
Do not trust me: Using malicious IdPs for analyzing and attacking Single Sign-On

Christian Mainka
Horst Görtz Institute for IT-Security

Ruhr University Bochum
Christian.Mainka@rub.de

Vladislav Mladenov
Horst Görtz Institute for IT-Security

Ruhr University Bochum
Vladislav.Mladenov@rub.de

Jörg Schwenk
Horst Görtz Institute for IT-Security

Ruhr University Bochum
Joerg.Schwenk@rub.de

Abstract—Single Sign-On (SSO) systems simplify login proce-
dures by using an Identity Provider (IdP) to issue authenti-
cation tokens which can be consumed by Service Providers
(SPs). Traditionally, IdPs are modeled as trusted third parties.
This is reasonable for centralized SSO systems like Kerberos,
where each SP explicitly specifies which single IdP it trusts.
However, a typical use case for SPs like Salesforce is that each
customer is allowed to configure his own IdP. A malicious
IdP should however only be able to compromise the security
of those accounts on the SP for which it was configured. If
different accounts can be compromised, this must be considered
as a serious attack.

Additionally, in open systems like OpenID and OpenID
Connect, the IdP for each customer account is dynamically
detected in a discovery phase. Our research goal was to test if
this phase can be used to trick a SP into using a malicious IdP
for legitimate user accounts. Thus, by introducing a malicious
IdP we evaluate in detail the popular and widely deployed SSO
protocol OpenID. We found two novel classes of attacks, ID
Spoofing (IDS) and Key Confusion (KC), on OpenID, which
were not covered by previous research. Both attack classes allow
compromising the security of all accounts on a vulnerable SP,
even if those accounts were not allowed to use the malicious
IdP.

As a result, we were able to compromise 12 out the
most popular 17 existing OpenID implementations, including
Sourceforge, Drupal, ownCloud and JIRA. We developed an
open source tool OpenID Attacker, which enables the fully au-
tomated and fine granular testing of OpenID implementations.
Our research helps to better understand the message flow in
the OpenID protocol, trust assumptions in the different com-
ponents of the system, and implementation issues in OpenID
components. All OpenID implementations have been informed
about their vulnerabilities and we supported them in fixing
the issues. One year after our reports, we have evaluated 70
online websites. Some of them have upgraded their libraries
and were safe from our attacks, but 26% were still vulnerable.

This is an extended version of our paper that is published
at EuroS&P 2016 [1].

1. Introduction

Motivation. Password based authentication still dominates
the Internet, but security problems related to passwords
are obvious: Users either use weak passwords or reuse
passwords between different sites, password based login is
prone to simple attacks like Phishing or dictionary based
attacks [2], and recently two studies on password managers
[3], [4] showed all of them to be insecure. SSO schemes
have been proposed to replace password based authenti-
cation, to enhance both usability and security. An non-
academic overview [5] claims that 87% of U.S. customers
are aware of SSO and more than half have tried it. OpenID
and its successor OpenID Connect are amongst the most
widespread SSO protocols. Leading companies like PayPal,
Yahoo and Symantec support OpenID based authentication.

The prospect of enhanced security through the intro-
duction of SSO schemes is combined with higher risks
because SSO schemes constitute a single point of attack: If a
weakness in an SSO scheme is detected, numerous Service
Providers on the Internet may be affected simultaneously.
Thus from the beginning, SSO schemes have been subject
to formal security analysis [6], [7].

In view of the importance of SSO and OpenID, and
of the impact a single vulnerability in a SSO system may
have, we re-evaluated existing concepts for analyzing the
authentication process. The question we tried to answer was:
Are the methodologies described in the literature complete in
the sense that there are not other options to attack OpenID?
Unfortunately, the answer is no and in this paper we explain
the reasons for the existing gap.
Single Sign-On. Single Sign-On (SSO) is a technique to
enhance and simplify the login process on websites. Instead
of managing a plethora of username/password combinations
for each website, a user just needs an account at an Identity
Provider (IdP) which can then be used to log in on a Service
Provider (SP).

Figure 1 gives an overview of a basic SSO scenario.
When a client (C) tries to log in to a service offered by the
SP, C sends a login request (1.) through some user agent
(UA) (typically a web browser). If C is not yet authenticated
to the SP, a token request is returned (2.). The token request
contains information on the SP, the chosen IdP (e.g. the

Service Provider Programming
Language

IDS KC TRC Summary: Unauthorized
Access

CF OpenID ColdFusion �� - � ��
DotNet OpenAuth ṄET - - - -
Drupal 6 / Drupal 7 PHP - �� - ��

dyuproject Java �� - � ��
janrain PHP, Python, Ruby - - - -
JIRA OpenID Plugin Java �� - - ��

JOID Java �� - � ��

JOpenID Java �� - - ��
libopkele (Apache mod_auth_openid) C++ - - - -
LightOpenID PHP - - - -
Net::OpenID::Consumer Perl - - � �
OpenID 4 Java (WSO2) Java - - - -
OpenID CFC ColdFusion �� - - ��

OpenID for Node.js (everyauth, Passport) JavaScript/NodeJS - - � �

Simple OpenID PHP Class (ownCloud 5) PHP �� - � ��

Sourceforge n.a. �� �� - ��

Zend Framework (OpenID Component) PHP - �� - ��

Total 8 3 6 12/ 17

�One account on the target is compromised. ��All accounts on the target are compromised.

TABLE 1: Practical evaluation results: unauthorized access on 12 out of 17 targets. We compromised 2 targets using the
web attacker model (�). The other 10 targets make use of a weaker variant (��), without any user interaction.

