
AdIDoS – Adaptive and Intelligent
Fully-Automatic Detection of Denial-of-Service

Weaknesses in Web Services

Christian Altmeier1, Christian Mainka2, Juraj Somorovsky2, and Jörg
Schwenk2

1 Software AG
Christian.Altmeier@softwareag.com
2 Horst Görtz Institute for IT Security

Ruhr University Bochum
{christian.mainka,juraj.somorovsky,joerg.schwenk}@rub.de

Abstract. Denial-of-Service (DoS) attacks aim to affect availability of
applications. They can be executed using several techniques. Most of
them are based upon a huge computing power that is used to send a
large amount of messages to attacked applications, e.g. web services.
Web services apply parsing technologies to process incoming XML mes-
sages. This enlarges the amount of attack vectors since attackers get
new possibilities to abuse specific parser features and complex parsing
techniques. Therefore, web service applications apply various counter-
measures, including message length or XML element restrictions. These
countermeasures make validations of web service robustness against DoS
attacks complex and error prone.
In this paper, we present a novel adaptive and intelligent approach for
testing web services. Our algorithm systematically increases the attack
strength and evaluates its impact on a given web serice, using a blackbox
approach based on server response times. This allows one to automati-
cally detect message size limits or element count restrictions. We prove
the practicability of our approach by implementing a new WS-Attacker
plugin and detecting new DoS vulnerabilities in widely used web service
implementations.

1 Introduction

Motivation. The principle of the Service Oriented Architecture (SOA) tech-
nology is to build a system of devices and machines connected via web services.
A typical web service technology to establish SOA is SOAP [9]. SOAP-based
web services are built upon the platform independent markup language – XML.
They are used in business to business (B2B) process integrations and supported
by large vendors like IBM and Axway.

The availability of web services in SOA scenarios is of huge importance.
Therefore, Denial-of-Service (DoS) attacks on web services present a significant
risk. DoS attacks attempt to exceed the consumption of computational resources,

II Altmeier et al.

like CPU time or memory, with the goal that the system is no longer available
for regular use. There are numerous techniques to perform DoS attacks, but
throughout this paper, we concentrate on XML-based DoS attacks [4]. XML-
based DoS is a special variant of a DoS attack that targets the XML parser.
This means that the DoS payload is a specially crafted XML document, for
example, a message with numerous deeply nested XML elements.

Complexity of XML-based DoS attacks. Previous research has revealed
many different types of XML-based DoS techniques [4]. Unfortunately, the knowl-
edge of these attacks is only the tip of the iceberg. The real challenge is to validate
whether the tested XML parser is vulnerable to them. This is a complicated task,
because there are many varieties of each single attack. For example, placing the
DoS payload at one position within the XML document may affect the parser
and result in a successful DoS attack, but using another position, for example a
sibling element, can lead to an unaffected parser. Since there are many elements
to place the payload in addition to many other aspects to consider, the detection
of successful attack varieties is not trivial:

1. XML parsers can be configured to restrict a specific number of elements to be
parsed. Consequently, attacks using more payload elements than this specific
threshold will result in unsuccessful attacks. To detect such a threshold, the
DoS attacks must be executed first with a small payload and then adaptively
be adjusted due to the measured results.

2. The XML document structure can be validated using XML Schema [12].
Therefore, the attack payload cannot be placed at arbitrary positions in
these scenarios. We use an approach that automatically reads the used XML
Schema and places the payload at so-called extension points in such a way
that the XML document containing the DoS payload is valid against the
schema.

Contribution. In our work, we concentrate on the automatic detection of XML-
based DoS and the automatic bypassing of countermeasures (XML Schema val-
idation, thresholds, . . .). Our contributions are as follows:

– AdIDoS (Adaptive and Intelligent DoS), the first fully automatic XML-
based DoS tool that detects DoS vulnerabilities with an intelligent and
adaptive approach. Our tool extends the approach of [4], is open source,
and part of WS-Attacker – a fully-automatic web service penetration testing
framework.

