
Practical Invalid Curve Attacks on TLS-ECDH ?

Tibor Jager, Jörg Schwenk, and Juraj Somorovsky

Horst Görtz Institute for IT Security, Ruhr University Bochum

Abstract. Elliptic Curve Cryptography (ECC) is based on cyclic groups, where
group elements are represented as points in a finite plane. All ECC cryptosystems
implicitly assume that only valid group elements will be processed by the differ-
ent cryptographic algorithms. It is well-known that a check for group membership
of given points in the plane should be performed before processing.
However, in several widely used cryptographic libraries we analyzed, this check
was missing, in particular in the popular ECC implementations of Oracle and
Bouncy Castle. We analyze the effect of this missing check on Oracle’s default
Java TLS implementation (JSSE with a SunEC provider) and TLS servers using
the Bouncy Castle library. It turns out that the effect on the security of TLS-
ECDH is devastating. We describe an attack that allows to extract the long-term
private key from a TLS server that uses such a vulnerable library. This allows an
attacker to impersonate the legitimate server to any communication partner, after
performing the attack only once.

1 Introduction

Elliptic Curve Cryptography (ECC) is one of the cornerstones of modern cryptography,
due to its security and performance features. It is implemented in nearly every crypto-
graphic application, ranging from Bluetooth device level encryption to securing cloud
applications via TLS. Mathematically speaking, an elliptic curve is a set of points in a
plane (in cryptography: a finite plane), together with a single (associative) operation,
namely point addition. The set of points are those that satisfy an equation of the form

y2 = x3 + ax+ b (1)

and point addition can be defined as a geometric operation in the plane. Each set of ele-
ments together with an operation forms an algebraic group, if the set is closed under the
given operation, if the operation is associative, and if a neutral element exists. Elliptic
curves satisfy all these axioms, and thus can be used in any cryptosystem that operates
on a mathematical group. For cryptographic applications it is also required that certain
assumptions hold in the group G, e.g., the hardness of the discrete logarithm problem,
or the CDH and DDH assumptions. An elliptic curve Ea,b therefore has to be chosen
carefully to guarantee that these assumptions hold.

Now a finite plane also contains points outside the elliptic curveEa,b, and thus these
points are not group elements of G. However they resemble group elements: They have
? The paper was published at the 20th European Symposium on Research in Computer Security

(ESORICS’15).

two coordinates, and the functions defining the group operation can be applied to them.
They just don’t satisfy Equation (1) with the given parameters a and b. If we use these
points with the functions defining our EC cryptosystem, we may get strange results,
since the group laws may not apply to them, or they may lie in a diffrent group where
the cryptographic assumptions are not valid.

So strictly speaking, any cryptographic application using a cyclic group G should
check that any operand that is supposed to be a group element of G is indeed contained
in G. Indeed, it is well-known that this check is in general necessary to provide secu-
rity [3,2,15,6]. But is this check always implemented in the cryptographic libraries that
are used in practical applications?

It is also not clear for which specific applications this is inherently necessary. Even
though it is considered good practice to always perform a test of group membership,
we show that sometimes developers of even popular implementations of elliptic curve
cryptography omit the check. Which impact does a missing check of group membership
have on the specific application TLS?

To answer these questions, we studied the eight most important cryptographic li-
braries, which are used in TLS-ECDH (and many other applications). We found that a
check for group membership was missing in three of these libraries, and this omitted
check allows to compromise the security of a TLS implementation completely in two
libraries (Oracle SunEC, Bouncy Castle), provided that a TLS-ECDH cipher suite is
used.

TLS-(EC)DH. Transport Layer Security (TLS) is a security standard originally de-
signed to protect HTTP traffic, but which is today used as a de facto security standard
for many applications, e.g. EAP-(T)TLS, IMAPS and secure websockets. TLS consists
of two main parts: The Record Layer encryption, which protects transported data us-
ing a MAC-then-PAD-then-ENCRYPT approach, and the Handshake Protocol, which
negotiates cryptographic algorithms and keys to be used by the Record Layer. Three
different types of key agreement can be used in the Handshake protocol:

– TLS-RSA: The client chooses a random PreMasterSecret pms, encrypts it
with the RSA public key of the server (contained in the server certificate), and
sends this cryptogram to the server.

– TLS-DH: Here the server certificate contains a static Diffie-Hellman share gs, and
the client chooses a fresh DH share gx. The PreMasterSecret is computed as
pms := (gs)x = (gx)s.

– TLS-DHE: Here the server also chooses a fresh DH share gy , and signs this value
(plus some additional values). This signature can be verified using the server cer-
tificate. The PreMasterSecret is computed as pms := (gy)x = (gx)y .

Since only a mathematical group structure is required in the Diffie-Hellman key ex-
change, we can also use elliptic curves in the last two key agreement schemes. These
variants are denoted as TLS-ECDH and TLS-ECDHE, respectively. The attacks de-
scribed in this paper are applicable to TLS-ECDH. The structure of this handshake is
described in Figure 1. Our goal is to compute the private server key s. We may learn the
public server key sP from the server certificate sent in the Certificate message,

TLS
Client
TLS

Client
TLS

Server
TLS

Server

ClientHello: r
c

ServerHello: r
s

Certificate: sP

ServerHelloDone

ClientKeyExchange:
qP

ChangeCipherSpec

(Client-) Finished:
fin=PRF(ms,tr)

ChangeCipherSpec

(Server-) Finished

pms = q(sP)
x
 = s(qP)

x

ms = PRF(pms, r
C
, r

S
, label)

Fig. 1. Structure of the SSL/TLS Handshake protocol for TLS ECDH cipher suites.

but since the Discrete Logarithm assumption (DLP)1 holds in the elliptic curve group,
we cannot compute s from this value.

