
On the Security of TLS 1.3 and QUIC
Against Weaknesses in PKCS#1 v1.5 Encryption

Tibor Jager
Horst Görtz Institute

Ruhr University Bochum
tibor.jager@rub.de

Jörg Schwenk
Horst Görtz Institute

Ruhr University Bochum
joerg.schwenk@rub.de

Juraj Somorovsky
Horst Görtz Institute

Ruhr University Bochum
juraj.somorovsky@rub.de

ABSTRACT
Encrypted key transport with RSA-PKCS#1 v1.5 is the most com-
monly deployed key exchange method in all current versions of the
Transport Layer Security (TLS) protocol, including the most re-
cent version 1.2. However, it has several well-known issues, most
importantly that it does not provide forward secrecy, and that it is
prone to side channel attacks that may enable an attacker to learn
the session key used for a TLS session. A long history of attacks
shows that RSA-PKCS#1 v1.5 is extremely difficult to implement
securely. The current draft of TLS version 1.3 dispenses with this
encrypted key transport method. But is this sufficient to protect
against weaknesses in RSA-PKCS#1 v1.5?

We describe attacks which transfer the potential weakness of
prior TLS versions to two recently proposed protocols that do not
even support PKCS#1 v1.5 encryption, namely Google’s QUIC pro-
tocol and TLS 1.3. These attacks enable an attacker to impersonate
a server by using a vulnerable TLS-RSA server implementation as
a “signing oracle” to compute valid signatures for messages chosen
by the attacker.

The first attack (on TLS 1.3) requires a very fast “Bleichenbacher-
oracle” to create the TLS CertificateVerify message before
the client drops the connection. Even though this limits the prac-
tical impact of this attack, it demonstrates that simply removing
a legacy algorithm from a standard is not necessarily sufficient to
protect against its weaknesses.

The second attack on Google’s QUIC protocol is much more
practical. It can also be applied in settings where forging a sig-
nature with the help of a “Bleichenbacher-oracle” may take an ex-
tremely long time. This is because signed values in QUIC are inde-
pendent of the client’s connection request. Therefore the attacker
is able to pre-compute the signature long before the client starts a
connection. This makes the attack practical. Moreover, the impact
on QUIC is much more dramatic, because creating a single forged
signature is essentially equivalent to retrieving the long-term secret
key of the server.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813657.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; K.4.4 [Computers and Society]: Electronic Commerce –
Security

Keywords
Cross-protocol attack; chosen-ciphertext attack; TLS

1. INTRODUCTION
TLS and PKCS#1 v1.5 encryption. Transport layer security (TLS)
is the most important security protocol on the Internet. It is very
flexible, as it allows two communicating parties to negotiate the
cryptographic algorithms used for a TLS connection at the begin-
ning of each session. For each new TLS session, the peers may
choose from different selections of cryptographic algorithms for
key establishment, symmetric encryption, and message authentica-
tion. The current TLS version is 1.2 [12], it was published in 2008.

All current TLS versions include RSA-based PKCS#1 v1.5 en-
cryption [24]. Even though this scheme has been updated [21,
19] and has been subject to many attacks [7, 22, 9, 18, 4, 28,
36] (in TLS and other applications), it is the most commonly used
method for TLS key establishment in practice. Moreover, the only
mandatory-to-implement cipher suite in TLS 1.2 is based on this
encryption scheme.
TLS 1.3. Version 1.3 of TLS is currently under development [13].
It is the first version which dispenses with PKCS#1 v1.5 encryp-
tion. There are several reasons for this, including the lack of for-
ward secrecy, that the PremasterSecret of previous TLS ver-
sions may depend only on client randomness, and that PKCS#1
v1.5 encryption has proven to be extremely difficult to implement
securely in TLS [7, 22, 4, 28].

In this paper, we analyze the security of the current version of
the TLS 1.3 draft against weaknesses in PKCS#1 v1.5 encryption.
We show that even though this encryption scheme is not even used
in TLS 1.3, the coexistence with older TLS versions may enable
cross-protocol attacks [33, 26].
Google’s QUIC protocol. Quick UDP Internet Connections (QUIC)
[32] is a key-exchange protocol based on UDP connections, which
aims at reducing the relatively high latency of protocols like TLS.
The latency in TLS(-over-TCP) stems from the handshake mes-
sages (for both TCP and TLS) to be sent before the first encrypted
message can be transmitted. QUIC’s goal is to reduce the number
of “round trips” for key establishment to a minimum, while provid-
ing all security guarantees expected from a key-exchange protocol
on the Internet.

QUIC is currently considered experimental, but put forward by
Google and implemented in recent versions of Google’s Chrome
web browser, the Opera browser, and available on Google web
servers. Google has announced that QUIC will be proposed as an
IETF standard.1 Currently, draft version 01 is available.2

Relevance and recurrence of Bleichenbacher attacks. At Crypto
1998 [7] Bleichenbacher presented a seminal attack on RSA-based
PKCS#1 v1.5 encryption. Essentially, it assumes the existence of
an “oracle” that allows an attacker to distinguish “valid” from “in-
valid” PKCS#1 v1.5-padded ciphertexts. Such an oracle may in
practice be given by a TLS server, which responds with appropriate
error messages, or allows in any other way to tell whether a given
ciphertext has a “valid” padding or not (for instance by observing
the timing behavior of the server when processing the ciphertext).
Bleichenbacher showed that such an oracle is sufficient to decrypt
PKCS#1 v1.5 ciphertexts. Today there exist many variants and re-
finements of this attack [7, 22, 9, 18, 4, 28, 36], the TLS RFCs [10,
11, 12] give recommendations for implementing PKCS#1 v1.5 en-
cryption securely (which are however kept quite general).

One may think that seventeen years after the publication of Ble-
ichenbacher’s attack we should have developed a very good under-
standing of this weakness, and that at least important, widely-used
applications that still use this scheme (possibly for legacy reasons,
like TLS) finally implement it securely. However, there is vast evi-
dence that this belief is false:

1. Increasingly sophisticated analysis techniques and new side
channels allow one to apply Bleichenbacher-like attacks in
settings where these attacks were previously believed to be
impossible. A recent example was described at USENIX Se-
curity 2014 by Meyer et al. [28]. The authors discover new
timing-based side channels that allow one to apply Bleichen-
bacher’s attack to widely-used TLS implementations, like
Java’s JSSE or hardware security appliances using Cavium’s
Nitrox SSL accelerator. Similar new attack techniques are
developed perpetually. Further examples include attacks on
Europay-Mastercard-Visa (EMV) [9], XML Encryption [18],
and more attacks on TLS implementations [22, 4].

2. New applications provide new opportunities to adversaries,
by enabling side channels and attack techniques that have not
been considered before. For instance, at ACM CCS 2014,
Zhang et al. [36] showed very efficient Bleichenbacher-type
attacks in Platform-as-a-Service (PaaS) applications. These
attacks exploit the fact that, due to virtualization of machines,
an attacker may have access to the same physical resources as
the victim, which is different from the classical network at-
tacker model. Even though the application considered in [36]
implemented all existing countermeasures against Bleichen-
bacher’s attack, and thus was considered not exploitable, the
new attack technique circumvents all these countermeasures.

Please note also that the efficiency of a Bleichenbacher at-
tack may depend on the attacker model: In [28], a network
attacker model was used against OpenSSL. An answer from
the oracle could only be used with low probability 2−40 to
advance the Bleichenbacher attack by one step. In contrast,
Zhang et al. [35] achieve a significantly better success prob-
ability of roughly 2−16 against the same OpenSSL version,
because their cross-tenant attacker model allowed the attacker
to “look inside the PKCS#1 v1.5-checking machine”.

1http://blog.chromium.org/2015/04/
a-quic-update-on-googles-experimental.html
2http://tools.ietf.org/html/
draft-tsvwg-quic-protocol-01

3. While Bleichenbacher’s attack and its early applications [7,
22] were originally rather inefficient, much faster versions
are known today [25, 4]. This makes such attacks applicable
in settings where they were previously considered infeasible.

Thus, in summary, PKCS#1 v1.5 encryption has proven to be
extremely difficult to implement securely. Considering all possible
side channels (some of which might not even be conceivable today)
seems virtually impossible.
Transferring the weaknesses of PKCS#1 v1.5 encryption to mod-
ern protocols. For the reasons explained above, it seems a wise de-
cision that PKCS#1 v1.5 encryption is not used in QUIC and will
finally be removed from TLS in version 1.3. However, the question
that motivates our research is the following:

Is this sufficient to protect TLS 1.3 and QUIC against the
weaknesses of PKCS#1 v1.5 encryption?