– Our approach is generic and can be applied to XML scenarios beyond web
services or even other DoS attacks beyond XML-based DoS3.

– We evaluated seven web service implementations and give a detailed
overview over their robustness against DoS attacks.

3 Our implementation in the WS-Attacker framework is split into two parts: (1) a
generic library to apply DoS attacks on XML and (2) a plugin that is used to
transmit SOAP messages.

AdIDoS – Adaptive Intelligent Denial-of-Service III

Outline. The following section will introduce the necessary foundations for this
paper, including XML-based Web Services and XML-based DoS attacks. Sec-
tion 3 spots on the complexity on evaluating DoS attacks. In Section 4, we eluci-
date the high-level design of our Adaptive Intelligent Denial-of-Service (AdIDoS)
tool, while Section 5 gives more details on its implementation. We evaluate AdI-
DoS in Section 6, by testing five different web services and two XML security
firewalls. We discuss related work in Section 7 and conclude in Section 8.

2 Foundations

In this section, we give a brief introduction to the relevant standards and tech-
nologies for this paper.

2.1 XML and XML Schema

eXtensible Markup Language (XML) is a structured format [2] by the World
Wide Web Consortium (W3C), which allows transmission, validation and in-
terpretation of data. The interpreted data can be described independently of
software and hardware, thus XML is ideal to exchange data between different
applications and organizations. The structure of an XML document is defined
by XML elements. An XML element typically consists of a start tag <tag> and
an end tag </tag>. It can include further child elements, element attributes, or
text contents.

XML Schema is a recommendation by the W3C for describing the structure
of an XML document [12]. It is basically a set of rules that can describe the
structure for each contained element. It covers its allowed attributes, the type
of its value (e.g., a string or integer), a description of its allowed child elements
and how often they may occur.

2.2 Web Services

A web service is a method for interprocess interactions over networks between
different software applications. A web service can be implemented using different
technologies, for example, REST [5] or SOAP [9].

In this paper, we consider the SOAP technology. SOAP (originally defined as
Simple Object Access Protocol) is a W3C specification defining the structure of
XML messages and a protocol to achieve a machine-to-machine communication.
SOAP messages generally consist of header and body. The <Header> element
includes message-specific data (e.g. timestamp, user information, or security to-
kens). The <Body> element contains function invocation data.

2.3 XML-based DoS Attacks

There are numerous XML-based DoS attacks. In the next section, we will give
a more detailed description of the Coercive Parsing Attack and use this attack
as a running-example in the following sections through this paper.

IV Altmeier et al.

Coercive Parsing Attack. The Coercive Parsing attack creates a deeply nested
XML document. If the document is parsed by a vulnerable service, memory
exhaustion occurs. The following SOAP message gives an example with deeply
nested elements.

<soap:Envelope xmlns:soap="...">

<soap:Header></soap:Header>

<soap:Body>

<x>

<x>

<!-- deeply nested -->

</x>

</x>

</soap:Body>

</soap:Envelope>

This is only one example for a Coercive Parsing attack. It is also possible to
place the payload (the <x>-elements) in other elements, for example inside the
<Header> element. Additionally, one can vary the number of nested elements.
All these aspects affect the impact and the success-level of the attack.

Further XML-based DoS Attacks. The following XML-based DoS attacks
are described in [4] and also implemented in AdIDoS:

– Coercive Parsing Attack
– XML Element Count Attack
– XML Attribute Count Attack
– XML Entity Expansion Attack
– XML External Entity Attack
– XML Overlong Names Attack
– HashCollision Attack

2.4 Attack Roundtrip Time Ratio (ARTR)

Our automatic tool AdIDoS evaluates the effectiveness of different DoS attacks
against a server in a black-box manner. Thus, the only measurable metric is
time.

We define the time of the last byte sent by a client’s request up to the time
of the first byte of the corresponding response as the roundtrip time:

RT = tReceived − tSent

If a request does not contain a DoS payload, we refer to it as an untampered
request. Consequently, a request with DoS payload is referred as a tampered
request.