Attacks on TLS. TLS can be attacked at three points: At the TLS handshake, at the
Record Layer, and by using a specific TLS extension. The impact of each attack may
range from low to high criticality.

Except where weak export cipher suites were used, the TLS Record Layer seemed
secure. This situation changed with the BEAST attack published in 2011 [19]. Although
the impact of this attack was low, it showed the practical vulnerability of the MAC-then-
PAD-then-ENCRYPT scheme used. Critical attacks followed soon: Lucky 13 [1] and
POODLE [17]. However, with these attacks only parts of the plaintext exchanged could
be decrypted, and thus the criticality lay in the fact that e.g. HTTP session cookies could
be decrypted.

The first critical attack on the TLS handshake, which is hard to mitigate and thus
resurfaces from time to time, is the famous adaptive chosen ciphertext attack by Daniel
Bleichenbacher [5]. With this attack, a single TLS session could be completely broken
by computing the PreMasterSecret from an intercepted ClientKeyExchange
message, and from server error messages or timing measurements. Another example of
an attack on the TLS handshake is the attack by Brumley et al., who analyzed a bug

1 Group operations can be written as additive or multiplicative operations. Elliptic curves tra-
ditionally use additive notation, so for EC this assumption could be relabeled “discrete factor
assumption”. However, DLP is the standard term used for this assumption.

in EC computation of OpenSSL [6]. The bug allowed the authors to apply practical
attacks against TLS servers using NIST secp256r1 and secp384r1 curves, and to extract
EC private keys.

Even more critical was the Heartbleed vulnerability,2 which was not based on a
cryptographic attack, but on an implementation error of the OpenSSL Heartbeat exten-
sion: An attacker could read the server’s private key directly from the memory of the
OpenSSL process.

In this paper we describe a cryptographic attack on the TLS handshake which also
recovers the private key of the server. Our attack is however less critical than Heartbleed,
most importantly because the widely-used OpenSSL library is not affected, and TLS-
DH cipher suites are less frequently used in practice than TLS-DHE or TLS-RSA cipher
suites.

Our Attack. As a starting point, we used the invalid curve attack sketched by Biehl et
al. in [3] and explained in more detail by Antipa et al. [2]. The basic idea is to define
several different elliptic curves in the same plane as the original curve, by varying the
parameter b. The groups defined by these curves may have arbitrary order within a
certain range, and this order may be divisible by small primes 2, 3, 5, 7, 11,

For example, if we find a parameter b′ where the order of the corresponding group
is divisible by 7, then we can find a point P ′ on this curve that generates a subgroup
of order 7. If we send this point P ′ to the TLS server, then there are only 7 different
values for sP ′. Thus if we could learn sP ′, we could compute s mod 7. If we do this
for enough different small primes, we can apply the Chinese Remainder theorem to
compute the private server key s.

This attack however only works if the result of the EC computation is directly avail-
able to the adversary, which is not the case for TLS-ECDH: The resulting value sP ′

is only used internally by the server as the PreMasterSecret pms. Thus we never
directly see this value, but we can guess this value and check it against the server.

Therefore we used the strategy of Brumley et al. [6], and adapted the attack on
TLS-ECDH in the following way:

1. We start like in the attacks of [3,2] by generating several different curves with
subgroups of small prime order.

2. For each of these small prime orders pi, we send a generator Gi of the correspond-
ing subgroup in the ClientKeyExchange message to the server.

3. Additionally, we guess the value sGi, which can only be one of the p values gener-
ated by Gi. Using this guessed value as the PreMasterSecret pms, we com-
pute the MasterSecretms and the ClientFinished message.

4. If we guessed correctly, the server will accept the ClientFinished message,
and respond with the ServerFinished message. In that case, we have learned
s2 mod pi.

Results. We studied eight TLS-ECDH implementations. TLS servers based on Oracle’s
default Java TLS implementation using the SunEC provider, and the Bouncy Castle
library were vulnerable to the presented attack. The WolfSSL library did not validate

2 http://heartbleed.com/

http://heartbleed.com/

EC points, but it was not vulnerable. We provide an explanation for this behavior in
Section 7. The results are summarized in Table 1.

Lib. Bouncy
Castle
Java
1.50

MatrixSSL
1.3.10

mbed
TLS
1.3.10

OpenSSL
1.0.2a

LibreSSL
2.1.6

SunEC
Security
Provider
1.8

SunPKCS11-
NSS Security
Provider 1.7

WolfSSL
3.4.6

point
check?

no yes yes yes yes no yes no

vuln.? yes no no no no yes no no

Table 1. Overview on the tested libraries

We were able to perform the attack against a TLS server with a SunEC provider
with about 3300 server queries, and a server based on the Bouncy Castle library with
about 17,000 server queries. Both test servers used the secp256r1 NIST curve. The sig-
nificantly larger values for SunEC resulted from an unidentified computation error in
the ECC library:3 Certain computations resulted in False Positives, and the probability
for False Positives was proportional to the inverse of the size of the chosen small group.
Thus we had to choose larger primes for our attack, and consequently the average num-
ber of guesses increased.

Contribution. The contributions of this paper are the following:

– We adapt attacks of [3,2] to TLS-ECDH, and present a representative study on TLS
libraries using TLS-ECDH cipher suites.

– We show that three out of eight analyzed libraries do not include curve point vali-
dations, and that two of them are vulnerable to invalid curve attacks. This allowed
us to reveal TLS long-term private keys with a few thousands of server requests.

– We present a modified algorithm that allowed us to attack a TLS server using the
SunEC security provider even in the presence of invalid EC computations, with
high probability.

– We give additional practical arguments why group membership checks are of prime
importance in cryptographic applications.