We analyze the security of both protocols under the hypothe-
sis that Bleichenbacher-like attacks on PKCS#1 v1.5 encryption in
TLS versions prior to 1.3 will remain a realistic threat in the future,
and study the impact of such attacks on TLS 1.3 and QUIC.

For the analysis of TLS 1.3, we consider a setting where there is
a TLS clientC that supports only TLS 1.3, and thus may expect that
it is immune against weaknesses in PKCS#1 v1.5 encryption. The
client connects to a server S, which offers TLS 1.3, and at least one
previous TLS version which allows to use PKCS#1 v1.5 encryp-
tion, say TLS 1.2. Note that today’s TLS servers are typically not
configured to offer only the most recent TLS version 1.2 (or any
other single version), but they usually offer many TLS versions in
parallel, to maximize compatibility with different TLS clients. Ac-
cording to SSL Pulse [1], TLS 1.2 and 1.1 are supported by about
60%, and TLS 1.0 is supported by nearly 100% of the TLS servers
analyzed in April 2015. We consider a setting where the server uses
the same RSA certificate for both TLS versions.3 We show that a
vulnerability of the old TLS version against Bleichenbacher’s at-
tack gives rise to a man-in-the-middle attack on TLS 1.3, which
allows an attacker to impersonate S towards C.

The attack (see Figure 1) is based on the observation that Ble-
ichenbacher’s attack enables the attacker to perform an RSA secret-
key operation without knowing the secret RSA key. It exploits that
this is sufficient to compute a “forged” RSA signature, which in
turn is sufficient to impersonate S towards C in TLS 1.3 (and also
in previous TLS versions). A similar technique was used in [9, 17]
to compute forged RSA signatures, but to attack different applica-
tions. See Section 6 for a detailed description.

The analysis of QUIC is nearly identical. That is, we consider a
setting with a client which implements only QUIC (and thus may
assume to be immune against Bleichenbacher-attacks on TLS), a
server which implements QUIC and some TLS version ≤ 1.2, say
for interoperability or backwards-compatibility reasons, and where
TLS server uses an RSA certificate.
The potentially devastating impact on QUIC. A Bleichenbacher-
attack against a TLS server prior to version 1.3 usually allows to de-
crypt the PremasterSecret of a session, which can be assumed
to be unique for each session. Moreover, in most practical cases
(where performing the Bleichenbacher attack takes longer than the
life time of the TLS session) the attacker would only be able to read
encrypted messages after the session has finished, but usually not
be able to impersonate the server or to inject adversarially-chosen
messages. In our attack against TLS 1.3, the attacker is able to im-
personate the server, however, the attacker has to compute a new
3We explain below why this is a very reasonable assumption.

TLS-(EC)DHE (TLS 1.3)

TLS
Client
TLS

Client
MITM
Server
MITM
Server

TLS
Server
TLS

Server

Bleichenbacher / Manger Attack
TLS-RSA (TLS 1.2)

ClientHello

ServerHelloCertificateServerHelloDone

ClientKeyExchange
Alert / No Alert

ClientKeyShare

ServerHello

ServerKeyShare

CertificateVerify

ClientHello

(Client-) Finished

(Server-) Finished

Certificate

ClientHello

ServerHelloCertificateServerHelloDone

ClientKeyExchange

Alert / No Alert

...

sigsig

 C C S S A A

Figure 1: Simplified illustration of the MITM attack against TLS-(EC)DHE-RSA.

signature by mounting a Bleichenbacher-attack for each attacked
TLS session, which may be infeasible if this step takes too long.

In contrast, an attacker which obtains a validly signed QUIC
SCFG (serialized server config) message, by performing Bleichen-
bacher’s attack once, is able to impersonate the server in an ar-
bitrary number of sessions and against an arbitrary number of
clients, until the SCFG message has expired. Note that the ex-
piry date is also chosen by the attacker, thus, this date can be as
far ahead in the future as the attacker likes. For the attacker this
is essentially equivalent to obtaining the server’s secret key — by
performing only a single Bleichenbacher attack.

Thus, in the realistic setting where a web server uses an X.509
certificate for PKCS#1 v1.5 encryption in TLS, and where this
same (valid, legitimate) certificate is accepted by a TLS 1.3/QUIC
client has a serious but still limited impact on the security of TLS,
but a completely devastating impact on the security of QUIC. Note
that this works even if the real QUIC server actually uses a com-
pletely different certificate.
Cross-Ciphersuite Attacks. At CCS’12, a cross-ciphersuite attack
for TLS was presented [26], and at CCS’14, a formal model for this
type of attack was proposed [5]. Both papers have extended the
research on cryptographic protocols to cover more practically rele-
vant aspects. The present paper can be seen as an extension to this
line of research, by proposing the first cross-ciphersuite-family at-
tack from TLS-RSA to TLS-DHE, the first cross-protocol-version
attack (TLS 1.2 to TLS 1.3), and even the first cross-protocol at-
tack (TLS to QUIC). Moreover, while the success probability of
the attack from [26] was fixed to 2−40, the success probability of
our attack depends on the environment and may even be completely
realistic against QUIC.
Practical evaluation. We conducted experiments to assess the fea-
sibility of this attack. There are no reference implementations of
TLS 1.3 yet available, and for QUIC there is only experimental
server code available, which unfortunately does not support signed
SCFG messages. However, note that the approach extends easily
to previous TLS versions, as a cross-ciphersuite attack. Therefore
we analyzed a server which implements only TLS version 1.2, but
offers two different cipher suites, one from the TLS_RSA family
which is vulnerable, and one from the TLS_ECDHE_RSA family
(to mimic TLS 1.3), using the same RSA key for both cipher suites.

We consider a client that accepts only TLS_ECDHE_RSA cipher
suites. This provides essentially the conditions required to analyze
the attack principle described above.

In order to simulate a vulnerability of the TLS_RSA cipher suite,
we patched the OpenSSL 1.0.2 TLS implementation,4 such that
it becomes vulnerable to an adoption of Manger’s attack [25] to
PKCS#1 v1.5 encryption, which is a very efficient “Bleichenbacher-
type” attack. The man-in-the-middle attacker is written in Java 7.
We tested the attack with different web browsers (including Mi-
crosoft’s Internet Explorer 11 on Windows 7, Apple’s Safari 7.1.3
on OS X 10.9.5, and Firefox 35 and Google Chrome 39 on Ubuntu
Linux 14.04. We also tested the OpenSSL TLS client (used, for
instance, in machine-to-machine TLS communication) on Ubuntu
Linux 14.04.

The experimental results show that the attack can be performed
within 30 seconds (for 1024 bit moduli). While this appears very
practical, we caution that our analysis is based on a modified
OpenSSL server S that provides a very strong, “ideal” oracle that
allows one to distinguish valid from invalid ciphertexts. For in-
stance, the recent Bleichenbacher-attacks of Meyer et al. [28] take
at least about 20 hours. Thus, these attacks should not (yet) be
considered practical.

For QUIC the situation is completely different, because in this
case the Bleichenbacher-attack can be executed long before the vic-
tim client initiates a session, which makes the attack truly practical
even if it requires 20 hours (or more) of precomputation.
The difficulty of preventing this attack. A first obvious solution
would be to either deactivate previous TLS versions, or at least the
vulnerable cipher suites in these versions. However, the former will
usually not be possible, because server operators may want to keep
older cipher suites for compatibility with older clients. The latter is
not possible without breaking standard-conformance, because the
only mandatory-to-implement cipher suites in TLS 1.1 and 1.2 are
based on PKCS#1 v1.5-encrypted key transport. Moreover, certain
important browsers (in particular legacy browsers) may possibly
not implement QUIC. Thus, the need for backwards compatibility
and interoperability in practice makes it impossible to employ these
countermeasures.

4OpenSSL 1.0.2 (22-Jan-2015), www.openssl.org

Moreover, note that the attack is based on the assumption that the
server uses the same RSA-certificate in TLS 1.3/QUIC as in older
TLS versions, and cipher suites with either RSA encryption or RSA
signatures. One generic and cryptographically clean approach for
preventing this attack is therefore to enforce key separation, that
is, to use different keys (and thus different certificates) for differ-
ent cipher suites and protocol versions. While this is in theory the
cleanest solution, it has many drawbacks that make it impractical.

First of all, note that basic X.509 RSA certificates do not contain
any information for which algorithm (or TLS version or TLS cipher
suite) they shall be used. Thus, even if a server uses a different RSA
certificate in TLS 1.3 or QUIC than in other protocol versions, a
client would not be able to tell whether a given certificate really
belongs to version 1.3. Thus, an attacker would be able to use the
certificate from the earlier TLS version in a TLS 1.3/QUIC session
with the client, which circumvents the key separation intended by
the server.

