarding Figure 5, we already presented one possi-
ble XSW vector. This is however only one vector. XSW
is a very complex attack on its own and there can ex-
ist a large number of possible vector adaptations. Each
of these vectors has to be sent to the Web Service in or-
der to find a working solution, which enlarges the attack
complexity by the number of possible XSW vectors. We
refer to [32, 5] for more details.

Let us consider a typical scenario where a SOAP
message includes an encrypted SOAP Body. The
message contains one EncryptedKey and one
EncryptedData element. The EncryptedData el-
ement is protected by an XML Signature, together with
a Timestamp element.8 We assume that the XML Sig-
nature uses ID-based referencing mechanism, which was
described in Section 2.2.9 This assumption allows us to
implicate that the XSW and XEW attacks have always
the same number of attack vectors (=n). This is because
both attacks in general use the same wrapping positions.

If we want to attack the EncryptedData element in
this scenario, we first need to circumvent the XML Sig-
nature that protects the Timestamp. We assume n pos-

8It is also possible that the message contains more encrypted ele-
ments. For simplicity, we omit this in our analysis.

9In addition, XML Signature specification allows one to use a more
complex XPath-based referencing, which is omitted in our analysis, but
is implemented in our plugin.
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sible XSW vectors for this. We then need to circumvent
the XML Signature that protects the EncryptedData
element, which results in further n possibilities. If the
second XSW fails, we can try to use the XML Encryp-
tion Wrapping on the EncryptedData element. We
can again assume n possibilities for this. In total, we
have to send 3 · n messages to a Web Service for de-
tecting whether we can construct an XML decryption
oracle from a Web Service and execute the XML En-
cryption attack. The concrete number of n scales with
the document’s total element number – typical values are
250−5,000 [5], thus we have to send up to 15,000 mes-
sages.

If the XML Signature countermeasures could be suc-
cessfully circumvented, we have to send differently for-
matted ciphertexts to the server. We then have to map
the real server responses to responses produced by an
oracle (valid and invalid). Once the mapping is pro-
vided, the attack can be executed. The complexity of
the XML Encryption attacks was analyzed in [19, 18].
The number of attack queries depends on the encryption
scheme the attack is targeting. The attack on symmet-
ric encryption scheme (AES-CBC) takes about 14 server
queries per decrypted plaintext byte. The attack on RSA-
PKCS#1 ciphertexts allows the attacker to directly de-
crypt the symmetric key, and thus is independent of the
plaintext length. However, it needs to issue from 20,000
to several millions of server queries, depending on the
given side channel (see [18] for more details).

4.2 Attack Workflow

Figure 7 depicts the whole attack workflow. It is struc-
tured into three phases: (1.) detection phase, (2.) avoid
phase, (3.) attack phase.

Detection Phase. The encrypted XML document is the
input for the whole process. In the detection phase, the
document is analyzed offline and security elements are
identified. This includes the identification of signatures,
encrypted document parts, as well as timestamps. The
results are stored in the knowledge pool, so that other
components can access them.

Avoid Phase. The avoid phase is online. Its goal is to
avoid the protection of the input document so that it is
possible to: (1.) send several messages to the Web Ser-
vice (circumvent replay protection) and (2.) manipulate
the encrypted part that is going to be decrypted (circum-
vent its authenticity).

To fulfill these goals, the knowledge pool is first asked
whether the document contains a signed timestamp. In
this case, XSW is performed. More precisely, different

XSW vectors are created in order to update the times-
tamp and sent to the Web Service. If no XSW is possible,
the attack is aborted.

In the following step, the knowledge pool is asked
whether the document contains an encrypted element
that is protected by a signature. If the encrypted element
is protected, further XSW and XEW steps follow. If ei-
ther the XSW or the XEW step is successful, the attacker
is able to modify the encrypted document part, and ex-
ecute an identify oracle step. Otherwise, the attack is
aborted and cannot be applied.

Finally, the last step in this phase identifies the oracle
to perform the attack. Depending on the attacked XML
part (asymmetric or symmetric), XML messages are pre-
pared in order to provoke an error behavior in the Web
Service processing (e.g., invalid RSA-PKCS#1 padding
or unparsable XML character). The generated messages
are then sent to the Web Service. At the end, the attacker
needs to provide a mapping between the response and
the oracle answer 1 and 0. This mapping is saved in the
knowledge pool.