2 Invalid Curve Attacks on ECC

2.1 A Brief Recap of Elliptic Curve Cryptography

In this section we give a brief introduction to elliptic curve cryptography, mainly in
order to introduce our notation. We refer to [13,7] for a more verbose treatment of
elliptic curves.

3 We were not able to investigate this in more detail, because the source code is not publicly
available.

Let F be a finite field (e.g., F = Zp for prime p) with characteristic not equal to
2 or 3. An elliptic curve in Weierstrass form over F is described by curve parameters
π := (F, a, b), where a, b ∈ F. Let

Eπ := {(x, y) ∈ F2 : y2 = x3 + ax+ b} ∪ {O∞}

denote the set of solutions (x, y) to the Weierstrass equation y2 = x3 + ax+ b over F
defined by π, along with a special symbol O∞ which is called the point at infinity. Let
+π : Eπ × Eπ → Eπ denote the map that takes as input two points P,Q ∈ F2 and
outputs the point R ∈ F2 computed as

R = P +π Q :=

{
ADDπ(P,Q) if P 6= Q,

DBLπ(P) if P = Q.

Here, ADDπ and DBLπ denote the algorithms depicted in Figure 2.

ADD(P,Q) :

(xP , yP) := P ; (xQ, yQ) := Q
If P = O∞ then Return Q
If Q = O∞ then Return P
λ := (yP − yQ)/(xP − xQ)
xR := λ2 − xP − xQ
yR := yP + λ(xR − xP)
Return (xR, yR)

DBL(P) :

(xP , yP) := P
If P = O∞ then Return P
λ := (3x2p − a)/(2yP)
xR := λ2 − 2xP
yR := yP + λ(xR − xP)
Return (xR, yR)

Fig. 2. Algorithms DBL and ADD for point doubling and addition. Note that both algo-
rithms are independent of the curve parameter b.

Remark 1. Note that algorithm ADDπ depends only on P , Q, and the field F, but not
on the curve parameters a and b. Similarly, DBLπ depends only on P , the field F and
curve parameter a, but not on curve parameter b. Thus, the computation of the group
operation +π is independent of curve parameter b. This is a crucial property for the
attack described below.

The set of points Eπ along with the group law +π forms an algebraic group Gπ =
(Eπ,+π). We will write P +Q shorthand for P +πQ when the reference to parameters
π is clear. For n ∈ N we write nP for the n-fold sum P + · · ·+ P .

In the sequel we will furthermore write [P]x to denote the x-coordinate of a point
P . If P is the point at infinity, we set [P]x := ∅, where ∅ is an arbitrary constant.

2.2 Invalid Curve Attacks on Elliptic Curves in TLS

The idea of small subgroup attacks is due to Lim and Lee [14], who described such
attacks for groups of integers modulo a prime. The special case of small subgroup
attacks, that are based on submitting invalid elliptic curve points (more precisely, points

that lie on a different curve) were, to our best knowledge, first described in [3]. The
attack used in this paper is based on the attack sketched in [3], and explained in detail
in [2]. It consists of two phases, an offline pre-computation phase which must only be
performed once for each elliptic curve parameters π := (F, a, b), and an online attack
phase.

OFFLINE PRECOMPUTATIONS. First, the attacker performs the following computa-
tions, which need to be performed only once for each particular choice of elliptic curve
parameters π := (F, a, b) defining an elliptic curve group of order q.

1. Let p1, . . . , pn be the first n primes, such that
∏n
i=1 pi > q2. The attacker first

computes integers b1, . . . , bn ∈ Zp such that (F, a, bi) defines an elliptic curve of
order qi such that pi divides qi. To this end, the attacker sets b1 = · · · = bn = 0,
and repeats the following algorithm until bi 6= 0 for all i.
(a) Choose b∗ $← Zp at random.
(b) Count the number w of points on the curve E(F,a,b∗), by running the Schoof-

Elkies-Atkin algorithm [7].
(c) For each i ∈ {1, . . . , n}, check if pi | w. If this holds, set bi := b∗.
Note that the elliptic curve group defined by (F, a, bi) has a small subgroup of order
pi, where all pi are very small. Note also that it is sufficient to have n ≤ 2 · log2 q.
By the prime number theorem, we may furthermore expect that the largest prime
pn has size about pn ≈ n · lnn. Thus, all primes p1, . . . , pn are very small, in the
order of O(log q · log log q). Assuming heuristically that the number of points w
on the curve defined by (F, a, b∗) is distributed nearly uniformly over the interval
[q − 2

√
q + 1, q + 2

√
q + 1] (the interval given by the Hasse-Weil bounds [7])

for uniformly random b∗ ∈ Zp, finding all bi-values is expected to take about pn
iterations of the above algorithm.
For example, if q < 2193 is a 192-bit prime, then n = 60 and pn = 283 is sufficient.
For a 256-bit prime q < 2257 we may have n = 76 and pn = 383.

2. Next, the attacker determines points G1, . . . , Gn such that Gi generates the sub-
group of order pi of the curve defined by (F, a, bi).

For example, performing the above computations on a virtual machine running
Ubuntu 12.04 LTS Server x64 with eight 2.3 GHz CPUs and 4 GB RAM takes about 90
minutes for the NIST P-192 curve, and about 5 hours for the NIST P-256 curve, when
both computations are started in parallel.

ONLINE ATTACK. In the online attack phase, the attacker interacts with a “target
server”. This server may, for example, be a TLS server implementing TLS-DH cipher
suites. In order to describe the attack independently of a particular server (which would
require to go into the details of the service provided by this server and its implemen-
tation), we describe the attack with “oracles” that capture the required behavior of a
server in an abstract manner. We show later how to instantiate these oracles in practice.