The best practical solution is to use different keys for encryption
and signature verification. X.509 certificates contain a key usage
extension field, which can be used to indicate that a given certifi-
cate can be used only for encryption, or only for signing, etc. Thus,
a server operator may use a “sign-only” RSA certificate for TLS
1.3/QUIC, and an “encrypt-only” certificate for previous TLS ver-
sions. A technical hurdle for realizing key separation in TLS is
that there is no obvious way to configure the popular TLS server
implementation OpenSSL (also used in Apache’s mod_ssl, for
instance) such that different RSA certificates are used for differ-
ent TLS versions or different cipher suite families. Moreover, the
popular web server nginx allows one to deploy only a single cer-
tificate. This makes it difficult for users to realize key separation.

Finally, note that any solution that requires the server to use
multiple different certificates leads to a more complex (and thus
more error-prone) server configuration and higher costs, in particu-
lar when expensive extended validation certificates are used. Many
server operators may want to avoid this.
Generality of the attack principle. We note that a similar attack
would work for any protocol whose security is based on RSA signa-
tures, under the same preconditions that we require for our attacks
on TLS 1.3 and QUIC. Thus, TLS 1.3 and QUIC can be seen as
particular case studies, which demonstrate the practical relevance
of the more general attack principle. The core idea behind the at-
tack presented in this paper can be seen as a corollary of the attacks
presented in [17, 28]. The main novelty is the application to TLS
1.3 and QUIC.

Note that the attack on QUIC is much more efficient than the
attack on TLS 1.3, due to the subtle difference that QUIC allows
the server to use the same signature for many protocol sessions,
while TLS 1.3 requires to compute the signatures over the random
nonces chosen by both communicating parties, which requires a
fresh signature for each protocol session, which makes the attack
less efficient and therefore less practical. Thus, protocols of the
latter type can be seen as more “robust” against this type of attacks,
which we consider as an interesting insight.

2. RELATED WORK
In 1996, Wagner and Schneier described the first cross-protocol

attack on TLS [33] (called “key exchange algorithm rollback at-
tack” in this paper). The authors made the observation that the
digital signature over a key exchange message in TLS does not
cover the negotiated cipher suite. This enabled an attacker to take
a signed key exchange message from a previous TLS_DHE_RSA
connection, and let a client interpret it as a TLS_RSA_EXPORT

key exchange message. Wagner and Schneier explain that a TLS
client misinterpreting the TLS_DHE_RSA parameters as crypto-
graphically weak TLS_RSA_EXPORT parameters could be vul-
nerable to a man-in-the-middle attack. However, this attack was
described only theoretically and never applied in practice against
a real TLS client. The main problem is that the number of pa-
rameters used for TLS_DHE_RSA and TLS_RSA_EXPORT cipher
suites differ, which makes the signature invalid. A more precise
analysis is given in [26].

At ACM CCS 2012, Mavrogiannopoulos et al. [26] described a
cross-protocol attack on TLS which refines the idea of Wagner and
Schneier [33]. The authors considered a combination of TLS_DHE
and TLS_ECDHE cipher suites, and showed the possibility that
a TLS client accepts a TLS_ECDHE key exchange message in a
TLS_DHE connection. This was used to let the client misinterpret
ECDHE parameters as cryptographically weak DHE parameters,
which in turn may give rise to a man-in-the-middle attack. Because
of the strictly-specified structure of key exchange messages for the
considered cipher suites, the analysis in [26] showed that an at-
tacker would needed about 240 signed server messages to execute
a TLS man-in-the-middle attack with reasonable probability. This
makes the attack rather impractical (the authors estimate that exe-
cuting the attack in their setup would take about 9 years). Never-
theless, both previously known cross-protocol attacks on TLS [33,
26] give interesting insights into the difficulty of secure protocol
design in practice.

In comparison, the performance of our attack depends on the
availability of an oracle that allows the attacker to distinguish valid
from invalid PKCS#1 v1.5 ciphertexts. In an ideal (but currently
hypothetical) case, the attack could be performed in less than 30
seconds (see Section 7). In more realistic cases, based on previ-
ously published Bleichenbacher-attacks [28, 36], our attack would
take several hours. Thus, like previous works [33, 26], the practical
impact of our attack on TLS is (currently) rather limited. However,
it provides another interesting insight into the difficulty of secure
protocol design in practice, in particular on the difficulty of enforc-
ing key separation in practice and its potential effect on the secu-
rity of protocols. Moreover, note that both previous cross-protocol
attacks [33, 26] are based on the fact that the signature in TLS ver-
sions prior to 1.3 did not provide a sufficient binding among crypto-
graphic parameters and used algorithms in key exchange messages.
This changes with TLS 1.3, where the signature protects not only
the cryptographic parameters, but also the negotiated cipher suite.
This makes both previous attacks impossible. Note also that re-
silience against cross-protocol attacks is an explicit goal of TLS
1.3,5 and the protocol has been designed to protect against known
attacks of this type [33, 26].

It is a well-known fact in cryptographic theory that using the
same key with both a weak algorithm and a secure algorithm may
force the secure algorithm to inherit the weaknesses of the weaker
algorithm, and therefore the principle of key separation (i.e., us-
ing different keys for different algorithms) should be enforced. For
example, the fact that the need for backwards compatibility may
lead to attacks was also pointed out in [17], which used the fact
that a vulnerable implementation of PKCS#1 v1.5 encryption gives
rise to a “signing oracle” to attack XML-based Web Services. A
different variant was explored in [9] in the context of EMV sig-
natures, but the overall principle was already mentioned in Ble-
ichenbacher’s original paper [7]. Our attacks extend this concept
to novel protocols of extremely high practical importance, namely
TLS 1.3 and QUIC. Moreover, they demonstrate the difficulty of
5See http://www.ietf.org/proceedings/87/
slides/slides-87-tls-5.pdf.

enforcing proper key separation in practice, and the impact of the
lack thereof, on cryptographic protocols as important as TLS and
QUIC.

3. TRANSPORT LAYER SECURITY
In the TCP/IP reference model, the TLS protocol is located be-

tween the transport layer and the application layer. Its main purpose
is to protect insecure application protocols like HTTP or IMAP. The
first (inofficial) version was developed in 1994 by Netscape, named
Secure Sockets Layer. In 1999, SSL version 3.1 was officially stan-
dardized by the IETF Working Group and renamed to Transport
Layer Security [10], version 1.0. Since then, two updates of the
TLS specification were released, versions 1.1 [11] and 1.2 [12].
Version 1.3 is currently under development [13].
Cipher suites. TLS is a protocol framework that allows communi-
cating parties to choose from a large number of different algorithms
for the various cryptographic tasks performed in the protocol (key
agreement, authentication, encryption, integrity protection). A ci-
pher suite is a concrete selection of algorithms for all required cryp-
tographic tasks. For example, a connection established with the
cipher suite TLS_RSA_WITH_AES_128_CBC_SHA uses RSA-
PKCS#1 v1.5 public-key encryption [20] to establish a key, and
symmetric AES-CBC encryption with 128-bit key and SHA-1-based
HMACs. A connection with cipher suite TLS_DHE_RSA_WITH_-
AES_128_CBC_SHA uses the same symmetric algorithms, but es-
tablishes the key from a Diffie-Hellman key exchange with ephemeral
exponents6 and RSA-PKCS#1 v1.5 signatures [20] for authentica-
tion.

The TLS RFCs [10, 11, 12] and their extensions [6] specify a
large number of different cipher suites. Only the public-key al-
gorithms used in a TLS session will be relevant for our attack.
Therefore we will write “TLS_(EC)DHE_RSA” to denote any ci-
pher suite using (elliptic curve) DHE key exchange and RSA sig-
natures, and “TLS_RSA” to denote any cipher suite based on RSA
key transport.

3.1 The TLS Handshake up to Version 1.2
At the beginning of each TLS session the TLS Handshake proto-

col is executed, to negotiate a cipher suite and cryptographic keys.
In the following, we give a brief overview of the TLS Handshake
for all versions up to 1.2, in as much detail as required to explain
our attack. Note that the sequence of messages exchanged in the
handshake depends on the selected cipher suite. Version 1.3 will
have a slightly different handshake, we explain the differences in
Section 3.2.
Handshake overview. A TLS handshake (cf. Figure 2) is initiated
by a TLS client with a ClientHello message. This message
contains information about the TLS version and a list of references
to TLS cipher suites proposed by the client.