C UA SP IdP

(1.) Login request

(2.) Token Request

(3.) Authentication

Create token
t for C and
σ = sign(t)(4.) Token t, Signature σ

success? =
verify(t, σ)(5.) success?

Figure 1: Single Sign-On (SSO) overview.

IdP’s URL) and optionally on C’s account name at the IdP.
C’s user agent is redirected to the IdP and forwards the
token request to it. If C is not yet logged in at this IdP,
she/he has to authenticate in Step (3.). The IdP then issues
an authentication token t for C which is commonly protected
by a cryptographic signature1 σ. In Step (4.), t is sent back to
the UA, which forwards it to the SP. Finally, the SP verifies
t and, in case of successful verification, grants access to its
resources in Step (5.).

OpenID. OpenID adds new components to the standard
SSO information flow (Figure 2). To keep the system as
open as possible, a discovery phase was added. Here the
client enters his identity on the SP, which is used by the SP
to discover the corresponding IdP. Consequentially, in the
association phase, cryptographic keys are established on the
fly. This new phase was introduced to reduce administrative
overhead, especially configuring keys manually. Here an
(unsigned) Diffie-Hellman key exchange is performed to

1. In many specifications, both, Message Authentication Codes (MACs)
and Digital Signatures, are summarized under the term signature.

New in
OpenID

C UA SP ID Server IdP

(1.) Login request

(2.) Discovery Phase

(3.) Association Phase

(4.) Token Request

(5.) Authentication

Create token
t for C and
σ = sign(t)(6.) Token t, Signature σ

success? =
verify(t, σ)(7.) success?

Figure 2: OpenID overview.

establish a shared secret between SP and IdP.2

Are IdPs trusted third parties? Since IdPs issue signed
statements about the identity of other entities on the Internet,
one may be tempted to compare an IdP with a certification
authority (CA), which issues X.509 certificates. While this
comparison may hold for very large IdPs like Facebook,
Google and Twitter, for the majority of IdPs it is not correct.

The structure of the X.509 PKI allows any CA to make
trust statements on any other entity, and all consumers must
trust this statement. Thus, malicious CAs, or compromised
CAs (cf. the Comodo and Diginotar security breaches),
compromise the security of the whole X.509 PKI.

IdPs on the other hand have a limited scope: They should
only issue security tokens for users who are registered at
this particular IdP, and their statements will only be trusted
by certain SP, or by certain compartments of an IdP. Thus,
configuring a malicious IdP for one account/compartment of
a SP should not influence the security of other compartments
at the same SP.

2. Please note that the absence of preconfigured cryptographic keys
makes any OpenID connection vulnerable to man-in-the-middle attacks.
This fact is well-known but has no relation to our attacks.

As an example, please consider Salesforce, an SaaS
provider for customer relationship management software
(CRM). Companies may outsource their CRM system to
Salesforce, but typically want to retain control on who
should be able to see and modify their customer data. Thus
each company runs a separate IdP3, and Salesforce enforces
a strict separation between different company accounts/com-
partments (Figure 3).

	

	

	

Salesforce.com	

Account	

Company	
 1	

Account	

Company	
 2	

Account	

Company	
 3	

Account	

A7acker	

IdP	
 	

Company	
 1	

IdP	
 	

Company	
 2	

IdP	
 	

Company	
 3	

Malicious	
 	

IdP	
 	

Figure 3: SPs like Salesforce enforce a strict separation
between compartments. A malicious IdP can only attack its
own compartment.

New SSO Attacker Paradigm. If an attacker runs a mali-
cious IdP, we would expect that no serious harm can be done
in a secure SSO system: Only the compartment on the SP
configured to use this malicious IdP should be endangered.
Unfortunately we were able to show that this is not the
case for many OpenID implementations: here a malicious
IdP can compromise all accounts/compartments at the SP
(Figure 4).

	

	

	

Drupal.com	

Account	

Company	
 1	

Account	

Company	
 2	

Account	

A3acker	

Account	

Cpmpany	
 3	

IdP	
 	

Company	
 1	

IdP	
 	

Company	
 2	

Malicious	

IdP	
 	

IdP	

Company	
 3	
 	

Figure 4: OpenID based SPs like Drupal allow a malicious
IdP to compromise all other compartments.

Please note that the concept of a malicious IdPs com-
promising its own accounts is not new and trivial. In this
sense only those accounts controlled by the malicious IdP
can be compromised. In contrast, the presented attacks in
this paper allow an attacker to log into accounts controlled
by other benign IdPs.

The setup and usage of malicious IdPs is possible since
protocols like OpenID introduce a novel “open” concept
of delegated authentication – the user identifier is a fully

3. Salesforce supports e.g. the SAML SSO system.

qualified URL like https://google.com/Alice.4 Based on this
novel concept – the usage of fully qualified URLs for au-
thentication, in OpenID the SP does not have any predefined
trust relationship with a specific IdP, but only implicitly
trusts an IdP because the name of this IdP was discovered
through the identity/URL of a user. Thus, the concept of
“compartment” for an OpenID SP resembles one subset in
a partition of the user set: Each user selects exactly one IdP.

Since it is easy for anyone to run an IdP in OpenID,
we extended the previously known attack methodology and
systematically considered malicious IdPs. By running a
malicious IdP, we enhance the attacker’s capabilities: he
is able to read and manipulate all messages received to
and sent from the malicious IdP, even for messages that do
not pass through the browser. Thus, the attacker has better
control over the SSO message flow, which results in a more
thorough security analysis of SSO.