We use the Attack Roundtrip Time Ratio (ARTR) [4] as a metric to measure
the impact of each DoS attack variant and to be able to compare them. ARTR
is defined as the quotient of the roundtrip time of tampered and untampered
requests [4]. The higher the ARTR value is, the more effective is the attack.

AdIDoS – Adaptive Intelligent Denial-of-Service V

2.5 WS-Attacker

WS-Attacker is a modular framework for web services penetration testing [8],
available as an open source project on Github.4 WS-Attacker uses a plugin ar-
chitecture to execute XML-specific attacks on web services automatically. In its
current version, WS-Attacker supports the following attacks:

1. SOAPAction Spoofing [8].
2. WS-Addressing Spoofing [8].
3. Basic XML Denial-of-Service Attacks [4].
4. XML Signature Wrapping [3].
5. Attacks on XML Encryption [7].

In this paper, we extend the functionality of WS-Attacker and implement
AdIDoS as an attack plugin.

3 DoS Complexity

The complexity of DoS attacks is founded in two parts:

1. Since we assume to have no physical access, we can only perform black-box
tests.

2. Our DoS attacks abuse weaknesses in XML parsers. As such, we need to
make use of the XML document structure.

3.1 Black-box Tests

A black-box penetration test refers to a methodology of testing a computer sys-
tem without knowledge of its internals. Therefore, we do not have the possibility
to measure the CPU load or memory consumption of the tested service. We only
rely on the ARTR: We measure and evaluate the time that the service needs to
process the request and compute the response, including the network transfer
time.

3.2 XML Document Structure

XML-based DoS abuses weaknesses in the underlying XML parser. Each XML
parser has its own behavior and can be adjusted to fit the service’s requirements.
This increases the complexity to apply a DoS attack dramatically. Some XML
parserss:

1. Only process unexpected elements, if they are placed to a specific position
in the XML document (they validate the XML Schema).

2. Only allow a specific number of elements or attributes in an XML document
(thresholds).

4 https://github.com/RUB-NDS/WS-Attacker

https://github.com/RUB-NDS/WS-Attacker

VI Altmeier et al.

Additionally, the service itself may restrict the amount of request by one client
within a time period.

XML Schema. If an XML Schema validation is performed by the XML parser,
placing the payload of an XML-based DoS attack at a specific position inside
the document can be detected. The attack will not succeed. Taking the exam-
ple of the Coercive Parsing attack, placing the <x> elements as a child of the
<soap:Envelope> element would break the SOAP schema. However, placing the
same <x> elements as a child of the <soap:Header> element is conform to the
SOAP schema and the message will be accepted — the attack can potentially
be applied.

In addition to the above behavior, some parsers skip specific document parts.
For example, a web service that does not use any SOAP extensions could skip
to parse the whole <soap:Header> element and continue with the <soap:Body>.
This means that placing the XML-based DoS payload in the header does not
result in a successful attack, while placing it in the body could.

Thresholds. Some XML parsers implement thresholds. They stop to process
incoming messages if they parse more than a specific number of elements, at-
tributes, or bytes.

Suppose an XML parser that only accepts messages up to 100 elements.
Applying a Coercive Parsing attack with 5000 nested elements will result in an
unsuccessful attack, but the implementation could be vulnerable if the attack
is applied with, for example, 80 nested elements. To make the attack detection
more accurate, it is important to start XML-based DoS attacks with a small
payload, and increase it by time. This way, possible thresholds can be detected.

4 Design

In this section, we describe several principles and design decisions we followed
in order to create the adaptive and intelligent XML-based DoS attack plugin
AdIDoS.

4.1 Automatic DoS Detection Workflow

AdIDoS systematically tests the web service for DoS weaknesses. The detection
workflow is fully automatic and AdIDoS uses the following algorithm to proceed
(see Figure 1):

1. AdIDoS chooses one attack from its pool of implemented DoS attacks.5

2. It specifies the position where to set the payload. Therefore, XML Schema
is used to determine all matching positions.

5 Its current implementation includes Coercive Parsing, XML Attribute Count, XML
Element Count, XML Entity Expansion, XML External Entity, XML Overlong
Names, and 4 variants of HashCollision attacks – 10 attack variants in total.