Attack Phase. In the attack phase, the Web Service is
used as an oracle to execute an attack on symmetric [19]
or asymmetric [18] encryption scheme. During the attack
execution, adapted XML ciphertexts are created and sent
to the Web Service. The received responses are evaluated
using the configured knowledge pool and transformed to
a 1 or 0 oracle response.

4.3 Integration into WS-Attacker
According to the fully automatic approach of WS-
Attacker to penetrate Web Services, we developed a WS-
Attacker plugin for XML Encryption attacks. Our plu-
gin is open source as well and is distributed with WS-
Attacker on GitHub.

As shown in Figure 8, the new plugin can be con-
figured with different attack parameters for attacking
XML Encryption. After the detection phase we auto-
matically get an overview of the encrypted elements,
their relations and countermeasures. The collected in-
formation has effect on the further configuration of the
avoid phase and attack phase. The first step is to choose
an encrypted element from the list Elements. Then we
have to choose which element we would like to attack
(isAttackPayload). In our example, this could be the
EncryptedData element or the EncryptedKey el-
ement. Furthermore, we have the possibility to fine-tune
the configuration in order to reduce the complexity of the
attack, and thus reduce the total number of messages sent
to the Web Service:

I Oracle Type: This setting allows one to define a spe-
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Identify Security
Elements

Signed Timestamp?

XSW

Signed Encrypted
Element?
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XEW

Identify Oracle
Apply XML
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Encrypted
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fail

no

yes

su
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fail
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s

fail

success

fail

Decrypted
XML
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Figure 7: The attack workflow consists of three phases: Detection phase analyses the encrypted XML message, Avoid
phase circumvents XML Signature protection, and Attack phase executes the attack.

Figure 8: Our WS-Attacker XML Encryption plugin automatically detects encrypted elements and offers a user to
configure oracle and attack properties.

cific oracle type, for example an error message or
a timing oracle, or to test all known oracle types
(which increase the duration of the attack work-
flow). Currently, timing oracle is not yet imple-
mented.

I Wrapping Attack: Setting to use only XSW or XEW
attack in order to prefer one specific type. Other-
wise, both wrapping attack types are used.

I StringCompare and Threshold Errors: Different
server responses can be mapped to the same ora-
cle response. This is because real server responses
can include message specific data like nonces or

timestamps. In order to omit such comparison prob-
lems, the algorithm uses different string comparison
methods (e.g., Levensthein or Dice coefficient) [34].
During the attack execution, the comparison meth-
ods are used to compare the actual server response
with the ones saved in the knowledge pool to get
the 1/0 oracle mapping. In addition, the setting al-
lows one to choose from the implemented similarity
metrics and define specific similarity thresholds. A
similarity threshold defines a similarity value that
must be achieved to map a server response to a 1/0
oracle response from the knowledge pool.
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I PKCS#1 Strategy: As discussed in Sec-
tion 3.2.3, there are different strategies to
provoke error messages while applying an at-
tack on EncryptedKey. One of them is a
NoKeyRef strategy. This strategy defines a new
EncryptedKey element that is not used further
by any EncryptedData. Furthermore, the
setting allows one to choose a CbcWeak strategy,
which exploits a combination of weaknesses in
RSA-PKCS#1 and AES-CBC, more details can be
found in [18].

5 Practical Evaluation

We used our implemented WS-Attacker plugin for au-
tomatically attacking different XML Encryption imple-
mentations. We first analyzed default server configura-
tions with XML Signature and XML Encryption. After
we found a successful attack, we further investigated the
server behavior and the possibilities for extended coun-
termeasures. The summary of our results is reported
in Table 1 and provides information on the number of
server queries and the applied attack type (XSW / XEW
/ NoKeyRef / Direct). Direct attack type indicates that
there is no attack strategy needed and the attack works
directly (without XSW / XEW / NoKeyRef).

Please note that attacks on PKCS#1 ciphertexts are al-
ways applicable when the attacks on CBC ciphertexts are
possible, as discussed in Section 3.2.3. However, the at-
tacks become impractical, since the attacker needs to is-
sue several millions of server queries. Thus, we do not
consider them in our practical evaluation.

5.1 Apache Axis2

Web Service security standards in Apache Axis2 are pro-
vided by the Apache Rampart library. For testing pur-
poses, we used the delivered Apache Rampart samples 5
and 6, which apply a configuration with XML Encryp-
tion and XML Signature.