The server now responds with the messages ServerHello,
Certificate, an optional ServerKeyExchange message,
and ServerHelloDone. The ServerHellomessage contains
a reference to a cipher suite, selected by the server from the list
proposed by the client. The Certificate message contains an
X.509 certificate with the server’s public key. The ServerKey-
Exchange message is optional. It is omitted when a TLS_RSA
cipher suite is used, but sent when a TLS-(EC)DHE cipher suite
is used. We explain its contents below. The ServerHelloDone
6That is, both communicating partners choose random exponents
for each execution of the Diffie-Hellman protocol within TLS. Al-
ternatively, there exist TLS_DH cipher suites, where the server uses
a static exponent.

message indicates the end of this step. The client responds with a
ClientKeyExchange, which we also explain below.

Finally, both parties send the ChangeCipherSpec and
Finished messages. The former notifies the receiving peer that
subsequent TLS messages will use the newly negotiated cipher
suite. The Finished message is necessary to protect against cer-
tain attacks (see [27]). After the handshake has finished, the peers
can start to exchange payload data, which are protected by the ne-
gotiated cryptographic algorithms and keys.
Key establishment and server authentication with TLS_DHE_RSA
cipher suites. If a TLS_DHE_RSA cipher suite is used, then the
ClientKeyExchange message contains the client’s contribu-
tion gc to a Diffie-Hellman key exchange. The ServerKey-
Exchange message contains the server’s contribution gs to the
Diffie-Hellman key, along with a digital signature computed with
the RSA-PKCS#1 v1.5 signature scheme. The purpose of the sig-
nature is to authenticate the server explicitly (in contrast to the im-
plicit authentication of TLS_RSA cipher suites described below).
It is computed over the random nonces rC and rS contained in
the ClientHello and ServerHello messages, the server’s
Diffie-Hellman share gs, and some other data whose details are
not relevant for our purposes. The established Diffie-Hellman key
gcs is called the PremasterSecret.
Key establishment and server authentication with TLS_RSA ci-
pher suites. If a TLS_RSA cipher suite is used, then the client
selects a random PremasterSecret and encrypts it with the
RSA-PKCS#1 v1.5 encryption scheme, under the public key con-
tained in the server’s certificate. Then it transmits the resulting
ciphertext in the ClientKeyExchange message to the server.
The server obtains the PremasterSecret by decrypting the ci-
phertext.

REMARK 1. The correct handling of decryption errors in this
step is of paramount importance for the security of TLS_RSA ci-
pher suites. An attacker which is able to distinguish “valid” from
“invalid“ RSA-PKCS#1 v1.5 ciphertexts may apply a Bleichenbacher-
type attack to break the security of TLS. Thus, the server must not
send any error messages if decryption fails. In general it is very dif-
ficult to implement this step securely, as even tiny timing differences
or other side channels may lead to practical attacks [28, 36].

Note that there is no explicit server authentication. The server
authenticates implicitly, by being able to compute the Finished
message correctly. This message depends on the Premaster-
Secret, thus, the server must have been able to decrypt the ci-
phertext contained in the ClientKeyExchange message.
On client authentication via TLS. Note that we have described
only server-authentication. It is in principle also possible to authen-
ticate clients cryptographically in the TLS handshake, however, this
would require client certificates. If an application requires client-
authentication, then it is much more common to realize this by run-
ning an additional protocol over the established TLS channel. For
instance, by transmitting a password. TLS is most commonly used
with server-only authentication, therefore we focus on this setting.
However, we stress that our attacks would apply identically to TLS
deployments with client certificates.
Derivation of symmetric cryptographic keys. All further hand-
shake messages and all secrets of the TLS session, including the
MasterSecret and all encryption and MAC keys, are derived
from the PremasterSecret and other public values. Thus, an
attacker that is able to compute the PremasterSecret is also
able to compute all cryptographic keys of the session.

TLS-DHE

TLS
Client
TLS

Client
TLS

Server
TLS

Server
TLS

Client
TLS

Client
TLS

Server
TLS

Server

ClientHello: r
c

ServerHello: r
s

Certificate: pkenc

ServerKeyExchange:
gs,sig

ServerHelloDone

ClientKeyExchange:
gc

ChangeCipherSpec

(Client-) Finished

ChangeCipherSpec

(Server-) Finished

TLS-RSA

ClientHello: r
c

ServerHello: r
s

Certificate: pk
enc

ServerHelloDone

ClientKeyExchange:
enc

pk
(pms)

ChangeCipherSpec

(Client-) Finished

ChangeCipherSpec

(Server-) Finished

PremasterSecret = gscmod p PremasterSecret = pms

Figure 2: Structure of the SSL/TLS Handshake protocol for TLS_DHE_RSA and TLS_RSA cipher suites and TLS versions up to 1.2.

TLS
Client
TLS

Client
TLS

Server
TLS

Server

ClientKeyShare

ServerHello

ServerKeyShare

CertificateVerify

ClientHello

(Client-) Finished

(Server-) Finished

Certificate

Figure 3: Messages of the TLS 1.3 Handshake.

Mandatory cipher suites. For interoperability reasons, each TLS
version specifies cipher suites that are mandatory to implement:

• TLS 1.0: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
• TLS 1.1: TLS_RSA_WITH_3DES_EDE_CBC_SHA
• TLS 1.2: TLS_RSA_WITH_AES_128_CBC_SHA

Note that TLS versions 1.1 and 1.2 mandate a cipher suite from the
TLS_RSA family, while version 1.0 mandates a TLS_DHE cipher
suite, but with DSS signatures instead of RSA.

3.2 Differences in the TLS 1.3 Handshake
TLS version 1.3 [13] is currently under development. One goal

of this standard is to improve security of TLS. To this end, obso-
lete and non-authenticated algorithms are removed, to enforce us-
age of secure algorithms. In particular, the IETF Working Group
decided to remove support of key exchange algorithms based on
RSA-encrypted key transport and static-exponent Diffie-Hellman.

In addition to these changes in cryptographic algorithms, TLS
1.3 modifies the TLS Handshake protocol. The server public key
parameters for TLS_(EC)DHE cipher suites are exchanged in new
ServerKeyShare messages. These messages are not authenti-
cated directly. Instead, the server sends the public key parameters
unauthenticated, followed by further handshake messages. The au-
thentication process is performed with a CertificateVerify
message which is sent directly before the server Finished mes-
sage. The CertificateVerify message includes a PKCS#1
v1.5 RSA signature over a hash of all the previous messages.

A mandatory cipher suite for TLS 1.3 is not yet defined in the
current IETF draft [13].

4. THE QUIC PROTOCOL
In the sequel we give a high-level description of the QUIC pro-

tocol, in as much detail as required to follow the description of our
attacks. A full description is out of scope of this paper. We refer
to [32, 8], and the documents referenced in [31] for details. See
also [14, 23] for formal security analyses of QUIC.

Slightly simplifying the description contained in [32, pp.18 ff]
and [8] (in particular ignoring all countermeasures against poten-
tial denial of service attacks), a QUIC connection consists of two
phases, the connect phase and the repeat phase (see Figure 4).
Connect phase. This phase is executed whenever a client connects
to a server for the first time. It takes usually one, sometimes even
two round-trip times (RTT), and is therefore avoided whenever pos-
sible. Its main purpose is to perform authentication between client
and server (in particular, the server’s X.509 certificate is transmit-
ted to the client in this phase), and to establish a state from which
future session keys can be derived in the zero-RTT repeat phase
described below.

Most importantly for our work, in this phase the server transmits
a serialized server config (SCFG) message, which contains infor-
mation about supported elliptic curves and encryption algorithms,
an elliptic curve Diffie-Hellman share gS as the server’s contribu-
tion to a Diffie-Hellman key exchange, and a 64-bit expiry time
which indicates the expiration date of the given parameters. After
the SCFG message has expired, a new connect phase must be per-
formed. The SCFG message is digitally signed with the secret key
corresponding to the server’s X.509 certificate.

If the server uses an RSA-certificate, which is probably the most
common scenario, then the RSA-PSS signature algorithm is used to
compute the signature. Please note that only input from the server
is signed, in contrast to TLS, where the client nonce (which may be
assumed to be unique for each session) is signed, too.
Repeat Phase. This phase is executed immediately after the con-
nect phase, and whenever the client later connects to the server
(provided that the time stamp in the stored SCFG message has not
expired and that the server still uses the same certificate).

Most importantly for us, this message contains the client’s con-
tribution gC to the elliptic curve Diffie-Hellman key shared be-
tween client and server. Moreover, this message may also contain
encrypted payload, encrypted with a shared key derived from the
mutual Diffie-Hellman key gCS .