In the sequel let O be an oracle that performs computations on a curve described
by parameters π := (F, a, b). The oracle internally keeps a random secret s ∈ Zq .
On input G ∈ G, the oracle computes sG by applying the double-and-add algorithm,

using the DBL and ADD procedures from Figure 2. Finally, the oracle returns [sG]x, the
x-coordinate of point sG.4

Given the results (bi, Gi, pi)1≤i≤n from the precomputation phase and oracle O,
the actual attack proceeds as follows.

1. First, A queries the oracle O n times, on inputs G1, . . . , Gn. Given Gi, the oracle
computes and returns [sGi]x. Note that Gi does not lie on the curve defined by the
“real” parameters π := (F, a, b), but on the curve defined by adversarially-chosen
parameters (F, a, bi). However, since the DBL and ADD procedures implemented by
O are independent of b, the oracle will perform this computation correctly.

2. Next,A computes the points t·Gi for all t ∈ {0, 1, . . . , (pi+1)/2}.5 Then it defines
si to the unique value t, such that [sGi]x = [tGi]x. Note that either si ≡ s mod pi,
or −si ≡ s mod pi. Note also that s2i ≡ (−si)2 mod pi, thus, s2i is a uniquely
determined value.
Since the group operations implemented by O are independent of elliptic curve
parameter b, and we assume that the oracle does not check whether the given point
Gi lies on the correct curveE(F,a,b), the oracle implicitly performs all computations
on a different curve E(F,a,bi) having a small subgroup of order pi. This allowsA to
determine the unique value s2i mod pi for all i ∈ {1, . . . , n}.

3. Finally, A computes the secret s by determining the unique integer s ∈ Z such
that s2 < q2 and s2 ≡ s2i mod pi for all i ∈ {1, . . . , n}, by applying the Chinese
Remainder Theorem (CRT) and the fact that the primes pi have been chosen such
that

∏n
i=1 pi > q2.

The nice trick of computing with s2i mod pi is from [3]. It overcomes the issue that
we learn either si mod pi or −si mod pi, but without being able to test immedi-
ately which one is correct, by performing all CRT computations with the unique
values s2i mod pi and finally computing the square root of the result s2 over Z.

Remark 2. We will later describe an oracleO which takes as inputGi, and immediately
returns s2i mod pi (instead of [sGi]x as above). This essentially makes Step 2 of the
online attack phase obsolete (in particular the computation of the values tGi), and show
how to realize this oracle in practice. Obviously, the above attack works identically with
this oracle, by simply omitting Step 2. Describing the above attack with this particular
oracle would, however, conceal the idea behind the invalid curve attack.

Remark 3. This attack can easily be prevented by replacing O with an oracle which
checks whether a given point G lies on the “right” curve, that is, the defined by π =
(F, a, b) before performing any computation. This is easy, by testing whether y2 ≡
x3+ax+b mod p. Note also that the test of group membership is relatively inexpensive,
as it requires to compute only a small number of multiplications modulo p, which does
not increase the complexity of computing sP significantly. Nevertheless, we will show
the practical relevance of this attack.

4 Note that keys in elliptic curve cryptography are often derived only from the x-coordinate of
a point, which motivates this abstraction.

5 In principle, this step can also be precomputed. However, we will later have to consider a
slightly different setting (and thus a different oracle) where this precomputation is not possible,
therefore we explain it here.

3 Transport Layer Security

In the TCP/IP reference model, the TLS protocol is located between the transport layer
and the application layer. Its main purpose is to protect insecure application protocols
like HTTP or IMAP. It is also used as a building block in other protocols, like EAP-TLS
authentication for WiFi networks.

The first (inofficial) version was developed in 1994 by Netscape, named Secure
Sockets Layer. In 1999, SSL version 3.1 was officially standardized by the IETF Work-
ing Group and renamed to Transport Layer Security [8], version 1.0. Since then, two
updates of the TLS specification were released, versions 1.1 [9] and 1.2 [10]. Version
1.3 is currently under development [11].

Cipher suites. TLS is rather a protocol framework than a fixed protocol that allows
communicating parties to choose from a large number of different algorithms for the
various cryptographic tasks performed in the protocol (key agreement, authentication,
encryption, integrity protection). A cipher suite is a concrete selection of algorithms for
all required cryptographic tasks. For example, a connection established with the cipher
suite TLS_RSA_WITH_AES_128_CBC_SHA uses RSA-PKCS#1 v1.5 public-key en-
cryption [12] to establish a key, and symmetric AES-CBC encryption with 128-bit
key and SHA-1-based HMACs. Cipher suite TLS_DHE_WITH_AES_128_CBC_SHA
uses the same symmetric algorithms, but establishes the key from a Diffie-Hellman
key exchange with ephemeral exponents6 and RSA-PKCS#1 v1.5 signatures [12] for
authentication.

The TLS RFCs [8,9,10] and their extensions [4] specify a large number of dif-
ferent cipher suites. They can be divided into three large groups, depending on the
key agreement algorithm used: In TLS RSA cipher suites, the client chooses a random
PremasterSecret, encrypts it with the public RSA key of the server, and sends
this cryptogram within the ClientKeyExchange message to the server. In TLS DH
and TLS DHE, the Diffie-Hellman key exchange is used to establish the Premaster-
Secret. The difference between these two families is that in TLS DH, the server DH
share is static and contained in the server certificate, whereas in TLS DHE, only a sig-
nature verification key is contained in the server certificate, and an ephemeral server
DH share is contained in an additional ServerKeyExchange message. Both Diffie-
Hellman variants can also be used with elliptic curves, in which case the substring “EC”
is added to the cipher suite name. In this paper, we only consider cipher suites from the
TLS ECDH family.