5.1.1 PKCS#1 Attack

The attack on PKCS#1 ciphertexts was applicable only to
an older Apache Axis2 1.6.0 version, and needed about
55,000 server queries to decrypt a symmetric key. The
current version (1.6.2) was not vulnerable to the attacks.
This is because the underlying libraries of Axis2 1.6.2
generate a random symmetric key in case the PKCS#1
decryption fails. This prevents from successful attacks,
as discussed in Section 3.2.3.

5.1.2 CBC Attack

Both configurations could be attacked using XEW. We
are not aware of any configuration that would protect
against these attacks in the current Apache Axis2 ver-
sion.

5.2 Apache CXF

For our tests we used a sample delivered by one of the
Apache CXF developers. The example Web Service ap-
plies XML Signature and XML Encryption.

5.2.1 PKCS#1 Attack

The PKCS#1 attack could be applied thanks to an
XSW attack combined with a NoKeyRef strategy.
This means the EncryptedKey contained no refer-
ence to EncryptedData. In case of an incorrect
EncryptedKey, a random symmetric key was gener-
ated in order to prevent further side channels [18]. The
algorithm looked for the first EncryptedData struc-
ture referenced by the EncryptedKey and generated
a random symmetric key for this EncryptedData.
Since there was no EncryptedData referenced in our
attack message, the server attempted to generate a ran-
dom key for a default AES-128 algorithm. However, the
server incorrectly generated a key of a 128-byte length
(instead of 128 bits), which led to an internal exception
and a different server response.

We reported this problem to the developers, who an-
alyzed this incorrect behavior. The problem was fixed
in versions 1.6.17 and 2.0.2 of the underlying WSS4J li-
brary.

5.2.2 CBC Attack

The default configuration could be attacked using XSW
and XEW attacks.

In addition, we tested the server for fur-
ther countermeasures. Apache CXF al-
lows one to apply a configuration attribute
requireSignedEncryptedDataElements
= "true", which ensures that the authenticity of
the encrypted content is verified prior to decryption.
With our new attack plugin, we found out that this
countermeasure could be circumvented using an XSW
attack.

We again reported this vulnerability to the Apache
CXF developers. The XSW problem was then fixed
in Apache CXF versions 1.6.17 and 2.0.2 of the un-
derlying WSS4J library so that configuration attribute
requireSignedEncryptedDataElements =
"true" can now be used securely.
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Framework PKCS#1 Attack CBC Attack Countermeasures
Type Total Queries Type Queries / Byte Applicable

Apache Axis2 1.6.2 – XEW 14 no
Apache CXF 2.7.10 XSW+NoKeyRef 46,000 XSW/XEW 14 yesa

Axway Gateway 7.3.1 Direct 20,000 XSW/XEW 23b yesc

IBM Datapower XI50 – XEW 23b yesd

Microsoft WCF – – yes

Table 1: Evaluation results report attack application possibilities on the investigated XML security frameworks, in-
cluding the number of requests needed to decrypt a ciphertext.

aAfter the framework was patched against the issues we reported.
bThe different number of attack queries resulted from a different XML parsing technique applied in the gateway. For this reason, we needed to

extend the original attack algorithm.
cWith specific XPath expressions and unifying error messages.
dWith specific XPath expressions.

5.3 Axway Gateway

For deployment of XML Signature and XML Encryp-
tion, Axway Gateway provides several configurations.
These configurations allow one to enforce which ele-
ments have to be verified and which elements have to
be decrypted. We first applied the default configura-
tion, which defines that arbitrary elements have to be de-
crypted and signed. Afterwards, we analyzed possible
countermeasures.

5.3.1 PKCS#1 Attack

It was possible to apply a direct attack using differences
in error messages, see Figure 9. We found out that the
server responded with a unified SOAP error message in
a case we sent an invalid EncryptedKey. On the other
hand, an EncryptedKey with a correctly formatted
PKCS#1 message led to a simple HTTP Error mes-
sage. This was because the server decrypted a symmet-
ric key, which was of an invalid length so it could not
be used to decrypt EncryptedData, or the decrypted
symmetric key had a valid length but EncryptedData
was decrypted to an unparsable content. This allowed us
to distinguish valid from invalid messages and apply a
Bleichenbacher attack directly.