QUIC
Client
QUIC
Client

QUIC
Server
QUIC

Server

InchoateClientHello:
SourceAddrToken

ServerConfig,
sig(ServerConfig), n

s

FullClientHello:
n

s
, n

c
, gx

ServerHello: gy

Connect Phase

Repeat Phase

Figure 4: Two phases in the QUIC protocol.

Analysis. We make the following two observations, which are cru-
cial for the practicality of our second attack.

1. The repeat-phase does not perform any additional server au-
thentication. The server is authenticated explicitly in the
connect-phase, by the signature over the SCFG message con-
taining gS , and only implicitly in the repeat phase by being
able to compute the shared key derived from gCS .

2. The signed SCFG message transmitted in the connect-phase
is independent of a client’s connection request. Therefore
the SCFG message can be pre-computed by a server (with
an appropriate expiration date) or — as we will show — by
an attacker which is able to compute forged signatures for
arbitrary messages.

5. RSA ENCRYPTION
For completeness, we describe PKCS#1 v1.5 encryption and sig-

natures [20] in this section, and give high-level descriptions of the
attacks of Bleichenbacher [7] and Manger [25]. The reader may
safely skip these details, keeping only the following in mind:

• For a given RSA public key (N, e) with secret key d, both
attacks enable an attacker to compute the “textbook” RSA
decryption (resp. RSA signature) function m 7→ md mod
N without knowing d for all values m ∈ ZN .

• This is sufficient to compute an RSA-PSS or an RSA-PKCS#1
v1.5 signature σ for any messageM , such that σ is valid with
respect to M and (N, e).

Note also that RFC 2313 [20], which specifies PKCS#1 v1.5 en-
cryption and signatures, is obsolete [21, 19]. However, TLS still
uses this version for backwards compatibility reasons.

5.1 RSA-Signatures and RSA-Encryption ac-
cording to PKCS#1 v1.5

In the sequel let (N, e) be an RSA public key, with correspond-
ing secret key d. We denote with ` the byte-length of N , thus, we
have 28(`−1) < N < 28`.
Digital signatures. Let H : {0, 1}∗ → {0, 1}8`H be a crypto-
graphic hash function (e.g. SHA-1) with `H -byte output length.
A digital signature over message M according to RSA-PKCS#1
v1.5 [20], as used in all TLS versions, is computed in three steps.

1. Compute the hash value h := H(M).

2. Compute a padded message

m := 0x01||0xFF|| . . . ||0xFF||0x00||ASN.1||h

where ASN.1 is a 15-byte string which identifies the hash
function H in ASN.1 format.

3. Interpretm as an integer such that 0 < m < N and compute
the signature as σ := md mod N .

A digital signature over message M according to the RSA-PSS
signature scheme [19], as used in QUIC, is computed identically,
except that instead of the simple padding in Step 2 of the above
algorithm a more complex, probabilistic padding scheme is used to
compute the padded message m.
Public-key encryption. The basic idea of PKCS#1 v1.5 encryption
is to take a message k (a bit string), concatenate this message with
a random padding string PS, and then apply the RSA encryption
function m 7→ me mod N . More precisely, a message k of byte-
length |k| ≤ `− 11 is encrypted as follows.

1. Choose a random padding string PS of byte-length `− 3−
|k|, such that PS contains no zero byte. The byte-length
|PS| of PS must be at least |PS| ≥ 8.

2. Set m := 0x00||0x02||PS||0x00||k.

3. Interpretm as an integer such that 0 < m < N and compute
the ciphertext as c := me mod N .

The decryption algorithm computes m′ = cd mod N and inter-
prets integer m′ as a bit string. It tests whether m′ has the correct
format, i.e. whether m′ can be parsed as
m′ = 0x00||0x02||PS||0x00||k, where PS consists of at least
8 non-zero bytes. If this holds, then it returns k, otherwise it rejects
the ciphertext.

5.2 Bleichenbacher’s Attack
In this section, we recall the well-known attack of Bleichen-

bacher [7] on RSA-PKCS#1 v1.5 encryption [20]. Essentially, Ble-
ichenbacher’s attack allows one to compute the “textbook” RSA-
decryption (resp. RSA-signing) function m 7→ md mod N with-
out knowing the secret exponent d or (equivalently) the factoriza-
tion ofN , by exploiting the availability of a ciphertext validity ora-
cle. This gives rise to attacks on cryptosystems relying on the one-
wayness of the RSA function, like RSA-PKCS#1 v1.5 encryption
and signatures.
Prerequisites. Bleichenbacher’s attack assumes an oracleOBl which
tells whether a given ciphertext is valid (that is, PKCS#1 v1.5 con-
formant) with respect to the target public key (N, e). This oracle
takes as input a ciphertext c and responds as follows.

OBl(c) =

{
1 if c is valid w.r.t. PKCS#1 v1.5 and (N, e),
0 otherwise.

The oracle abstracts the availability of, for instance, a web server
responding with appropriate error messages. We note that this or-
acle does not need to be “perfect”. That is, Bleichenbacher’s algo-
rithm works even if the oracle occasionally returns false-negatives,
which occur if OBl(c) returns 0 but c is a valid PKCS#1 v1.5 ci-
phertext.
High-level attack description. We give only a high-level descrip-
tion of the attack, and refer to the original paper [7] for details.
Suppose a PKCS#1 v1.5 conformant ciphertext c = me mod N is
given. Thus, m = cd mod N lies in the interval [2B, 3B), where
B = 28(`−2). Bleichenbacher’s algorithm proceeds as follows. It
chooses a small integer s, computes

c′ = (c · se) mod N = (ms)e mod N,

and queries the oracle with c′. If OBl(c
′) = 1, then the algorithm

learns that 2B ≤ ms− rN < 3B for some small integer r which

is equivalent to

2B + rN

s
≤ m <

3B + rN

s
.

By iteratively choosing new s, the adversary reduces the number of
possible values of m, until only one is left.
Attack efficiency. For a 1024-bit modulus and a random cipher-
text, the original analysis in [7] shows that the attack requires about
one million oracle queries to recover a plaintext. Therefore, Ble-
ichenbacher’s attack became also known as the “Million Message
Attack”. Recent improvements in cryptanalysis [4] show, however,
that this number can be significantly improved. In particular, in cer-
tain (realistic) scenarios the improved attack of [4] performs only
about 3800 oracle queries, depending on which ciphertext validity
checks are performed by the oracle.

5.3 Manger’s Attack
Subsequent to Bleichenbacher, Manger [25] described an attack

on RSA-PKCS#1 v2.0 encryption [21] (aka. RSA-OAEP). Like
Bleichenbacher’s attack, Manger’s attack allows one to compute
the RSA-decryption (resp. RSA-signing) function m 7→ md mod
N without knowing the secret exponent d or (equivalently) the fac-
torization of N , by exploiting the availability of a ciphertext va-
lidity oracle, but under different prerequisites and with better effi-
ciency.

We note that Manger’s attack can be easily adopted to RSA-
PKCS#1 v1.5, provided that an oracle is given which checks only
whether the first byte is zero.
Prerequisites. Manger’s attack assumes an oracle OMa which tells
whether for a given ciphertext c, the value cd mod N (interpreted
as a byte array) begins with 0x00. Thus, this oracle takes as input
a ciphertext c and responds as follows.

OMa(c) =

{
1 if cd mod N begins with 0x00,

0 otherwise.

Let B = 28(`−1), so that any number in ZN less than B will start
with a 0x00-byte. Thus, the oracle tells for a given ciphertext c
whetherm = cd mod N lies in the interval [0, B−1] (if the oracle
outputs 1) or in [B,N − 1] (if the oracle outputs 0).

We need to assume that this oracle is “perfect”, in the sense that
it always responds correctly. It is not able to tolerate false-positives
or false-negatives.
High-level attack description. Again, we give only a high-level
description of the attack, and refer to the original paper [25] for
details. Suppose c = me mod N is given, with m < B. Manger’s
algorithm proceeds very similarly to Bleichenbacher’s algorithm,
by choosing a small integer s, computing c′ = (c · se) mod N =
(ms)e mod N , and querying the oracle with c′.

The main difference to Bleichenbacher’s algorithm is that
Manger’s approach makes essential use of the “perfectness” of the
oracle, which allows one to choose values s in a more sophisti-
cated way. That is, the information whether m · s mod N lies in
[0, B − 1] or not, which is provided by OMa, reveals (almost) one
bit of information about m.
Attack efficiency. For a 1024-bit modulus and a random cipher-
text, the original analysis in [25] shows that the attack requires
only about 1100 oracle queries to invert the RSA function (note
that this is close to optimal). However, in contrast to Bleichen-
bacher’s attack, Manger’s attack needs a “perfect” oracle which al-
ways responds correctly. It is not able to tolerate false-positives or
false-negatives.