Our novel approach for attacking an SP revealed two
novel attack classes: ID Spoofing and Key Confusion. The
effect of these attacks is devastating: We can fully com-
promise all accounts on an OpenID SP, without any user
interaction.
What about other SSO protocols? The general concept
of the malicious IdP paradigm can be applied to all cur-
rent SSO protocols. However, for a successful attack the
requirement is that the protocol is open and supports in-
formation flows similar to the discovery and association
phase of OpenID. The idea of the discovery and association
phase are not unique to OpenID. Modern SSO systems like
OAuth [8], OpenID Connect [9], [10] and BrowserID have
similar phases. As a proof-of-concept for this extensibility
we manually tested OpenID Connect libraries and found
vulnerabilities similar to IDS and promptly reported them56.
Comprehensive research on OpenID Connect and OAuth
is part of a future work. Both protocols have a different
protocol structure and due to these differences (and the
given page limit) this paper focuses only on the OpenID
protocol, but the relevance of the attacks described herein
for future generations of open SSO protocols is confirmed
by the above mentioned CVEs.
Methodology. After an initial white-box analysis of the
different OpenID implementations, we used our own IdP to
perform realistic black-box tests against running target SP
implementations. During these tests, the used IdP evolved
into an automatic security testing tool OpenID Attacker
(Section 6), allowing us now to apply all presented attack
classes fully automatic on arbitrary SPs libraries. The results
of both analysis phases were then verified as follows: We set
up a victim account on each SP implementation, and verified
in each case that we could access this account through a
second (attacker-controlled) browser, running on a different
PC without the victim’s credentials.

4. Please note that e.g. https://google.com/Alice is a completely different
identity in comparison to https://microsoft.com/Alice.

5. CVE-2015-0960,CVE-2015-0959
6. http://www.connect2id.com/products/nimbus-oauth-openid-connect-

sdk#thanks

http://www.connect2id.com/products/nimbus-oauth-openid-connect-sdk#thanks
http://www.connect2id.com/products/nimbus-oauth-openid-connect-sdk#thanks

The validity of all attacks found has strictly been verified
in the Web attacker model [11]: The attacker only controls
the incoming and outgoing messages to and from web
applications which he controls (e.g. malicious clients, SPs
and IdPs); all other network traffic, for example between
the attacked SP and every honest IdP, is unknown to him.
He can also freely access web applications through their
interface exposed in the WWW. An attack is considered
successful if the attacker gets illegitimate access to protected
resource at the legitimate SP.

We do not assume full control over the network, for
instance, we do not use the (stronger) standard cryptographic
attacker model, which yields weaker results. Additionally,
we do not consider phishing attacks – the attacker does not
imitate a legitimate SP and we do not trick out a victim to
use the attacker controlled IdP.

Results. We were able to find two novel attack classes on
OpenID:

I ID Spoofing introduces an attacker in the role of a
malicious IdP, generating tokens in the name of other
(trusted) IdPs. The concept of this attack is very simple,
while its impact is devastating: The malicious IdP
creates a token that contains identify information be-
longing to an account on a different (e.g. Paypal) IdP. 8
of 17 frameworks were vulnerable to IDS. Additionally,
11 of all 70 evaluated websites, see Section 9, were
susceptible against this attack.

I Key Confusion exploits a vulnerability in the key man-
agement implementation of the SP, resulting in the use
of an untrusted key. The attacker acts as a malicious
IdP and uses the association phase to establish a shared
secret with the target SP. Later on, the attacker confuses
the SP so that it believes to use the shared secret of an-
other, honest IdP, while in fact, it is the one belonging
the malicious IdP. 3 out of 17 implementations and 4
of the evaluated websites were vulnerable to KC.

Additionally, we adapted an attack concept known from [6]
to OpenID and we are the first to evaluate this attack against
existing OpenID implementations:

I Token Recipient Confusion introduces an attacker act-
ing as a malicious SP. The attacker then forwards the
received tokens to other SPs. The attack was successful
on 6 out of 17 frameworks and 8 of the websites.

The attacks were evaluated against the 17 most popular
OpenID implementations mainly taken from the official
OpenID Wiki [12]. Table 1 summarizes the results: in total,
we were able to compromise 12 of them. Our results show
that the verification of a security token is a nontrivial task
in OpenID: Dependencies between different data structures
must be taken into account (e.g. association name and
association key) and REST parameters must be checked with
great care (Section 11).

Responsible Disclosure. All vulnerable projects have been
informed and most acknowledged our findings. In case we

did not receive any reaction, we filed a CVE7. We coop-
erated by proposing and providing bug fixes, which were
applied in some cases8910.
Contribution. The contribution of this paper can be sum-
marized as follows:
I We propose a novel attacker paradigm for analyzing

SSO protocols: the use of a malicious IdP, which
results in a more comprehensive security evaluation.

I We describe two novel attack classes on OpenID by
using a malicious IdP, all strictly in the Web attacker
model. These attacks provide novel insights into the
problems of token verification for SPs, and of enforcing
the message flow intended by the OpenID specification.

I We give a systematic overview on OpenID security
and show that roughly 71% of the analyzed implemen-
tations are vulnerable, including Sourceforge, Drupal,
ownCloud and JIRA.

I We develop OpenID Attacker, a free and open source
malicious OpenID IdP capable of executing our novel
and previous discovered attacks [13]. The tool is able
to perform all attacks in a fully-automatic manner.