3.1 The TLS-ECDH Handshake

At the beginning of each TLS session the TLS Handshake protocol is executed, to ne-
gotiate a cipher suite and cryptographic keys. In the following, we give a brief overview
of the TLS ECDH Handshake for all versions up to the latest version 1.2, in as much

6 That is, both communicating partners choose random exponents for each execution of the
Diffie-Hellman protocol within TLS. Alternatively, there exist TLS DH cipher suites, where
the server uses a static exponent.

detail as required to explain our attack. Note that the sequence of messages exchanged
in the handshake depends on the selected cipher suite.

Handshake overview. Let us first give an overview of the messages sent in the TLS
Handshake. See also Figure 1. A TLS handshake is initiated by a TLS client with a
ClientHello message. This message contains information about the TLS version, a
list of references to TLS cipher suites proposed by the client, and a client nonce rC .

The server now responds with the messages ServerHello, Certificate, and
ServerHelloDone. The ServerHello message contains a reference to a cipher
suite, selected by the server from the list proposed by the client, the selected TLS ver-
sion, and a server nonce rS . The Certificate message contains an X.509 certificate
with the server’s public key; in case of TLS ECDH the public key must be a point sP
on the elliptic curve. The ServerHelloDone message indicates the end of this step.

The client responds with a ClientKeyExchange, which contains the ephemeral
DH share of the client, i.e. a point qP on the curve, where q was chosen randomly, and
P is the base point.

Finally, both parties send the ChangeCipherSpec and Finished messages.
The former notifies the receiving peer that subsequent TLS messages will be protected
(i.e. encrypted and MACed) using the newly negotiated cipher suite. The Finished
message contains a MAC over all exchanged messages, and is necessary to protect
against certain attacks (see [16]).

After the handshake has finished, the peers can start to exchange payload data,
which are protected by the negotiated cryptographic algorithms and keys.

TLS ECDH cipher suites. In TLS ECDH, the ClientKeyExchange message con-
tains the client’s contribution qP to a EC-based Diffie-Hellman key exchange. Com-
bined with the value sP from the server certificate, the PremasterSecret is com-
puted as pms := [q(sP)]x = [s(qP)]x. Note that only the x-coordinate of the resulting
point is used as a PremasterSecret.

Using the TLS-PRF function, which is essentially a pseudorandom function based
on an iterated HMAC, in a first step the MasterSecretms is derived from pms:

ms := TLS-PRF(pms; rC , rS , labelms).

In a second step, the cryptographic keys and the Finished messages are derived
using the MasterSecret as the key of the TLS-PRF:

keys := TLS-PRF(ms; rC , rS , labelkeys),
F in := TLS-PRF(ms; transcript)

Note that there is no explicit server authentication. The server authenticates implic-
itly, by being able to compute the Finishedmessage correctly. This message depends
on the PremasterSecret, thus the server must have been able to compute pms.

On client authentication via TLS. Note that we have described only server-authenti-
cation. It is in principle also possible to authenticate clients cryptographically in the

TLS handshake, however, this would require client certificates. If an application re-
quires client-authentication, then it is common to implement this by running an addi-
tional protocol over the established TLS channel, e.g. by transmitting a password. TLS
is most commonly used with server-only authentication, therefore we focus on this set-
ting.

4 Invalid Curve Attack on TLS-ECDH

In Section 2.2 we described an invalid curve attack on elliptic curve cryptosystem. In
this section we will show how to obtain the required oracle responding with s2i mod pi,
given a point Gi on a curve (F, a, bi) with a small subgroup of order pi from a TLS
server. We assume that this TLS server supports TLS-ECDH cipher suites. Moreover,
the server does not validate whether a point sent by the client belongs to a specified
curve or not, and implements the group law in a way which is “compatible” with both
the real parameters (F, a, b) and the adversarially-chosen parameters (F, a, bi). As ex-
plained above, the latter holds in particular if the server implements the standard double-
and-add algorithm for multiplication of elliptic curve points with scalars.

The main difficulty in constructing such an oracle from a TLS server is that the
server does not directly respond with a result of a multiplication sG. Instead, it uses
this result internally to derive cryptographic keys, and expects a suitable TLS Client-
Finished message. Thus, we will construct an oracle O which will establish several
TLS connections to verify a guessed value sGi, by sending ClientFinished mes-
sages. More precisely, given a point Gi and its order pi prepared by the attacker A, the
oracle O proceeds as follows (see also Figure 3):

ClientHello

ServerHelloCertificateServerHelloDone

ClientKeyExchange

Alert

...AA OO TLS
Server
TLS

Server

t=0t=0

G
i

G
i

ChangeCipherSpec
(Client-) Finished

pms = (tG
i
)
x

ClientHello

ServerHelloCertificateServerHelloDone

ClientKeyExchange

(Server-) Finished

t<=p
i
/2t<=p

i
/2

G
i

G
i

ChangeCipherSpec
(Client-) Finished

pms = (tG
i
)
x

p
i
,G

i

s
i
2 mod p

i
s
i
=ts

i
=t

Fig. 3. Constructing an oracle O from a vulnerable TLS server supporting TLS-ECDH
cipher suites.

1. O sets t = 0.
2. O starts a TLS handshake with a ClientHello message containing TLS-ECDH

cipher suites (e.g., TLS ECDH ECDSA WITH AES 128 CBC SHA). It receives TLS
messages from the server and sends to the server a ClientKeyExchange mes-
sage containing point Gi.

3. O guesses the PremasterSecret and sets it to pms = [tGi]x. Based on the
PremasterSecret, O computes the MasterSecret and derives all keys needed
for encryption and HMAC computations. O uses the derived keys to authenticate
and encrypt the ClientFinished message.