AdIDoS – Adaptive Intelligent Denial-of-Service VII

choose Payload
Position

choose
aggressiveness

send untampered
attack

send tampered
attack

[no further positions][has further positions]

[was not successful]

[was successful]

choose DoS
attack from pool

[has further DoS attack within the pool]

Fig. 1. AdIDoS simplified workflow of systematic DoS detection

3. The aggressiveness of the attack is specified. Aggressiveness means, how
much XML payload is responsible for the attack. The more XML payload
the attack uses, the more aggressive it is. For example, a coercive parsing
attack using the payload <x><x></x></x> is more aggressive than an attack
with <x></x>. Each attack variant will start with very low aggressiveness
and adjust it depending on the ARTR.

4. The algorithm generates an untampered request and executes the attack
against the web service. This information is used as a base line for the later
decision, whether an attack is successful or not.

5. It generates a tampered request and executes the attack against the target
web service.

6. It analyzes the roundtrip time of the untampered and tampered requests
and decides whether the attack is successful or not by computing the ARTR
(See Section 5.3 for details).
– Successful: the attack is marked as successful for this payload position,

the next position is specified, followed by Step 3.
– Not successful: a more aggressive attack is set, followed by Step 4.

This step is performed as long as further parameter sets are available for the
DoS attack. Hereafter the next DoS attack is chosen and AdIDoS continues
with Step 1.

4.2 Automatic Threshold Detection

The most effective countermeasure against XML-based attacks is to limit the
number of elements/attributes which can occur in an XML document, or the
size of the document. In our approach, we automatically detect and narrow
down thresholds used by a web service. Thereby a variation of the binary search
algorithm is used, which is shown in Figure 2. The steps are as follows:

1. The threshold detection is initialized with the weakest and the strongest
attack vector. The weakest vector (our minimum) is the least aggressive
attack that was executed successfully. The strongest vector (our maximum)
is the attack vector that was not successful.

VIII Altmeier et al.

2. The strength of each newly created attack vector is generated as an average
of the weakest and the strongest aggressive attack vector.

3. The relevant information in this phase is the execution state of the attack:
– Successful: the current attack vector strength is set as a new minimum
– Not successful: the current attack vector strength is set as new maximum

Depending on the expected precision, these steps can be repeated several times.
In our measurements, five iterations showed up to provide values giving enough
information about the analyzed web service. The detected threshold is then
stored in memory and can be considered for further web service investigation by
the developer.

After the process of narrowing down the threshold, AdIDoS returns to its
normal analysis but will now consider the detected threshold. In addition, the
web service is tested for DoS weaknesses near the actual threshold.

Middle attack

Parameter:
- minimum = utmost successful attack
- maximum = least unsuccessful attack

notify plugin about
the new attack

plugin updates
the library

minimum = middle
[was successful]

[was unsuccessful]

[iteration < 5]

create middle
attack

maximum - minimum
2

middle =

Threshold detection

maximum = middle

Fig. 2. Threshold detection

5 Implementation

We implemented the concepts described in the previous section as a WS-Attacker
plugin AdIDoS. In the following, we give a detailed view on some specific imple-
mentation issues.

5.1 AdIDoS for WS-Attacker

We implemented all XML-based DoS attacks listed in Section 2.3 as a WS-
Attacker plugin – called AdIDoS (Adaptive Intelligent Denial-of-Service). Each
DoS attack executed by AdIDoS is a composition of multiple parameters. There
are two types of attack parameters:

– Independent attack parameters are generic configuration parameters which
can be used for all DoS attacks. Example for independent parameters are
the number of used threads to send requests, or the delay between sending
them.

AdIDoS – Adaptive Intelligent Denial-of-Service IX

– Dependent attack parameters are specific for the executed DoS attack.
For example, in Coercive Parsing, AdIDoS chooses the number of nested
elements.