5.3.2 CBC Attack

As mentioned above, the server responds with differ-
ent error messages in cases where EncryptedData
decryption fails. In order to modify ciphertexts in
EncryptedData elements, XSW or XEW attacks
were necessary. This allowed us to distinguish error mes-
sages and apply an attack against the symmetric encryp-
tion scheme.

As can be seen in the table, the attack needs about 23
queries to decrypt one byte. This number differs from

the original paper [19] and results from a different XML
parsing approach used in the gateway. More precisely,
the parser accepts decrypted content if and only if the
content contains at least one valid character (in com-
parison to an empty string, which is accepted by the
parsers analyzed in the original paper). For this reason,
we needed extend the original algorithm to handle this
stricter XML parsing property, which resulted in a higher
number of attack requests. Its description is behind the
scope of this article.

5.3.3 Countermeasures

Axway Gateway offers several XPath expressions [6] to
define concrete positions of signed and encrypted ele-
ments. However, most of these default expressions are
insecure and allow us to apply XSW or XEW attacks.

In order to defend the CBC attack, it is possible to
deploy the following secure configuration and define (see
Figure 10):

I What must be signed?
/soap:Envelope/soap:Body to ensure that
all the Body elements are signed.

I Nodes to decrypt?
/soap:Envelope/soap:Body/enc:
EncryptedData to ensure that only
EncryptedData elements inside of the (signed)
Body element is decrypted. Others are ignored.

This is however not a solution for the PKCS#1
attack, since the attacker is still able to modify
EncryptedKey elements. In order to protect from this
attack, the user has to additionally unify the outgoing er-
ror messages. Another countermeasure would be to gen-
erate random symmetric keys in case the PKCS#1 de-
cryption fails, as proposed in [18] and deployed by other
analyzed frameworks.
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Figure 9: WS-Attacker shows the decrypted plaintext after the successful attack on the Axway Gateway.

Figure 10: Countermeasures applicable in the Axway
Gateway.

5.4 IBM Datapower

We tested IBM Datapower XI50 with the Firmware
XI50.6.0.0.2. Similarly to the Axway Gateway,
IBM Datapower offers several configurations combin-
ing XML Encryption with other security mechanisms.
We first used the default configuration with XML Sig-
nature and XML Encryption for SOAP messages, which
was vulnerable to the attack on CBC ciphertexts. After-
wards, we analyzed possible countermeasures together
with IBM developers.

5.4.1 PKCS#1 Attack

We were not able to apply the attack on PKCS#1 cipher-
texts. We analyzed the Datapower server logs and found
out that Datapower generates a random symmetric key
every time the PKCS#1 decryption fails. This makes the

Figure 11: In order to restrict decryption of
EncryptedData elements, Selected Elements
configuration has to be used.

PKCS#1 attacks impractical, see Section 3.2.3.

5.4.2 CBC Attack

By default, IBM Datapower decrypts all the
EncryptedData elements in the document. If
the decryption of an EncryptedData element fails,
the server just responds with the original encrypted con-
tent. Otherwise, the server proceeds with the decrypted
message and its response differs. This allowed us to
apply attacks on CBC ciphertexts. To overcome the
XML Signature protection, we used the XEW technique.

As can be seen in Table 1, we needed about 23 server
queries to decrypt one plaintext byte. This is because
IBM Datapower uses a parsing mechanism that is similar
to the one used by Axway Gateway.

5.4.3 Countermeasures

We discussed several countermeasures with IBM devel-
opers. It turned out that it is possible to restrict positions
of EncryptedData elements that are going to be de-
crypted. In order to achieve this, the server administra-
tor has to choose Selected Elements (Field-Level) in the
decryption configuration, see Figure 11. Afterwards, he
has to define an XPath for the element that is going to
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Figure 12: Specific positions for EncryptedData ele-
ments, which are going to be decrypted, can be restricted
using XPath.

decrypted, see Figure 12. In addition, proper XPath ex-
pressions have to be defined for XML Signature valida-
tion step in order to protect authenticity of the encrypted
data.

5.5 Microsoft WCF

Microsoft WCF was not vulnerable to the investigated
attacks.

This framework allows a developer to define
three different protection levels: EncryptAndSign,
Sign, Unprotected. For our tests we used the
EncryptAndSign profile, which applies a very strict
XML processing:

I There is no possibility of including an additional
EncryptedKey or EncryptedData element,
to enforce decryption.

I Signatures are strictly verified only on specified
fields. There is no possibility to apply an XSW at-
tack.

I The error messages do not reveal any confidential
data relevant to our attacks.