4. If the TLS server accepts the ClientFinished message and responds with a
ServerFinished message, the guessed PremasterSecret was correct and it
holds that s ≡ ±t mod pi.O sets si := t and responds with s2i mod pi. Otherwise,
if the server responds with a TLS alert message and terminates the connection, the
guessed PremasterSecret was incorrect. O increments t and proceeds with Step
2.

Note that O needs at most pi/2 TLS handshake executions to get s2i mod pi, and
pi/4 executions on average.

This oracle allows the attacker A to execute the full attack and recover server’s
private key. A first queries O n times, on inputs (Gi, pi), where i ∈ {1, 2 . . . , n}. It
receives equations s2 ≡ s2i mod pi. Afterwards, A computes s2 using the CRT and
finally obtains the server’s secret s.

5 Practical Evaluation

In this section we describe the invalid curve attacks on real implementations. To test the
TLS implementations and libraries, we implemented a TLS client capable of sending
invalid EC points in the ClientKeyExchange message, and complete a valid TLS
handshake with a given PremasterSecret. In case an analyzed implementation
was vulnerable to the attack, we used our TLS client to perform the complete attack.
Otherwise, we analyzed why the attack was impossible. We conducted all the tests on
a localhost, with a machine running on Xubuntu 14.10, with an Intel i7 processor (2.6
GHz).

5.1 Analyzed TLS Libraries

In order to use cryptographic libraries in Java dynamically, a system of cryptographic
service providers was introduced. A cryptographic service provider “refers to a package
or set of packages that supply a concrete implementation of a subset of cryptography
features.”7 Java offers developers cryptographic providers, which are shipped directly
with the Java installation (e.g., a SunEC provider for EC computation). The developers
can however bind further providers like a Bouncy Castle provider to extend the default
behavior of the installed providers.

7 http://docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html#Provider

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#Provider
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#Provider

For testing purposes, we set up a simple TLS server based on the Java Secure Socket
Extension (JSSE)8. JSSE is used, for instance, in JBoss Application Server,9 Apache
Tomcat,10 or Apache Camel framework.11 We dynamically exchanged different cryp-
tographic security providers to test their behavior while processing invalid EC points:
Bouncy Castle, SunEC 1.8, and SunPKCS11-NSS 1.7. Further C/C++ libraries were
tested with TLS test servers provided by these libraries.

– Bouncy Castle Java 1.50. Bouncy Castle12 is a Java-based cryptography library,
which can be bound to an implementation as a cryptographic provider. This library
was heavily used for EC computations in Java 6, since Java 6 did not support EC by
default. It can however also be used with further Java versions. In our work, we first
tested Bouncy Castle 1.50 and then reevaluated our results with the 1.52 version.

– MatrixSSL 3.7.1. MatrixSSL is a C implementation designed specifically for small
and embedded devices.13

– mbed TLS 1.3.10. mbed TLS (formerly known as PolarSSL) is a lightweight C++
implementation also designed for small devices.14

– OpenSSL 1.0.2a and LibreSSL 2.1.6. OpenSSL is a cryptographic library with a
TLS functionality.15 LibreSSL is a fork of OpenSSL, created in 2014.16 Our analy-
sis revealed that the relevant EC implementation parts contain the same code, thus
we treat them together as one library.

– SunEC Security Provider 1.8. SunEC is an Oracle Java security provider, which
supports EC computations.17 It is by default included in Oracle JDK 7 and 8, and
in OpenJDK 8. In our tests, we used the SunEC provider distributed with Oracle
JDK 1.8.0 40.

– SunPKCS11-NSS Security Provider 1.7. SunPKCS11-NSS is a Java security provider
created as a wrapper over Mozilla’s NSS library.18 It is used as a default provider
in OpenJDK 7 to support elliptic curves.

– WolfSSL 3.4.6. WolfSSL (formerly known as CyaSSL) is an embedded TLS library
for small devices, written in C.

5.2 Attacks on Bouncy Castle

Analysis with our TLS client showed that a TLS server based on the Bouncy Castle
library does not verify whether a given point lies on the right curve. For the point mul-

8 http://docs.oracle.com/javase/6/docs/technotes/guides/
security/jsse/JSSERefGuide.html

9 http://jbossas.jboss.org/
10 https://tomcat.apache.org/
11 http://camel.apache.org/
12 https://www.bouncycastle.org/java.html
13 http://www.matrixssl.org/
14 https://mbed.org/technology/mbed-tls/
15 https://www.openssl.org/
16 http://www.libressl.org/
17 http://docs.oracle.com/javase/8/docs/technotes/guides/
security/SunProviders.html#SunEC

18 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://jbossas.jboss.org/
https://tomcat.apache.org/
http://camel.apache.org/
https://www.bouncycastle.org/java.html
http://www.matrixssl.org/
https://mbed.org/technology/mbed-tls/
https://www.openssl.org/
http://www.libressl.org/
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunEC
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunEC
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

tiplication, the standard double-and-add algorithm is used. This allowed us to apply the
attack described in Section 4 in a straightforward way.

Our evaluation with a secp256r1 elliptic curve revealed that the attacker needs about
3300 real server queries to get the private server key. In our localhost setup the online
attack phase took about 155 seconds, see Table 2.

Elliptic Curve # of oracle queries # of server queries Duration [sec]
secp256r1 74 3300 155

Table 2. Number of queries and time needed to execute the attack against a TLS server
using the Bouncy Castle library in version 1.50. Note that a real attack over the Internet
would last about ten to hundred times longer, depending on the server response times.

We informed Bouncy Castle developers about this problem in their official devel-
oper mailing list.19 It was patched one month after our disclosure, with the Bouncy
Castle version 1.51. We are not sure whether our disclosure influenced the patch, since
we got no official response.