I In addition to our first framework analysis, we have
recently evaluated 70 online websites. By applying our
malicious IdP paradigm, we broke the authentication
in 26% of them. Since this evaluation was after our
initial library analysis, we identified websites using
Drupal and the Net:OpenID:Consumer library that have
applied our fixes. Thus, we could not break their au-
thentication.

I As a manual proof-of-concept, we have shown that the
described attack paradigms are extensible to other SSO
systems like OpenID Connect.

2. Security Model

Computational Model. In OpenID, there is (in contrast to
other SSO systems) an “open” trust relationship between SP
and IdP: The SP trusts tokens created by any IdP , as long
as the verified client’s ID belongs to the IdP , see Figure 2.
Thus, it is easy to enforce the usage of a custom IdP (IdPA)
into the OpenID ecosystem, which can act honestly and
maliciously. The attacker can also act as malicious client
or run a malicious SP (SPA).

As a result, we then control each type of communicating
entities in an OpenID system. We also control (and are thus
able to modify) all types of messages. This is especially
important in the Analyzing Mode (cf. Section 6), where
we modify certain parameters in each message type and
test it against a honest instance of an SP. Please note that
control over all types of messages should not be confused

7. CVE-2014-2048, CVE-2014-1475, CVE-2014-8249, CVE-2014-
8250, CVE-2014-8251, CVE-2014-8252, CVE-2014-8253, CVE-2014-
8254, CVE-2014-8265.

8. http://owncloud.org/security/advisory/?id=oC-SA-2014-002
9. http://beta.slashdot.org/journal/1083427
10. https://code.google.com/p/joid/source/detail?r=220

http://owncloud.org/security/advisory/?id=oC-SA-2014-002
http://beta.slashdot.org/journal/1083427
https://code.google.com/p/joid/source/detail?r=220

with control over all messages: we cannot access messages
exchanged between honest parties (e.g. IdP and SP), but
we can access messages exchanged with IdPA (and SP).
SSO Attacker Paradigm. The goal of the attacker is to
access a protected resource to which he has no entitlement.
To achieve this goal, he may use the resources of a web
attacker only: he can set up his own web applications and
he can lure victims to them. Furthermore, in two of three
attacks described in this paper (IDS and KC) the attacker
is even more powerful: by using the malicious IdP only,
the attacker can break into every OpenID account on the
target SP, especially into accounts that do not belong to the
malicious IdP, and without any victim’s interaction. Thus,
there is no possibility for the victim to detect or mitigate
the attacks.

In an SSO environment, the web attacker can play differ-
ent roles: (1.) Malicious client. He can start an SSO session
like any other client. Note that the attacker’s identity IDA
belongs to IdPA, but the victim’s identity IDV belongs to
IdPV . (2.) Malicious IdP. The malicious IdP (IdPA) in
our model is able to generate valid as well as malformed
authentication tokens (attack tokens). (3.) Malicious SP. In
our experiments, we never used any special properties of
SPA: it is sufficient that the attacker just controls a domain
(URL.A).

In summary, due to the openness of OpenID the attacker
can vary his roles in order to execute different attacks. The
resources needed to execute the attacks are satisfied by the
used web attacker model.

3. OpenID: Technical Background

This section gives a more detailed description of the
OpenID information flow and how the authentication is
applied.

C

SP

IdPC

ID Server(1.)

(2.)

(3.)

(4.)

(6.)

Figure 5: The OpenID protocol simplified in 5 steps. Steps
are numbered according to Figure 2.

Notation. In OpenID, the identity of a client C is represented
by a URL. Therefore, we define it as URL.IDC . Correspond-
ingly, we define the URL of a client’s IdP by URL.IdPC
and for an SP, we use URL.SP .11

Protocol. OpenID consists of three phases: (1.) discovery,
(2.) association, (3.) token processing. Figure 5 depicts a
simplified login process with OpenID.
Phase 1: Discovery. The OpenID login process starts
with C submitting his identity, called also an OpenID
identifier (URL.IDC , e.g. http://idp1.com/alice),

11. URL.IDC and URL.IdPC need not necessarily belong to the same
domain.

to the SP (Step 1.). Then, the discovery takes place.
To discover it, the SP fetches the website URL.IDC
(http://idp1.com/alice) on the ID-Server (Step 2.).
This website basically contains the URL of C’s Identity
Provider, namely URL.IdPC (e.g. http://idp1.com).
Note that the separation of ID-Server and IdP offers to
OpenID users the flexibility to use their own Website as
an identity (e.g. www.alice.com) while using a public
IdP (e.g. www.google.com)
Phase 2: Association. The association phase is basically
a Diffie-Hellman key exchange between the SP and IdP C .
It is started by the SP in Step (3.) and uses the discovered
value URL.IdPC (http://idp1.com) to determine its
associate. The shared secret between SP and IdP C is later
used to compute the signature for the OpenID token. The
shared secret is saved on both sides by using a so-called
association handle parameter α, which is a unique random
string. α is chosen by IdP C and transmitted to the SP in
the HTTP response, so that both sides use the same value
to refer the shared secret.
Phase 3: Token Processing. After the association phase,
the SP has all necessary information to validate an OpenID
token created by IdPC , so that the token processing
phase starts. The SP responds to C’s initial request in
Step 4. This HTTP response redirects C to URL.IdPC
(http://idp1.com), including the parameters from the
discovery and the association phase (URL.IdPC , α) plus the
SP’s own URL (URL.SP). Then, IdPC generates a token t
that contains the following parameters:

URL.IDC The OpenID identifier used by C, e.g.
http://idp1.com/alice

URL.IdP The URL of the IdP which creates the
token, e.g. http://idp1.com

URL.SP The URL on which this token is going to
be used, e.g. http://sp1.net

α The association handle (random string)
that identifies the shared secret which was
used to sign the token.