In addition to that, there are multiple possibilities for placing the attack payload
(e.g. in the <soap:Header>, in the <soap:Body>, . . .). All positions are marked
in the XML message by analyzing its XML Schema. We used XML Schema pars-
ing to automatically detect so called XML extension points.6 These extension
points can be used to place the payload without invalidating the schema. If the
web service uses XML Schema validation, our generated attack messages do not
harm the schema. Every DoS attack specifies where its payload can be placed:

– ELEMENT: the payload of an attack can be placed as a new element into the
document
Supported by Coercive Parsing, XML Element Count, XML Entity Expan-
sion, XML External Entity and XML Overlong Names

– ATTRIBUTE: the payload can be placed within an existing element
Supported by XML Attribute Count and HashCollision

5.2 Attack Configuration and Execution

By executing a concrete DoS attack, AdIDoS first uses the schema analyzer
provided by WS-Attacker to identify all available extension points. Hereafter
AdIDoS provides a pool of various XML-based DoS attacks, which can easily be
configured through the configuration dialog as shown in Figure 3 on the left. This
is extremely useful if the tester just wants to execute a subset of the supported
attacks to save time. Every attack has its own set of supported parameters.
Figure 3 shows the attack parameters for the Coercive Parsing Attack on the
right. Coercive Parsing uses two parameters:

– Number of tags: For this parameter a range of values can be specified. In
addition, the step size can be set.

– Tag name: This parameter can be specified as a list of values.

The range option allows one to perform attacks with various levels of aggressive-
ness.

5.3 Attack Success and Efficiency Decision

The success of an attack is calculated as follows: We use the median round trip
time of untampered requests in comparison to the median round trip time of
tampered requests. To compute the median, we use the last ten (untampered

6 Areas in the XML document, where additional elements or attributes can be placed
according to the schema definition. Identified by <xs:any> and <xs:anyAttribute>

in the XML Schema

X Altmeier et al.

Fig. 3. Configuration of Denial-of-Service attacks

or tampered) requests sent to the web service. If the median round trip time of
the tampered requests is three times higher7 than the median round trip time
of the untampered requests, the attack is marked as successful. It allows one to
reliably recognize attacks as successful and minimizes the false positives.8 The
attack success is recognized as follows:

– ratio time <3 : the attack was not successful
– ratio time >= 3 : the attack was successful

Besides the information that an attack is successful, AdIDoS also provides an
estimation of the attack efficiency. Again this estimation is based on the median
round trip time of the two attack runs.

– ratio time between >= 3 and <6 : the attack was efficient
– ratio time >= 6 : the attack was highly efficient

To avoid false positives, the AdIDoS algorithm uses an approach with a single
success confirmation. If the algorithm detects measurable differences between
tampered and untampered roundtrip times, the server first gets some time to
recover. This prevents that a DoS attack is marked as successful even though
it is not, just because it is executed right after a successful attack. After the
recovery time, a new attack vector is sent to the server and its response time is
compared to the response times of untampered requests.

5.4 Extended ARTR Approach

Falkenberg et al. [4] presented an algorithm for attack success measurements
that uses a blackbox approach with an ARTR metric (see Section 2.4). Their

7 This value was chosen empirically based on our tests in local networks.
8 Here an attack is marked as successful even though is is not

AdIDoS – Adaptive Intelligent Denial-of-Service XI

ARTR approach was based on measuring response times. The response time
measurement always started with the first byte that was sent, and stopped with
the last byte that was received. With this algorithm the comparison of two or
more requests requires that the requests must have the same size. Otherwise the
transmission of the data would affect the measurement.

AdIDoS also pursues a blackbox approach with the ARTR metric. However, it
uses a slightly different measurement algorithm (see Figure 4). The response time
measurement starts with the last byte sent, and stops with the first byte received.
The main benefit of this improved time measurement is that fluctuations, which
can occur during transfer, do not affect the measurement as strongly as before.
In addition, only the time is measured that the service needs to execute the
request. Finally, it becomes less important to send requests of the same size.

Fig. 4. Our new ARTR approach considers only time between the last byte that was
sent, and the first byte that was received.