5.3 Attacks on SunEC Security Provider

Our analysis of a TLS server using the SunEC security provider indicated that the
SunEC provider is also vulnerable to the attacks described above. The server based on
this provider processed invalid EC points and we were able to execute valid TLS hand-
shakes. However, a full attack execution was not successful. Further analysis revealed
that the SunEC provider introduced failures in the EC point multiplication, which re-
sulted in wrong responses of the oracle constructed using the TLS server. Since the
SunEC provider is implemented as a closed source, we needed to provide a black box
analysis of the EC multiplication implementation.

Several tests with the EC computation showed that the probability of an invalid point
multiplication depends on the order of the elliptic curve. More precisely, point multi-
plications on an elliptic curve group with order pi < 100 returned a valid result with a
probability of less than 60 %. Multiplications on elliptic curves with an order pi ≈ 300
returned a valid result with a probability of more than 90 %. Elliptic curves of an order
pi ≈ 1000 computed correctly with a probability of about 98 %. See some exemplary
results in Figure 4, which depicts the SunEC computation correctness probability as
a dependency of the elliptic curve order. The results were generated by applying 100
computations on 256 bit elliptic curves with random scalars.

This is not a unique behavior of an EC implementation. A similar documented be-
havior of an invalid EC multiplication was observed in 2007 [18], when OpenSSL in-
correctly multiplied specific points on a secp384r1 NIST curve. The reason was an
incorrect handling of carry bits by the OpenSSL library. In our tests, we were however

19 http://bouncy-castle.1462172.n4.nabble.com/
EC-Implementation-problems-td4657043.html

http://bouncy-castle.1462172.n4.nabble.com/EC-Implementation-problems-td4657043.html
http://bouncy-castle.1462172.n4.nabble.com/EC-Implementation-problems-td4657043.html

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

20

40

60

80

100

Elliptic Curve Order

V
al

id
C

om
pu

ta
tio

ns
(i

n
%

)

Fig. 4. Exemplary results showing dependency between the elliptic curve order and the
percentage of valid EC computations executed by the SunEC provider: When working
with custom elliptic curves with a small order (pi < 100), only about one half of the
computations were correct. This forced us to use elliptic curves with higher orders.

not able to analyze the reason for the incorrect computation by the SunEC provider due
to the fact that the source code is not publicly available.

The SunEC provider behavior forced us to use elliptic curves with an order
pi > 1000, where the probability of a valid point multiplication was about ρ ≈ 98%.
This resulted in a success probability ρs := ρn ≈ 36% for computing a valid server
secret s, where n = 50 is the number of oracle queries to attack a server using the
secp256r1 curve. In order to increase the chance of computing a valid secret, we adapted
the algorithm as follows:

1. The attacker A sends to the oracle (n + n′) queries, where
∏n
i=1 pi > q2 and n′

are additional attack queries.
2. A computes

(
n+n′

n

)
possible values for the secret s.

3. A tests, which of the possible secrets is correct, such that the base point multiplied
by the secret returns server public key sP .

Note that both the second and the third steps are offline steps, which can be executed
after querying the server.

This adapted algorithm resulted in an overall success probability of

ρs :=

n′∑
i=0

(
n+ i

n

)
· ρ(n+n

′−i) · (1− ρ)i.

We could for example compute a valid server secret s with a probability ρs ≈ 75% with
n′ = 3 additional attack queries.

In Table 3 we summarize our attack results. As can be seen, using elliptic curves
of a higher order resulted in lesser oracle queries, but in higher number of total server

Elliptic Curve # of oracle queries # of server queries Duration [sec]
secp192r1 40 14732 346
secp256r1 52 16897 412

Table 3. Number of queries and time needed to execute the attack against a TLS server
using the SunEC security provider. Note that a real attack over the Internet would last
about ten to hundred times longer, depending on the server response times.

queries (in comparison to the attacks on Bouncy Castle presented in Table 2). We could
execute the attacks in less than 7 minutes, in our localhost setup.

We informed Oracle security team about this vulnerability. Oracle is going to pro-
vide a patch in the Oracle Critical Patch Update in July 2015.

6 Attack Impact and Countermeasures

Checking whether a given point lies on the correct curve is a simple and effective coun-
termeasure against the attacks described in this paper, its computational complexity is
negligible in comparison to a full scalar multiplication of an elliptic curve point. The
library providing elliptic curve point multiplication should therefore always validate
whether the incoming point lies on the elliptic curve. Unfortunately, this seems not
generally known to implementers of elliptic curve cryptography. Our attacks showed
practical examples where this validation was omitted, and highlights that it is danger-
ous even in applications where the attack of [2] is not immediately applicable. The
mentioned vulnerable implementations are already fixed or currently being fixed.

The described attack can be compared with the Heartbleed bug in the sense that
the attack leaks the server’s long-term private key to an attacker, and thus enables the
attacker to impersonate the server in the future. However, we stress that TLS-ECDH
cipher suite are less frequently used in practice than TLS-ECDHE or TLS-RSA cipher-
suites, thus, the practical impact of these attacks is not as dramatic as the Heartbleed
bug. Nevertheless, it is highly recommended to revoke and replace certificates used for
static ECDH cipher suites in case the TLS server uses one of the vulnerable libraries or
runs on a vulnerable Oracle JDK version, and supports TLS-ECDH cipher suites. This
includes for example a JBoss Application Server, Apache Tomcat, or Apache Camel
framework.

The attack on TLS is an important and particularly interesting special case. How-
ever, we stress that the omitted point validation in the considered libraries may also
enable attacks on other protocols and applications beyond TLS. Thus, it is furthermore
advisable to replace vulnerable elliptic curve libraries in any application using elliptic
curve cryptography with secure ones, and to revoke and replace certificates for static
ECDH cipher suites used in these applications.