σ A signature that protects the previously
mentioned parameters.

IdPC then responds with a HTTP redirect in Step 6. For
this redirect, the value of URL.SP (http://sp1.net)
is used and the token t is forwarded to its destination SP.
The SP then verifies the token and C is logged in. This
verification is described in Section 4.

4. SSO Token verification

Token verification at the SP is the most critical part
within the SSO process. It consists of many steps in order to
guarantee the validity of the authentication. This observation
holds for SSO in general (SAML, OAuth, OpenID, OpenID
Connect and BrowserID). In the following, these verification
steps are discussed.
Message Parsing. Each token has a specific structure. For
instance, each OpenID parameter starts with openid.*,
and the required set of parameters must be checked by each
application. At the beginning, whenever an SP receives a

message, it has to be parsed into a data object so that it can
be processed further. Any error during this parsing directly
affects SSO security: for instance, if some data element
is present twice with different content, the second content
may overwrite the first during the parsing, or vice versa.
Additionally, all required parameters must be present.
Freshness. Freshness of authentication tokens is important
for preventing replay attacks. It can be realized with two
parameters: (1.) a nonce, which is a random value se-
lected by the SP and/or (2.) a timestamp which defines
the token’s creation time or period of validity, and which
is usually selected by the IdP. OpenID uses the parameter
openid.response_nonce. It contains the creation time
of the token concatenated with a random string.
Token Recipient Verification. A token t is intended for a
single SP. Thus, it should be guaranteed that (1.) t can be
successfully verified by a single SP only, and (2.) that t is
delivered to the correct SP. OpenID uses the URL.SP pa-
rameter for purpose (1.). This parameter should be checked
by the SP. For (2.), the HTTP-Receiver of the redirect
message sent by the IdP is given in the OpenID parameter
URL.SP . Here the IdP must check that this parameter is
valid.
IdP Verification. The SP receiving a token should verify:
(1.) the origin of the received token and (2.) the validity of
the statements contained. (1.) is verified in three steps: (1.1)
The SP must determine the unique identity of the IdP (e.g.
an URL) which issued the authentication token. (1.2) The
SP must fetch the corresponding key material associated to
that identity. (1.3) Using this key material, the signature of
the token is verified. In (2.) the SP should verify whether
the IdP is allowed to make the statements in the token, for
example, IdPA should not be able to issue tokens in the
context of other IdPs.
Cryptographic Token Verification. For step (1.3) above,
the signed parts must be determined. The SP must be able to
distinguish signed from unsigned parts within the token. For
instance, in OpenID, it should be able to distinguish signed
HTTP header fields from unsigned ones. Additionally, it
should check if all parameters that are required to be signed
are indeed signed12. For step (1.2) above, the right keys must
be chosen. The SP uses the key material associated with the
selected IdP. If this association between key material and
identity can be overwritten (cf. Section 5.2), novel attacks
are feasible.

5. Novel Attacks

In this section, we give generic descriptions of two
novel attack classes on OpenID, which are effective against
different implementations of OpenID (cf. Table 1). The only
prerequisite to apply our attacks is the possibility to use
an arbitrary IdP13. The first attack, ID Spoofing, exploits

12. In the context of SAML, this has been shown to be quite challeng-
ing [14].

13. Note that this is one of OpenID’s main features. Nevertheless, some
online SPs use a hard-coded list of supported IdPs so that our attacks are
not applicable.

characteristics in OpenID and uses a novel concept of injec-
tion the victim’s identity using a malicious IdP. The second
attack class, Key Confusion, introduces different attack tech-
niques bypassing the integrity protection of authentication
tokens by enforcing the usage of wrong keys. If a target is
vulnerable against IDS or KC, all accounts on the SP can
be compromised without any victim’s interaction.

5.1. ID Spoofing

IDS introduce a novel class of attacks tricking the target
SP to authenticate the attacker as the victim (URL.IDV) and
allow the access to victim’s resources. IDS attacks target
condition (2.) of the IdP verification step (cf. Section 4). The
attacker acts as a malicious client and uses his malicious IdP
to execute IDS. Since the IDS attack does not require any
victim interaction and only a malicious IdP is necessary, the
attacker can break into all accounts on the target SP. IDS
introduces two different strategies to achieve this goal.
Strategy 1. Identity Spoofing in the token. The malicious IdP
(URL.IdPA = http://badidp.org) is used to create
a token t∗ containing the victim’s identity (URL.IDV =
http://idp1.com/alice). The token is sent to the
target SP and the attack is successful if it accepts t∗. Given
the simplicity of this attack it is surprising that it has not
been described before.

In OpenID, a user’s identity is represented by
URL, which is controlled by exactly one IdP.
In the example above, the identity URL.IDV =
http://idp1.com/alice belongs to IdPV with
URL.IdPV= http://idp1.com. Consequently, an IdP
can make statements only for user identities bound to its
domain. Thus, IdPA should in theory not be able to create
a valid token t∗ containing URL.IDV . For OpenID, the
corresponding check should work as follows: According
to the specification [15, Section 11.2], an SP should start
a (second) discovery on the identity URL.IDV contained
in t∗. In this manner, SP can discover whether URL.IDV
belongs to the IdP contained in t∗, i.e. IdPA in this case.
If this step is not implemented properly, an attacker is
able to inject identities, which are not controlled by his
malicious IdP. In this manner, the attacker can impersonate
users with different, trustworthy IdPs, for example, Paypal
or Yahoo, by using only his own IdPA.
Strategy 2. Identity Spoofing in the discovery phase.