6 Practical Evaluation

Using AdIDoS, it becomes easy to test a given web service for DoS weaknesses.
Multiple test scenarios were set up to investigate common web service frame-
works: Apache Axis2 [13], Apache CXF [14], Metro [15], .NET [10] and PHP
[16].

The services were hosted on a Windows 7 machine (@2,30 GHz, 4GB Ram)
with the following set up:

– Java based web services: Tomcat 7.0.55 (Oracle Java7 1.7.0 71)
– .NET: IIS 7.5.7600.16385 (.NET framework v2.0.50727)
– PHP: Apache 2.4.12 (PHP 5.5.24.0)

The tests were performed from a second, independent Windows 7 machine within
the same LAN with the default configuration and parameters. As a service a
simple conversion service was implemented, which converts Fahrenheit to Celsius
and vice versa. In addition, the XML Security Gateways WebSphere DataPower
Integration Appliance XI50 [6] and Axway SOA Gateway 7.3.1 [1] were tested.

Table 1 gives an overview of all tested web services. Apache CXF version
was the most secure open source web service service framework. It was the only

XII Altmeier et al.

Fig. 5. Automatically generated result view of successful attacks with concrete infor-
mation.

A
p
a
ch

e
A

x
is

2

A
p
a
ch

e
C

X
F

M
et

ro

.N
E

T

P
H

P

X
I5

0

A
x
w

ay
Coercive Parsing � - - - - - -

XML Element Count - - - - - - -

XML Attribute Count � - � � � � -

XML Entity Expansion - - - - - - -

XML External Entity - - - - - - -

HashCollision � - � - � - -

XML Overlong Names - - - - - - -

Table 1. Results of our vulnerability scan. The Symbol “�” marks web services, where
DoS weakness were found by AdIDoS.

open source framework that provides a secure default configuration. The CXF
implementation limits the possible appearance of elements in an XML document
to achieve this goal.
The Apache Axis2 framework is vulnerable to Coervice Parsing, XML Attribute
Count and HashCollision with the collision generators DJBX31A and DJBX33A.
It is very unusual that one implementation is vulnerable to multiple collision gen-
erators, and we cannot explain this behavior. The vulnerability to Coercive Pars-
ing and XML Attribute Count (on ELEMENT) is limited to the soap:Header.
This indicates that unexpected elements are only processed at this position. The
highest impact comes from XML Attribute Count, only CXF was not vulnerable
to this attack.

AdIDoS – Adaptive Intelligent Denial-of-Service XIII

In contrast to the expected behavior of the two security gateways, the XI50 was
also vulnerable to XML Attribute Count. By placing the attack payload within
an existing element in the soap:Body there was a clear evidence for a higher
processing time.

Threshold for Apache CXF XI50 Axway

Nested Elements 80 - 158 470 - 548 236 - 314

Number of Elements - - 783 - 1,173

Number of Attributes 626 - 704 - 704 - 782

Element name length - 3,125 - 3,515 3,906 - 4,296

Attribute length 116,226
- -

- 122,343

Number of Entities - - 16 - 32
Table 2. Overview of thresholds used in the tested frameworks.

Besides the detection of DoS weaknesses, AdIDoS is able detect thresholds
used by the implementations. These thresholds are considered for further investi-
gation of a service. Table 2 shows the detected thresholds and their approximate
value.

Attack name Axis2 Metro .Net PHP

Coercive Parsing ARTR 6.52
Number of Tags 2,500

XML Attribute Count ARTR 4.02 7.00 3.30 10.65
Number of Attributes 10,000 10,000 10,000 10,000

HashCollision ARTR 12.75 6.21 155.88
Number of Collisions 3,750 3,750 1,250

Table 3. Average ARTR and attack parameters.

AdIDoS performs multiple attacks against a web service. The impact of an
attack is shown by ARTR and the used parameters. Table 3 illustrates the ARTR
for the tested web services and Table 4 illustrates the ARTR for the XI50 secu-
rity gateway. Beside the ARTR the used parameters for the single attacks are
specified.