6. ATTACKS ON TLS 1.3 AND QUIC
We consider a victim client C that establishes a TLS/QUIC con-

nection to a web server S. The web server uses an X.509 certificate
containing an RSA key pair with public key (N, e) and secret key
d for the TLS connection. The certificate is digitally signed by a
certification authority (CA) trusted by C. Of course, we neither
assume that the attacker is able to corrupt the CA (or any other CA
trusted by the client), nor that the client does not verify certificates
properly [15], as otherwise a man-in-the-middle attack would be
trivial.

The goal of our attacker is to impersonate the server S towards
C, to be able to mount a man-in-the-middle attack that enables it
to read and modify the TLS-encrypted data exchanged between C
and S. For clarity, let us summarize and discuss the assumptions
that we make.
Standard network attacker model. We work in the standard net-
work attacker model. Essentially, we assume that the attacker’s
host is located on the network path between C and S. Even in
settings where the attacker does not control the network, this can
often be easily realized by spoofing attacks, which are usually very
simple when the attacker is in the same local network as the victim.
We also assume that the attacker is able to establish connections to
S. For example, S may be a publicly available web server on the
the Internet.
Server provides at least one vulnerable TLS_RSA cipher suite.
We assume that the server offers at least one cipher suite from the
TLS_RSA family, such that the implementation of RSA-encrypted
key transport in this cipher suite is vulnerable to an attack that al-
lows an attacker to compute the function m 7→ md mod N for
any value m ∈ ZN . This may, for instance, be Bleichenbacher’s or
Manger’s attack (cf. Sections 5.2 and 5.3).

Note that it is very common for a server to offer multiple TLS
versions and multiple cipher suites, for compatibility reasons. More-
over, a web server that offers TLS Versions 1.1 or 1.2 must offer a
cipher suite from the TLS_RSA family, as the mandatory to imple-
ment [11, 12] cipher suites for these versions belong to this fam-
ily. As explained in the introduction, this paper is written under
the hypothesis that attacks like Bleichenbacher’s and Manger’s on
PKCS#1 v1.5 encryption remain a non-negligible threat.
Server uses an RSA-certificate that allows for signing. We assume
that the web server uses a certificate which may be used for RSA
signatures. Note that it is in principle possible to create X.509 cer-
tificates which may only be used in certain applications. That is,
an X.509 certificate may contain a key extension field, which spec-
ifies that the certificate can only be used for encryption, or only for
digital signatures.

A web server may offer different cipher suites, where some ci-
pher suites use RSA signatures (e.g., any cipher suite of the
TLS_DHE_RSA family), and some others use RSA encryption (e.g.,
any cipher suite of the TLS_RSA family). This is a very common
scenario. Such a web server would in principle be able to use dif-
ferent certificates for different cipher suites. However, we argue
that this is extremely uncommon. First, it seems not even possible
(to our best knowledge) to configure the most popular TLS imple-
mentation OpenSSL7 in a way such that different RSA certificates
are used for different cipher suites or protocol versions. Similarly,
the popular nginx web server8 allows one to use only a single
server certificate [30]. Thus, any such server which offers at least
one TLS_RSA cipher suite and one TLS_(EC)DHE_RSA cipher

7https://www.openssl.org
8http://nginx.org

suite will have to use an RSA-certificate that allows for both sign-
ing and encryption. Second, certificates signed by commercial CAs
are costly, in particular extended validation certificates, which cost
several hundred US dollars per year. Therefore many server opera-
tors might not want to buy different certificates for different cipher
suites and TLS protocol versions.
Client accepts RSA signatures. For both attacks on TLS 1.3 and
QUIC we assume that the client accepts RSA server certificates
(for RSA signatures in TLS 1.3 and QUIC). Note that the major-
ity of certificates on the Internet is RSA-based, thus, any client
not accepting RSA-certificates at all would not be able to estab-
lish TLS connections to a large number of web sites. Moreover,
TLS_(EC)DHE_RSA cipher suites are explicitly recommended by
security experts [30] for security-critical applications.

6.1 The Attack on TLS 1.3
For concreteness, let us consider a server S that supports TLS

versions 1.2 and 1.3, and a client that accepts only TLS 1.3 connec-
tions. The attack generalizes easily to other settings that satisfy the
above conditions. We write TLS-RSA to denote an arbitrary cipher
suite from the TLS_RSA family offered by the TLS 1.2 implemen-
tation, and TLS-DHE-RSA to denote an arbitrary cipher suite from
the TLS_DHE_RSA family offered by the TLS 1.3 implementation.
The attack proceeds as follows (cf. Figure 1).

1. The client C sends the TLS 1.3 messages ClientHello and
ClientKeyShare, which contain (among other values) a list
of cipher suites accepted by the client C.

2. The attacker A intercepts these messages. He selects an
TLS-DHE-RSA cipher suite. Then it responds to C with
a ServerHello message, which contains the selected ci-
pher suite. Then it chooses a random Diffie-Hellman ex-
ponent a $← Z|G| and responds with a ServerKeyShare-
message containing ga. Note that the attacker knows the
Diffie-Hellman exponent a.

3. A now retrieves the server’s RSA certificate by sending a
ClientHello message (for an arbitrary TLS version) to S.
The server responds with a corresponding ServerHello mes-
sage and its certificate. The attacker embeds the retrieved
certificate in a Certificate message and forwards it to C.

4. In order to finish the establishment of a TLS 1.3 session with
C, the attacker now has to compute the CertificateVerify
message. This message must contain a signature over the
transcript M of all previously exchanged messages. The sig-
nature must be valid with respect to M and the public key
(N, e) contained in the certificate of S. To this end, the at-
tacker first computes the PKCS#1 v1.5-signature encoding
m of M (see Section 5.1). Let m denote the result. Then
it computes the signature σ = md mod N , using that the
vulnerability of the server allows for computing the function
m 7→ md mod N for all m ∈ ZN . This is sufficient to
compute a PKCS#1-v1.5 signature for m that is valid with
respect to the server’s public key.

5. Using its knowledge of the exponent a, the attacker is now
able to compute all further handshake messages and the
PremasterSecret, and thus all other secrets used in the TLS
connection with C. Therefore it is able to finish the TLS
Handshake with C. This establishes a rogue TLS 1.3 con-
nection betweenC andA, whereC believes it communicates
with S.

Note that the attack described above is an “online” attack. That
is, the MITM attacker is not able to compute the forged signa-
ture before it receives the ClientHello message from the client
C. Note also that the execution of the signature forgery com-
puted by the MITM attacker takes some time, as even efficient
variants of Bleichenbacher’s attack (like Manger’s attack) require
at least a few thousand server requests. The TLS client has to wait
and keep the TLS connection open while the MITM attacker per-
forms these computations. Therefore the efficiency and practicabil-
ity of the attack depend mainly on the time needed to execute this
step. A client may not be willing to wait for a very long time for
the CertificateVerify-message, after the ClientKeyShare-
message has been sent. We analyze this in Section 7.

6.2 The Attack on QUIC
The description of the attack on QUIC is much simpler than the

attack on TLS 1.3. As already explained in Section 4, we only
have to explain how an attacker is able to obtain a validly-signed
serialized server config (SCFG) message containing

• an elliptic curve Diffie-Hellman share gA such that the ex-
ponent A is known to the attacker (for example, the attacker
may choose gA herself), and

• a time stamp which lets the SCFG message expire at a suit-
able point in time in the (far) future.

Note that this allows the attacker to impersonate a server an arbi-
trary number of times (until the SCFG message expires, however,
the expiration time can be chosen by the attacker) and against an ar-
bitrary number of different clients. Thus, from the attacker’s point
of view knowing the SCFG message is essentially equivalent to
knowing the server’s secret key.

Assuming that the vulnerable TLS server uses an RSA-based
certificate that allows for message signing (that is, the key extension
field does not limit the certificate to encryption-only), the attacker
is able to use Bleichenbacher’s or Manger’s attack against the TLS
server to compute a valid signature, exactly as in the attack on TLS
1.3 described above. The only difference is that now the attacker
computes an RSA-PSS signature for a SCFG message, which con-
tains a Diffie-Hellman share and an expiration date of the attacker’s
choice.

Note that the attack works even if the QUIC server uses a differ-
ent X.509 certificate, because the client is not able to tell whether
a given X.509 certificate “belongs to” the TLS server or the QUIC
server. The attacker would simply take the certificate from the TLS
server, and present it to the attacked client as the certificate for
the QUIC protocol. This is possible because the X.509 certificate
does not contain any information for which protocol this certificate
should be used.