The ID-Server in OpenID’s discovery phase commonly
returns the URL of the IdP that is going to be used (e.g.
URL.IdPC = http://idp1.com). Besides returning
URL.IdPC , OpenID has a feature to return optionally a
second “local” ID2

C in addition14. This value is transmitted
during the discovery phase and is not part of the SSO token.
Thus, it is not protected by a signature. In IDS, Strategy 2,
ID2
C is set to URL.IDV = http://idp1.com/alice

during the discovery phase. Later on, the malicious IdP gen-
erates a valid token containing the attacker’s normal identity

14. This parameter is originally intended to determine C’s concrete
identity on its IdP, e.g. if he owns several ones on it.

(URL.IDA = http://badidp.org/attacker) and
sends it to the SP.

Once the SP receives the token, it verifies the signature,
which is valid. Then, if the SP uses the ID2

C = URL.IDV =
http://idp1.com/alice parameter to login the user,
the attacker is successfully logged in as the victim. A
detailed description is given by the example of ownCloud
in Section 8.1).
Strategy 3. Identity Spoofing via Email. In OpenID, the
authentication token can contain additional data about the
user like first name, last name, email, gender etc. This data
is mostly used by the SPs during the registration process of
new users to automatically fill out some required text fields.
However, this information should not be used for the authen-
tication since OpenID does not provide any mechanisms to
verify the correctness of these statements. For instance, an
attacker using a malicious IdP can issue tokens containing
arbitrary email addresses like admin@gmail.com.

To perform the attack, the attacker uses his malicious
IdP and issues a valid token containing his OpenID identity,
e.g. URL.IDA = http://badidp.org/attacker and
the victim’s email address. Afterwards, the woken will be
sent to the SP. Since the token is valid, the verification is
successful and the SP uses the email address to authenticate
the user. As a result, the attacker gets access to any account
on the SP.

Please note that this attack differs from the attack de-
scribed in [16] since the attacker does not manipulate the
authentication request and all required parameters are signed
within the authentication token.

5.2. Key Confusion

KC introduces a novel class of attacks forcing the target
SP to use a key of the attacker’s choice for the verification
of tokens. The enforced key is a legit key that is shared
between the target SP and the malicious IdP. However,
during the KC attack, the SP is convinced to believe, that the
key belongs to the victim’s (instead of the attacker’s) IdP.
KC attacks address the second part of the cryptographic
token verification step (cf. Section 4). Similar to IDS, no
victim interaction is necessary, and thus, all accounts on a
vulnerable target can be compromised.

The idea of KC is related to the untrusted keys presented
in [14]. But in contrast to it protocols like SAML and
OAuth, in OpenID, all established keys between an IdP and
an SP are considered to be trusted. In order to load and use
the correct trusted key, the SP uses the association handle
α. KC targets this handle and introduces strategies how to
enforce the usage of wrong keys.

To execute KC, the attacker may follow one of two
strategies to succeed.
Strategy 1. Overwriting the secret key handle of a trusted
IdP. In the case of OpenID, the key material is referenced
by the association handle parameter α. Since the value of α
is chosen by the IdP (and not by the SP), the attacker (acting
as a malicious IdP) is able to set α to the same value as
defined by the valid IdP in order to overwrite it with its own

key values. The attacker may get to know the original α by
starting an attempt to log in as the victim on the target SP.
Strategy 2. Submit attacker’s own key handle for signature
verification. The association α is also part of the signed
token t∗. Thus, some SP implementations are tempted to use
this value to verify the signature. The fact that the token may
be issued by a malicious IdP clearly shows that this leads
to a critical vulnerability: Suppose SP and IdPV share a
secret identified by α. Additionally, SP and IdPA share a
secret identified by β. If a malicious IdPA issues the token
t∗ = (URL.IDV ,URL.IdPV ,URL.SP,β), and the target SP
accepts this token, it is vulnerable to KC.
Strategy 3:. Session overwriting According to the OpenID
specification [15, Section 11.2], an SP should verify that
the discovered information (user’s identity URL.ID and
URL.IdP) matches the presented content in the received
token. If the SP provides this check, Strategy 2 fails, because
the discovered IdP (IdPA) does not match the IdP within
the authentication token (IdPV).

Unfortunately, this check does not include a verification
that the key used to sign the token belongs to the discovered
IdP. This allows again to bypass the verification logic: if the
attacker can overwrite the discovered information with the
values of IdPV before the authentication token is received
and the SP uses the key identified by β, the attack is
successful.

Commonly, web applications use a session variable to
store user information used across multiple pages (e.g.
username, favorite color, etc). In OpenID, the discovered
information can be stored in a session variable. Later on,
the attacker can change it by either by manipulating some
of the values in the browser or – in case of OpenID – by
starting a second Discovery on IdPA. Consequentially the
SP overwrites the old discovered information with the new
one.

A detailed example and explanation of the attack is given
in Section 8.3.

The idea of KC can be adapted to other SSO proto-
cols using on-the-fly trust establishment and considering
all established keys as trusted, e.g. OpenID Connect or
BrowserID.