7 Further Analysis

In Table 4, we provide further analysis of secure TLS libraries and their EC computation
processing. Our analysis furthermore includes the Bouncy Castle 1.52 library version,
which contains a fix to the attack presented in this paper. We investigate whether the
libraries use the standard double-and-add algorithm or a specific window method, where
the point validation takes place (before or after point multiplication, or directly after
point decoding), and what is the response of the TLS server.

As can be seen, most of the libraries use a window multiplication method and an
explicit point validation function. An exception is the WolfSSL library, which does
not verify whether the incoming EC point lies on the curve. We were able to send an
arbitrary point in the ClientKeyExchange message and let the server compute a
PremasterSecret using this point. However, the invalid curve attacks were not
applicable, because the library uses a specific window multiplication method and this
method depends on the curve parameter b of π := (F, a, b). We still recommend the
developers to fix this issue and implement explicit point validation.

In case of the SunPKCS11-NSS security provider, we were not able to analyze the
source code and find out which multiplication method was used or whether the point
validation takes place. Our table thus just includes a visible stack trace provided by the
tested TLS server.

Acknowledgements

We would like to thank Christopher Meyer for his contributions in the early stage of our
research.

Bouncy Castle 1.52

Multiplication Window method
Package org.bouncycastle.math.ec
AbstractECMultiplier.multiply
custom.sec.SecP256R1FieldElement.multiply

Point Validation After multiplication math.ec.ECAlgorithms.validatePoint
Handshake Termination Fatal Alert, Internal Error

MatrixSSL 3.7.1
Multiplication Window method crypto/pubkey/ecc.c: function eccMulmod
Point Validation Point decoding crypto/pubkey/ecc.c: function eccTestPoint
Handshake Termination Fatal Alert, Decode Error

mbed TLS 1.3.10
Multiplication Window method library/ecp.c: function ecp mul comb
Point Validation Before multiplication library/ecp.c: function ecp check pubkey sw
Handshake Termination Connection termination, no Alert message

OpenSSL 1.0.2a (and LibreSSL 2.1.6)
Multiplication Window method crypto/ec/ec mult.c: function ec wNAF mul

Point Validation Point decoding
crypto/ec/ecp oct.c: function EC POINT is on curve,
invoked by ec GFp simple oct2point

Handshake Termination Connection termination, no Alert message

SunPKCS11-NSS Security Provider 1.7
Multiplication – –
Point Validation – –

Handshake Termination
Fatal Alert, Internal Error
Caused by:InvalidKeySpecException: Could not create EC public key
atP11ECKeyFactory.engineGeneratePublic(P11ECKeyFactory.java:169)

WolfSSL 3.4.6
Multiplication Window method wolfcrypt/src/ecc.c: function ecc mulmod
Point Validation No validation –
Handshake Termination Connection termination, no Alert message

Table 4. Analysis of secure TLS libraries and their processing of elliptic curve multi-
plication.

References

1. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526–540, Berke-
ley, California, USA, May 19–22, 2013. IEEE Computer Society Press.

2. Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, René Struik, and Scott A. Vanstone.
Validation of elliptic curve public keys. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 211–223, Miami, USA, January 6–8, 2003. Springer, Berlin, Germany.

3. Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on elliptic curve
cryptosystems. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 131–
146, Santa Barbara, CA, USA, August 20–24, 2000. Springer, Berlin, Germany.

4. S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic Curve Cryptog-
raphy (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492 (Informational),
May 2006. Updated by RFCs 5246, 7027.

5. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA en-
cryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 1–12, Santa Barbara, CA, USA, August 23–27, 1998. Springer, Berlin, Germany.

6. Billy B. Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. Practical realisation
and elimination of an ecc-related software bug attack. In Orr Dunkelman, editor, Topics in
Cryptology – CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science, pages 171–
186. Springer Berlin Heidelberg, 2012.

7. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen,
and Frederik Vercauteren, editors. Handbook of elliptic and hyperelliptic curve cryptog-
raphy. Discrete Mathematics and its Applications (Boca Raton). Chapman and Hall/CRC
Press, 2006.

8. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard),
January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176.

9. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. RFC
4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated by RFCs 4366,
4680, 4681, 5746, 6176.

10. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176.

11. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. draft-
ietf-tls-tls13-04, January 2015.

12. B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational), March 1998.
Obsoleted by RFC 2437.

13. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, 2007.

14. Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294
of LNCS, pages 249–263, Santa Barbara, CA, USA, August 17–21, 1997. Springer, Berlin,
Germany.

15. D. McGrew, K. Igoe, and M. Salter. Fundamental Elliptic Curve Cryptography Algorithms.
RFC 6090 (Informational), February 2011.

16. Christopher Meyer and Joerg Schwenk. SoK: Lessons Learned From SSL/TLS Attacks.
In Proceedings of the 14th International Workshop on Information Security Applications,
WISA 2013, Berlin, Heidelberg, August 2013. Springer-Verlag.

17. Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE Bites: Exploiting the
SSL 3.0 Fallback, September 2014. Technical report.

18. H. Reimann. Bn nist mod 384 gives wrong answers. openssl-dev mailing list #1593, http:
//marc.info/?t=119271238800004, 2007.

19. Juliano Rizzo and Thai Duong. Here Come The ⊕ Ninjas, Ekoparty, May 2011.

http://marc.info/?t=119271238800004
http://marc.info/?t=119271238800004

	Practical Invalid Curve Attacks on TLS-ECDH
	Tibor Jager, Jörg Schwenk, and Juraj Somorovsky