Recall that SCFG messages are independent of any connection
request by a client, which allow one to pre-compute SCFG mes-
sages prior to the connection attempt of the client. Therefore, even
if mounting the Bleichenbacher/Manger attack against the vulner-
able server takes a long time (say, 10 days or more, which is far
beyond the figures provided by recent examples of Bleichenbacher
attacks in practice [4, 28, 36]), the attacker will eventually obtain a
validly signed SCFG message.

In a sense, this shows that including client nonces in signatures,
as done in TLS, strengthens a protocol against this type of offline
attacks.

7. PRACTICAL EVALUATION

7.1 Attacks with “Perfect” Oracle
We will not be able to evaluate the feasibility of the attack on

TLS 1.3 directly, because this TLS version is currently in develop-
ment, and reference implementations are not yet available. How-
ever, note that the attackerA in the attack from Section 6 essentially
implements the full TLS 1.3 protocol, with the only exception that
it is not in possession of the secret key corresponding to the public
key in the server’s RSA certificate. Instead, it uses the vulnerability
of the server S to obtain an “RSA signing oracle”, which essentially
computes signatures for messages of the attacker’s choice. This is
sufficient for A to impersonate S against C.

This approach extends easily to other TLS versions. Therefore
we will evaluate the attack with respect to a server that implements
only TLS 1.2, but offers two different cipher suites, one from the
TLS_RSA family and one from the TLS_DHE_RSA family, and a
client which only accepts TLS_DHE_RSA cipher suites. This mim-
ics the situation described in Section 6 very closely. Even though
there are some minor differences between the ordering of the mes-
sages and the signed values (note that in TLS 1.2 only a subset of
all previously exchanged data is signed), the principle of the attack
is exactly the same. The TLS version used by the client has no
noticeable effect on the practicability of the attack.
Test Setup. In order to assess the practicability of our attack, we
implemented a malicious MITM server A and tested the attack
against different TLS clients C. The MITM server performs a
Manger attack [25] (adopted to PKCS#1 v1.5 encryption) against a
TLS-RSA server S, which implements a patched OpenSSL server.
For simplicity, S was run on the same system as the MITM server
(note that this is a realistic assumption for cloud computing envi-
ronments [29]).

The MITM server and the server S run on a machine with Ubuntu
14.04, with two 2.2 GHz processors and Java 7 (version 1.7.0_75).
For the clients, we used different machines with different systems,
depending on the tested TLS client software. We tested Google
Chrome 39, Mozilla Firefox 35, and OpenSSL on Ubuntu 14.04,
Safari 7.1.3 on OSX 10.9.5, and Microsoft Internet Explorer on
Windows 7.
Experimental results. The approximate time required to compute
one forged signature and the number of oracle queries is given in
Table 1, for different RSA key-lengths. Note that if an 1024-bit key
is used, then the time to compute a forged RSA signature is below
30 seconds, but increases with larger key sizes.

RSA mod. length # of queries Duration [sec]
1024 1100 28
2048 2120 66
4096 4200 250

Table 1: Number of queries and time needed to execute
Manger’s attack against the patched OpenSSL server to create
a forged PKCS#1 signature.

According to a recent study by Indutny [16] from April 2015,
there are about 34% of Alexa top one million web sites using 1024-
bit RSA keys. 63% of the analyzed web sites use 2048-bit keys and
2% use 4096-bit keys. About 1760 web sites use 512-bit RSA keys.
Vulnerability of web browsers. As illustrated in Table 1, the dura-
tion of the attack depends on the size of the RSA modulus. Recall
that our attack is an “online” attack. That is, the MITM attacker
can only begin to compute the forged signature after it has received

the ClientHello message from the client. This may make the
attack impossible, if the TLS client raises a timeout and aborts the
establishment of the TLS session before the MITM attacker has
computed the signature (and thus is able to respond to the client).

We have analyzed this timeout for different popular web browsers.
To this end, we equipped our MITM server with a custom TLS
stack, which takes an additional “delay parameter”. When receiv-
ing a ClientHello message, the server responds immediately
with the ServerHello and the Certificate message. The
ServerKeyExchangemessage is delayed by the configured time
period. In case the delay does not raise a timeout at the client, we
increase the delay and reinitialize the connection establishment, un-
til the timeout of the considered web browser is determined. The
results of this analysis are depicted in Table 2. For example, Google
Chrome 39 strictly closes the connection after 30 seconds and dis-
plays a This webpage is not available message, which makes our
attack feasible for key sizes up to 1024 bits, but impossible for
2048 bit and beyond. In contrast, Mozilla Firefox 35 allows a time-
out of 600 seconds, and thus enabled the attack for all considered
key sizes.

Please note that for Mozilla Firefox, it is also possible to keep
the connection alive indefinitely, by using a technique by Adrian et
al. [2]. To this end, the authors used TLS warning alerts.

TLS Client Connection
Open [sec]

Google Chrome 39 (Ubuntu 14.04) 30
Microsoft IE 11 (Windows 7) 450

Mozilla Firefox 35 (Ubuntu 14.04) 600
Safari 7.1.3 (OSX 10.9.5) 450

Table 2: Maximum possible time period for keeping the con-
nection between our MITM server and web browsers alive.

We stress that we have conducted these experiments with an
“ideal” oracle that allows the MITM attacker to use the very effi-
cient algorithm of Manger, which requires only 1100 “oracle queries”
to compute a forged signature. In practice, a weaker oracle may
be given. For instance, typical Bleichenbacher attacks take be-
tween about 4000 and a few millions of queries (for 1024 bit RSA
keys) [4], depending on the strength of the given oracle. Conse-
quently, the attack duration would be longer. However, we also
stress again that we do not claim that the attack is yet practical,
our experiments should mainly demonstrate that such attacks are in
principle possible against TLS 1.3.
Attacking TLS clients beyond web browsers. Note that the time
required to execute the MITM attack incurs a noticeable delay until
the web browser is able to display the web page. While it may be
realistic to assume that a user waits for, say, 30 seconds until a web
page has loaded (which is long, but not entirely unrealistic for slow
connections, like for instance in public WiFi networks at airports),
it becomes increasingly unrealistic with increasing duration of the
attack (unless one makes additional assumptions, like that the user
works in a different browser tab until the web page has loaded).

However, note that there are also applications of TLS where no
human user is involved. TLS-protected machine-to-machine com-
munication is, for instance, common for Web Services. In such
applications, we do not have as strict constraints on the running
time of the attack as in settings involving human users, because a
client machine may allow for a more generous timeout.

Therefore we also analyzed OpenSSL on Ubuntu 14.04 as a TLS
client. It turns out that even after 7700 seconds no timeout of the
TLS connection occurs, which could allow for more realistic at-

tacks in settings with machine-to-machine communication that do
not involve human users directly.
Avoiding TCP timeouts. Note that the timeout of 7700 seconds in
OpenSSL is larger than the TCP connection timeout, which de-
faults to 7200 s in most operation systems (Linux, OS X, and Win-
dows), including the system used for our tests. We were able to in-
crease the TCP connection timeout with the following trick. After
receiving the ClientHello message, the MITM attacker trans-
mitted the response (in particular the rather large Certificate
message) byte-by-byte over the TCP connection, with a short delay
after each byte. This trick avoided the TCP connection timeout.

7.2 Attacks with “Imperfect” Oracle
The consideration of attacks with a “perfect” oracle in the pre-

vious section is of course idealized. Even though it is not impos-
sible to find such oracles in practice (see [4] for an example), it
is relatively unlikely that such oracles are found very often. The
analysis in Section 7.1, Table 1, shows that an attack duration of
30 seconds per 1000 server requests is a reasonable estimate for
Bleichenbacher-like attacks in our setting. Using this result, we
can now estimate the attack duration in cases where a weaker, “im-
perfect” Bleichenbacher oracle is given.

Bardou et al. [4] describe an optimized variant of Bleichenbacher’s
algorithm, and analyze this algorithm with different “imperfect” or-
acles. The choice of oracles considered in [4] is motivated by ex-
amples of practical Bleichenbacher-oracles found in practice. The
considered class of oracles starts from a “TTT”-oracle, which per-
forms only few PKCS#1 v1.5 consistency checks and therefore re-
turns 1 on all plaintexts beginning with 0x00||0x02. Such an ora-
cle allows for very efficient Bleichenbacher-attacks, essentially be-
cause it is relatively likely that the oracle returns 1 when given a
random RSA-ciphertext (not necessarily correctly padded). Such
an oracle was found on RSA SecurID and Siemens CardOS smart-
cards [4], for instance. The most restrictive oracle considered by
Bardou et al. is the “FFF”-oracle, which checks PKCS#1 v1.5
consistency very thoroughly, by testing all padding fields and the
length of the plaintext for correctness. This makes Bleichenbacher-
like attacks less efficient, because it takes rather long until Ble-
ichenbacher’s algorithm finds a ciphertext which is accepted by
the oracle. This is the type of oracle was found and exploited by
Klíma et al. [22] in old TLS versions. Bardou et al. furthermore
describe many intermediate oracles, dubbed “TFT”, “FFT”, and so
on, which perform or omit different checks on PKCS#1 v1.5 plain-
text padding, we refer to [4] for details.