5.3. Token Recipient Confusion

Token Recipient Confusion (TRC) attacks as shown in
Figure 6 target a missing URL.SP parameter verification.
This violates condition (2.) of the token recipient verification
step (cf. Section 4) and allows an attacker to use a token t
for one SP on a different SP. TRC requires an interaction
by the victim and thus, the attack can compromise only the
account of this victim (cf. IDS and KC which compromises
all accounts). The original concept of this attack is taken
from [6], and we have adopted it to OpenID. Note that using
our malicious IdP, we can detect the vulnerability easily.
However, the attack exploit does not require a malicious
IdP.
Detection phase. The attacker uses IdPA and generates
tokens containing identity IDA. Additionally, he sets the

value of URL.SP to an arbitrary URL (different from the
URL of the target SP) and sends the token to the target
SP. Finally, he observes the behavior of the target SP: If
the SP accepts the token, then the value of URL.SP is not
validated, and TRC is applicable.

Again, to detect whether an SP is vulnerable to TRC,
we use our malicious IdP. No victim interaction is necessary
for the detection.
Exploit phase. In order to exploit the vulnerability, the
attacker A sets up a web application running on URL.A
(e.g. a weather forecast service), to initiate an OpenID
authentication and to collect authentication tokens.

SPA CV UA IdPV SP

(1.) GET URL.A

(2.) Token Request

(3.) Authentication

(4.) t = (. . . ,URL.SP = URL.A, . . .), σ

CA

download t

(5.) t = (. . . ,URL.SP = URL.A, . . .), σ

(6.) Success

Figure 6: Token Recipient Confusion Attack.

The exact protocol flow is shown in Figure 6: (1.) The
victim client (CV) accesses the web application deployed on
URL.A. (2.) The attacker creates a Token Request containing
URL.SP = URL.A. (3.) CV authenticates to IdPV . If he
is already authenticated, this step is skipped. (4.) IdPV
generates the token t and sends it back to CV , with a
redirect to URL.SP = URL.A. The client’s UA executes
this redirect, and thus sends the token to A. (5.) Finally, CA
downloads the collected token t from SPA and uses it to
log in on the target SP.

TRC is a generic attack and can be adapted to other
SSO protocols like SAML and OAuth, since these include
parameters similar to URL.SP [6], [17]. To mitigate the
TRC attack, the SP should verify whether the URL.SP
parameter contained in t matches its own URL.

6. OpenID Attacker

6.1. Fully Automated Analysis

OpenID Attacker’s configuration of the fully automated
analysis can be seen in Figure 7.

We developed OpenID Attacker as a part of our research
and as a result of our token verification model for SPs.
OpenID Attacker is an open source penetration test tool that
acts as an OpenID IdP and offers a Graphical User Interface
(GUI) for easy configuration, see Figure 7.

As such, it is able to operate during all three phases of
the OpenID SSO protocol. OpenID Attacker is free, open
source and can be downloaded here [13].

The main advantage of OpenID Attacker is its flexibility
– the attacks can be provided manually or full automat-
ically. As shown in Figure 8, OpenID Attacker works in

Figure 7: OpenID Attacker supports fully automated analy-
sis. One has just to configure the victim’s and the attacker’s
accounts, and select one or all attacks to perform.

Manipulate Arbitrary Message

Create Malicious Token

Observe Result

Load Attack Class

Execute Attack

Analyse Result

Store Result

OpenID Version

Required Messages

Required Parameters

Normal Flow

Manual Attack Mode Fully Automatic Attack Mode

Analysis Mode

N
ex

t
A
tt
a
ck

Output Security Report

Figure 8: The three modes of OpenID Attacker.

three modes: (1.) Analysis, (2.) Manual Attack, (3.) Fully
Automatic Attack.

Configuration. Since OpenID Attacker acts as a malicious
IdP, it should be reachable on the Internet. In this manner,
the target SP can discover OpenID Attacker, establish the
keys and later on verify the token. OpenID Attacker enables
the fine granular configuration of every phase: discovery,
association and token processing. For instance, OpenID
Attacker can set up arbitrary HTML/XRDS discovery doc-
uments, association expiration time and even association
handle value.

Manual Analysis Mode. In this mode OpenID Attacker is
used to analyze the normal behavior of the target SP. For this
purpose, OpenID Attacker acts as benign IdP and creates
valid tokens. Note that no attacks are executed, but only
information about the target SP is collected. Additionally,
no configuration of the target SP is needed.

Initially, we navigate our browser to the target SP and
initiate the login with our IdP (URL.IdPA). The SP com-
municates with our IdP and executes the discovery and
association phase. OpenID Attacker stores all information
exchanged with the SP and collects information about the
supported features, e.g. OpenID version and HTML or/and

XRDS discovery. Moreover, in the token processing phase
OpenID Attacker collects and stores information about the
exact messages flow, optional messages, schema of mes-
sages, required/optional attributes and more. Thus we, in
the role of a security analyst, have a very detailed overview
about the implementation, information flow and all sup-
ported features.
Manual Attack Mode. In this mode, OpenID Attacker acts
as a malicious IdP hand-operated by the attacker. We can
start the security analysis on basis of the information stored
in Manual Analysis Mode, manipulate parameters in each
message, create malicious tokens in this manner, and then
observe the results when sending it to the targeted SP. In
this mode, the attacks and the evaluation of the attacks are
carried out manually.