The tests on WCF were complex due to the fact that
the generated messages include timestamps and mes-
sageIds so the messages could be used only once.

Thereby, Microsoft WCF provides a very good exam-
ple on how to handle WS-Security: the configuration is
secure by default, without a need of complex developer
steps.

6 Related Work

Research related to this paper can be divided into three
parts. (1.) research on the analysis of Web Services se-
curity in general, (2.) specific investigation in the field
of XML Encryption, and (3.) further adaptive chosen-
ciphertext attacks.

Security of Web Services. The security of Web Ser-
vices was analyzed manually and without tool support
in many researches [21, 20, 22]. In 2005, McIntosh
and Austel found the first XML Signature Wrapping At-
tack [27]. This attack concept was later adopted on Ama-
zon’s Web Services [14, 31], but without any automatism
or tool support. In 2012, WS-Attacker was developed as
a first tool supporting fully-automatic Web Service spe-
cific attacks [26], and was then extended by a plugin for
Denial-of-Service [13] and XML Signature Wrapping at-
tacks [5].

XML Encryption. This paper is based on the attacks
on symmetric and asymmetric encryption schemes in
XML Encryption [19, 18]. These works cover crypto-
graphic background behind the attacks and explain how
to apply them in simple scenarios where XML Signatures
are used to protect message authenticity. A complete
analysis of countermeasures needed to be applied against
these attacks was published in [33]. This work builds
one important foundation to design our fully-automatic
approach for the WS-Attacker plugin.

As a response to the attacks, W3C working group in-
cluded an AES-GCM algorithm into the newest XML
Encryption 1.1 specification and recommends to use
RSA-OAEP. However, an analysis of Jager et al. re-
vealed that there are still possibilities for backwards
compatibility attacks, even if these secure cryptographic
algorithms are supported [17]. The only prerequisite for
the attacks is that the server also supports RSA-PKCS#1
v1.5 and CBC along with the secure algorithms. Back-
wards compatibility attacks are not covered by our plu-
gin.

Adaptive Chosen-Ciphertext Attacks. In 1998, Ble-
ichenbacher published an attack on RSA-PKCS#1 en-
cryption scheme [4]. He described the basic algorithm
behind the attack and how it can be applied to the SSL
protocol if certain oracle is given. In [3] Bardou et
al. improved Bleichenbacher’s attack, and applied it to
PKCS#11-based environments, e.g. Hardware Security
Modules. A variant of Bleichenbacher’s attack was ex-
plored in [7] in the context of EMV signatures (where
the same RSA key pair may be used for both signa-
ture and encryption functions). In 2014, Meyer et al.
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showed that is still possible to apply Bleichenbacher’s at-
tack against real TLS servers [28]. To adopt the above at-
tacks, the authors used different error messages and tim-
ing side channels. Very recently, Zhang et al. showed
that specific cross-tenant side channels allow for appli-
cation of performant Bleichenbacher attacks in PaaS en-
vironments [36]. In their attack scenario, the attacker
exploits a specific property of container-based tenant iso-
lation, which allows him to share a CPU with his victim
and apply flush-reload attacks.

In 2002, Vaudenay presented an attack on the Cipher
Block Chaining (CBC) mode of operation [35]. The at-
tack is possible due to a CBC property called malleabil-
ity which allows an attacker to flip specific ciphertext
bits without knowing the secret key. Strict structure of
the CBC padding is used to construct an oracle which
responds with 1 or 0 according to the padding validity.
Thus, the attack is called a padding oracle attack. The
padding oracle attack was later used to attack further
standards with improved techniques, e.g. IPSec [8, 9],
CAPTCHAs and the .NET framework [29], or TLS [2].

7 Conclusion

A deep knowledge of XML Security standards and ap-
plied cryptography is necessary to understand the at-
tacks on XML Encryption. For developers and security
testers, who use XML Encryption, it is thus hard to de-
cide whether a Web Service is vulnerable or not.

Our paper presented a methodology to verify the ex-
istence of vulnerabilities in XML Encryption interfaces
and automatically exploit possible attacks. As a result,
we created an open source plugin for the penetration test-
ing framework WS-Attacker. We hope it will enable even
developers with basic XML and cryptographic skills to
easily verify their implementations.

In a future work, our code could be extended to XML
scenarios beyond Web Services, for example, to SAML,
or even to JSON Web Encryption.
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