Attack name XI50

XML Attribute Count ARTR 7.79
Number of Attributes 2,500

Table 4. Average ARTR and attack parameters for XI50

XIV Altmeier et al.

The goal of AdIDoS is to detect DoS weaknesses in XML-based web services
and not to exploit them. For this reason, AdIDoS stops as soon as a DoS weakness
for an attack class (e.g. Coercive Parsing) is detected. More aggressive attacks,
which certainly result in a higher ARTR, are not performed.

7 Related Work

There are already DoS attacks that rely on handling of XML data. These at-
tacks are partially supported by penetration testing tools like SoapUI,9 or WS-
Fuzzer.10 SoapUI and WSFuzzer are tools developed specifically for testing web
service platforms, but these tools have no support for automatic XML-based
DoS analysis.

Oliveira et al. implemented a web service tool called WSFAggressor [17],
which contains several DoS attacks. However, in order to evaluate the attack
success, this tool requires access to the tested system. This prerequisite is not
given by evaluating specific hardware devices such as IBM Datapower [6], or pen-
testing sensitive customers’ servers. Moreover, this tool misses some important
attack techniques such as HashDoS [18].

Falkenberg et al. studied XML-based DoS attacks [4] and implemented a WS-
Attacker DoS plugin. The plugin does not need access to the tested web service
in order to measure the attack success. It instead uses a blackbox approach using
the server response times (ARTR) only. In contrast to AdIDoS, the authors do
not analyze an adaptive approach of XML-based DoS testing: Values and size
of tampered messages is chosen statically, and the penetration tester has to
adapt these properties manually. This results in attack testing complexity and
to possible false negatives. In our work, we extended the approach of Falkenberg
et al. and implemented an adaptive and intelligent detection XML-based DoS
attacks.

Very recently, Pellegrino et al. studied data compression attacks against sev-
eral applications [11], including web services servers. In order to execute an attack
against a web service server, the attacker inserts a huge number of spaces into
a SOAP message and compresses the message using a deflate algorithm (used
by zlib, gzip or zip libraries). This way, a compression ratio of about 1:1000 can
be achieved. The authors reported that Apache Axis2 and Apache CXF were
vulnerable to these attacks. These attacks are currently missing in WS-Attacker
and can be implemented in a future work.

8 Conclusions and Future Work

In this paper, we developed a new approach for testing robustness of XML-
based web services against DoS attacks. Our approach adapts an intelligent
strategy that automatically increases the attack strength and searches for attack

9 http://www.soapui.org
10 http://sourceforge.net/projects/wsfuzzer

http://www.soapui.org
http://sourceforge.net/projects/wsfuzzer

AdIDoS – Adaptive Intelligent Denial-of-Service XV

thresholds. We implemented the approach as a new plugin for the web service
penetration testing framework WS-Attacker. Interestingly, the plugin allowed us
to detect new attacks, previously overlooked in related works. This proves the
feasibility of our new approach for testing DoS attacks.

While our paper investigates SOAP-based web services, the implemented
library can be directly applied to further XML standards as well, e.g. SAML or
REST-based web services. Moreover, the general idea of intelligent DoS testing
can be adapted to other applications beyond XML as well.

Further research in this direction could be in extending the number of web
service specific attacks. As described in [4,11], further attacks like Recursive
Cryptography, XML Signature Key Retrieval DoS, or data compression attacks
are applicable to web services as well.

The values for detection of attack success and efficiency were chosen empir-
ically based on our observations in local networks. However, different network
conditions could affect the results and introduce new false positives and false
negatives. In order to detect DoS attacks over the Internet, the accuracy of our
solution has to be improved.

Acknowledgements

We would like to thank our anonymous reviewers for their helpful comments.
The research was supported by the German Ministry of research and Education
(BMBF) as part of the VERTRAG research project.