Bardou et al. compute the number of attack queries for different
oracle types. However, their assumption is that the attacked mes-
sage is decrypted to a message starting with 0x00||0x02, which
speeds up the attack. In our case, we have to perform RSA secret
key operation on arbitrary messages. Thus, our first step is to find
a message starting with 0x00||0x02 (called a blinding step in the
original paper of Bleichenbacher [7]). The performance of this step
depends on the oracle strength. For example, it takes about 215 ad-
ditional queries to find a valid message, when the oracle validates
only the first two bytes 0x00||0x02 (“TTT” oracle).

In Table 3 we give the estimated duration of the attack in our
setting with the oracles from [4]. The number of oracle queries is
computed as a sum of the queries in the blinding step and queries
to perform the attack by Bardou et al. [4].
On attacking TLS 1.3. Considering attacks on TLS 1.3, we ob-
serve that none of the durations lies within the “session keep-alive”
time of the tested browsers (cf. Table 2). However, the more inter-
esting case for attacks where the duration is very long is machine-
to-machine communication. Note that for OpenSSL it holds that

Oracle type #Queries Duration [sec]
TTT 36,536 1,097
TFT 37,796 1,134
FFT 59,388 1,782
FFF 24,228,692 726,861

Table 3: Estimated duration of attacks for 1024-bit RSA keys
with the imperfect Bleichenbacher oracles found in [4], based
on the median number of queries of the optimized Bleichen-
bacher algorithm from [4].

all timing results are within the timing range, except for the case of
the FFF oracle.
On attacking QUIC. Considering attacks on QUIC, note that the
time required to perform one full Bleichenbacher attack ranges
from about 18 minutes (for TTT and TFT oracles) up to about 202
hours (less than 8.5 days) in case of the most restrictive FFF oracle.
Given that in case of QUIC the attacker is able to perform these
computations before the actual attack in a “pre-computation”, we
consider these figures as fully practical, even for the most restric-
tive FFF oracle.

8. ACKNOWLEDGEMENTS
We would like to thank Adam Langley for his advice on the lim-

itations of the QUIC reference implementation and further com-
ments, Fedor Indutny for providing us an early version of his cer-
tificate collection, the reviewers of USENIX Security 2015 for sug-
gesting to analyze the applicability of our attacks to QUIC, and the
reviewers of ACM CCS 2015 for their helpful comments.

9. REFERENCES
[1] SSL Pulse. Survey of the SSL Implementation of the Most

Popular Web Sites, April 2015. https:
//www.trustworthyinternet.org/ssl-pulse.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago
Zanella-Béguelin, Paul Zimmermann. Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice. May 2015.
https://WeakDH.org

[3] Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors. ACM
CCS 14: 21st Conference on Computer and Communications
Security. ACM Press, November 2014.

[4] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto,
Lorenzo Simionato, Graham Steel, and Joe-Kai Tsay.
Efficient padding oracle attacks on cryptographic hardware.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 608–625. Springer,
August 2012.

[5] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg
Schwenk, and Douglas Stebila. Multi-ciphersuite security of
the secure shell (SSH) protocol. In Ahn et al. [3], pages
369–381.

[6] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and
B. Moeller. Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS). RFC 4492
(Informational), May 2006. Updated by RFC 5246.

[7] Daniel Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS #1.

In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 1–12. Springer, August 1998.

[8] Wan-Teh Chang and Adam Langley. QUIC crypto, 2013.
https://docs.google.com/document/d/
1g5nIXAIkN_Y-7XJW5K45IblHd_
L2f5LTaDUDwvZ5L6g/edit?pli=1.

[9] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson,
Nigel P. Smart, and Mario Strefler. On the joint security of
encryption and signature in EMV. In Orr Dunkelman, editor,
Topics in Cryptology – CT-RSA 2012, volume 7178 of
Lecture Notes in Computer Science, pages 116–135.
Springer, February / March 2012.

[10] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246 (Proposed Standard), January 1999. Obsoleted by RFC
4346, updated by RFCs 3546, 5746.

[11] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.1. RFC 4346 (Proposed Standard),
April 2006. Obsoleted by RFC 5246, updated by RFCs 4366,
4680, 4681, 5746.

[12] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
August 2008. Updated by RFC 5746.

[13] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.3. draft-ietf-tls-tls13-07, July 2015.

[14] Marc Fischlin and Felix Günther. Multi-stage key exchange
and the case of google’s QUIC protocol. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 1193–1204. ACM, 2014.

[15] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The Most
Dangerous Code in the World: Validating SSL Certificates in
Non-Browser Software. In ACM Conference on Computer
and Communications Security, 2012.

[16] Fedor Indutny. Rsa certificate sizes, April 2015.
http://indutny.github.io/collect-certs.

[17] Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky.
One bad apple: Backwards compatibility attacks on
state-of-the-art cryptography. In ISOC Network and
Distributed System Security Symposium – NDSS 2013. The
Internet Society, February 2013.

[18] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky.
Bleichenbacher’s attack strikes again: Breaking PKCS#1
v1.5 in XML encryption. In Sara Foresti, Moti Yung, and
Fabio Martinelli, editors, ESORICS 2012: 17th European
Symposium on Research in Computer Security, volume 7459
of Lecture Notes in Computer Science, pages 752–769.
Springer, September 2012.

[19] J. Jonsson and B. Kaliski. Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1. RFC 3447 (Informational), February 2003.

[20] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC
2313 (Informational), March 1998. Obsoleted by RFC 2437.

[21] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography
Specifications Version 2.0. RFC 2437 (Informational),
October 1998. Obsoleted by RFC 3447.

[22] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa.
Attacking RSA-based sessions in SSL/TLS. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems –

CHES 2003, volume 2779 of Lecture Notes in Computer
Science, pages 426–440. Springer, September 2003.

[23] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and
Cristina Nita-Rotaru. How secure and quick is QUIC?
Provable security and performance analyses. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 214–231. IEEE Computer
Society, 2015.

[24] M. Maher. ATM Signalling Support for IP over ATM - UNI
Signalling 4.0 Update. RFC 2331 (Proposed Standard), April
1998.

[25] James Manger. A chosen ciphertext attack on RSA optimal
asymmetric encryption padding (OAEP) as standardized in
PKCS #1 v2.0. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 230–238. Springer, August 2001.

[26] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin
Velichkov, and Bart Preneel. A cross-protocol attack on the
TLS protocol. In Yu et al. [34], pages 62–72.

[27] Christopher Meyer and Jörg Schwenk. SoK: Lessons
Learned From SSL/TLS Attacks. In Proceedings of the 14th
International Workshop on Information Security
Applications, WISA 2013, Berlin, Heidelberg, August 2013.
Springer-Verlag.

[28] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel, and Erik Tews. Revisiting
SSL/TLS implementations: New bleichenbacher side
channels and attacks. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22,
2014., pages 733–748, 2014.

[29] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In Ehab
Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors,
ACM CCS 09: 16th Conference on Computer and
Communications Security, pages 199–212. ACM Press,
November 2009.

[30] Ivan Ristić. Bulletproof SSL and TLS. Understanding and
deploying SSL/TLS and PKI to secure servers and web
applications. Feisty Duck, August 2014.

[31] Jim Roskind. Experimenting with QUIC, 2013.
http://blog.chromium.org/2013/06/
experimenting-with-quic.html.

[32] Jim Roskind. QUIC design document, 2013.
https://docs.google.com/a/chromium.org/
document/d/1RNHkx_
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[33] D. Wagner and B. Schneier. Analysis of the SSL 3.0
protocol. The Second USENIX Workshop on Electronic
Commerce Proceedings, 1996.

[34] Ting Yu, George Danezis, and Virgil D. Gligor, editors. ACM
CCS 12: 19th Conference on Computer and
Communications Security. ACM Press, October 2012.

[35] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-VM side channels and their use to extract
private keys. In Yu et al. [34], pages 305–316.

[36] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-tenant side-channel attacks in PaaS clouds.
In Ahn et al. [3], pages 990–1003.