References

1. Axway: Axway soa gateway, https://www.axway.com/products-solutions/

soa-governance/soa-gateway

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (xml) 1.0 (fifth edition) (November 2008), http://www.w3.org/
TR/REC-xml/

3. Christian Mainka: Automatic Penetration Test Tool for Detection of XML Signa-
ture Wrapping Attacks in Web Services (May 2012), Master thesis supervised by
Jörg Schwenk and Juraj Somorovsky

4. Falkenberg, A., Mainka, C., Somorovsky, J., Schwenk, J.: A New Approach to-
wards DoS Penetration Testing on Web Services. In: Web Services (ICWS),
2013 IEEE 20th International Conference on. pp. 491–498. IEEE (2013), http:

//dblp.uni-trier.de/db/conf/icws/icws2013.html#FalkenbergMSS13

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (May 2002), http://doi.acm.org/
10.1145/514183.514185

6. IBM: Websphere datapower integration appliance xi50, https://www-03.ibm.com/
software/products/en/datapower-xi50

7. Kupser, D., Mainka, C., Somorovsky, J., Schwenk, J.: How to break xml encryption
– automatically. In: 9th USENIX Workshop on Offensive Technologies (WOOT 15).
USENIX Association, Washington, D.C. (Aug 2015), https://www.usenix.org/
conference/woot15/workshop-program/presentation/kupser

https://www.axway.com/products-solutions/soa-governance/soa-gateway
https://www.axway.com/products-solutions/soa-governance/soa-gateway
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://dblp.uni-trier.de/db/conf/icws/icws2013.html#FalkenbergMSS13
http://dblp.uni-trier.de/db/conf/icws/icws2013.html#FalkenbergMSS13
http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
https://www-03.ibm.com/software/products/en/datapower-xi50
https://www-03.ibm.com/software/products/en/datapower-xi50
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser

XVI Altmeier et al.

8. Mainka, C., Somorovsky, J., Schwenk, J.: Penetration testing tool for web services
security. In: SERVICES Workshop on Security and Privacy Engineering (Jun 2012)

9. McCabe, F., Booth, D., Ferris, C., Orchard, D., Champion, M., New-
comer, E., Haas, H.: Web services architecture. W3C note, W3C (Feb 2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

10. Microsoft: .net framework, https://msdn.microsoft.com/en-us/library/

a4t23ktk(v=vs.80).aspx

11. Pellegrino, G., Balzarotti, D., Winter, S., Suri, N.: In the compression hor-
net’s nest: A security study of data compression in network services. In: 24th
USENIX Security Symposium (USENIX Security 15). pp. 801–816. USENIX As-
sociation, Washington, D.C. (Aug 2015), http://blogs.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/pellegrino

12. Sperberg-McQueen, C.M., Thompson, H.S., Maloney, M., Thompson, H.S., Beech,
D., Mendelsohn, N., Gao, S.S.: W3C xml schema definition language (XSD) 1.1
part 1: Structures. Last call WD, W3C (Dec 2009), http://www.w3.org/TR/2009/
WD-xmlschema11-1-20091203/

13. The Apache Software Foundation: Apache axis2, https://axis.apache.org/

axis2/java/core/

14. The Apache Software Foundation: Apache cxf – index, https://cxf.apache.org/
15. The GlassFish community: Metro, https://cxf.apache.org/
16. The PHP Group: Php: Hypertext preprocessor, https://php.net
17. Vieira, M., Laranjeiro, N., Oliveira, R.A.: Experimental Evaluation of Web Service

Frameworks in the Presence of Security Attacks (June 2012)
18. Wälde, J., Klink, A.: Hash Collision DOS Attacks. 28C3, http://www.nruns.com/

_downloads/advisory28122011.pdf (Dec 2011)

https://msdn.microsoft.com/en-us/library/a4t23ktk(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/a4t23ktk(v=vs.80).aspx
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/
http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/
https://axis.apache.org/axis2/java/core/
https://axis.apache.org/axis2/java/core/
https://cxf.apache.org/
https://cxf.apache.org/
https://php.net
http://www.nruns.com/_downloads/advisory28122011.pdf
http://www.nruns.com/_downloads/advisory28122011.pdf

	AdIDoS – Adaptive and Intelligent Fully-Automatic Detection of Denial-of-Service Weaknesses in Web Services