The idea behind the Manual Mode is the fact that new
attack vectors can be inspected. This is an important fact,
because the Manual Mode allows investigating the OpenID
protocol very deeply and fine granular as every single aspect
of the protocol can be manipulated. In combination with a
running SP implementation in debugging mode, this mode
helps to understand the source code of the SP to find
implementation as well as protocol issues. We used this
mode to discover the IDS, KC, and TRC attacks during
a white-box analysis.
Fully Automatic Attack Mode. In this mode OpenID
Attacker acts as fully automated malicious IdP penetration
test tool. OpenID Attacker is reachable with two different
domains (URL.IdPV and URL.IdPA) so that we can sim-
ulate the entire communication with a victim’s benign IdP
(IdPV) and attacker’s malicious IdP (IdPA). The execution
of the fully automated testing consists of two parts: (1.)
training and (2.) attack execution.
(1.) Training:. In this mode OpenID Attacker is used to
analyze the normal behavior of the target SP and uses the
same concept as for the manual analysis. For this purpose,
OpenID Attacker acts as benign IdP and creates valid tokens
both in the role of URL.IdPV and URL.IdPA.

For the correct evaluation of the tested attacks it is
essential for OpenID Attacker that it can: (1.) determine
if the login was successful (e.g. no errors were thrown)
and (2.) determine in which account it was logged in – the
victim’s or the attacker’s one. Only access to the victim’s
account is considered as a successful attack. Thus, there
are three main categories according the status of the tested
attack: authenticated as the attacker, authenticated as the
victim, error.

OpenID Attacker has to be “trained” in order to make
a difference between the different results and to categorize
them in one of the three categories. For that purpose multiple
successful authentication procedures with URL.IdPV will
be executed initially. Then, misconstrued messages will
be sent to the target SP in order to trigger error mes-
sages. Consequentially, the same procedure is repeated with
URL.IdPA. During the entire communication in the training
phase OpenID Attacker records the messages plus the SP’s
reaction and categorize them. At the end of the phase,

OpenID Attacker knows the behavior of the SP and can
proceed with the execution of the attacks.

In order to automate the entire training and login pro-
cess, we use Selenium15. Selenium enables the fully auto-
mated usage of a browser, e.g. Firefox. Thus, it can start the
browser, call the URL of the target SP, fill out some input
fields on the loaded web page, e.g. the openid identity, and
trigger click events in order to submit the entered data and
initiate the OpenID authentication on the target SP. As a
result, the authentication can be automated. Note that it is
enough to enter the login URL in OpenID Attacker. Finding
the OpenID login formular is also performed automatically.
(2.) Attack execution:. OpenID Attacker loads training
results and it then sequentially executes the attacks defined
in Section 516. Then, OpenID Attacker analyzes the result
of the attack in comparison to the training set by using the
simmetrics17 string comparison library. This allows OpenID
Attacker to decide, whether a) the login was successful and
b) with which account (URL.IDA or URL.IDV) the attacker
is logged in.

In conclusion, OpenID Attacker summarizes the results
of all evaluated attacks and creates a security report, which
can be exported as a HTML document (cf. Figure 9).

7. Methodology

Target SPs. We selected 15 open source implementations
including libraries and frameworks that support OpenID,
mainly taken from the official OpenID website [12]18. We
tried to cover every available language: Our list contains im-
plementations in .NET, C++, ColdFusion, Java, JavaScript,
Perl, PHP, Python, and Ruby. We added Drupal to the target
list, since it is a widely used content-management system
(CMS) and has a custom implementation of OpenID. The
only implementation that did not permit a white-box analysis
is Sourceforge [18]. We included it because it is a very
prominent site supporting OpenID and because it does not
use one of the inspected implementations listed on [12].
Setup. For each implementation, we created a working
virtual web server/virtual CMS server, and deployed the
framework in it. For Sourceforge, we used the live website.

We registered two accounts on each target as SP. As
victim V , we used an account at a trusted IdP to register
a local account on the target SP. Using a second browser
on a different PC we registered a second account for A at
the target SP, associated with an account on our custom
malicious IdP – the OpenID Attacker account.

In this step, the second account was mainly used to
verify that the OpenID Attacker IdP is working flawlessly
and that the target is able to verify valid tokens created by
our tool.

15. http://www.seleniumhq.org/
16. OpenID Attacker supports even more attacks such as XXE, replay

attacks, etc.
17. http://sourceforge.net/projects/simmetrics/
18. Note that some of the libraries are listed multiple times, for example,

libopkele is the module used in Apache mod_auth_openid, the listed Python
Django OpenID framework uses janrain etc.

http://www.seleniumhq.org/
http://sourceforge.net/projects/simmetrics/

Figure 9: The Fully Automatic Attack Mode outputs a security report. More details can be seen in the log.

White-Box Tests using OpenID Attacker. We used white-
box tests to analyze the source code and the protocol flow
of each target. OpenID Attacker, running in manual analysis
and manual attack mode, was used in order to get a better
understanding of OpenID is implemented on the target SP.
This allowed us to develop and to apply the concepts for
the attack classes described in Section 5.

Black-Box Tests using OpenID Attacker. Black-Box test-
ing is more complicated than white-box since only the result
of the attack is visible, but not the reasons for this result. One
way to better understand the implementation is to record
the messages in the different phases. Consequentially, via
OpenID Attacker the parameters within the different phases
can be varied in order to learn, which of them are processed
by the SP. A simple example of such a test is to exclude
the signature within the token and observe the reaction of
the SP.

In order to provide a well-structured and comprehensible
Black-Box test we consider all verification steps described
in Section 4. According to every verification step, we devel-
oped a test suite, which we apply and analyze systematically.
Finally, we summarize the results of all tests. Based on this
results we can start attacks.

Exploit. Finally, we performed the attacks in the web at-
tacker model. Note that for IDS and KC, no interaction
with the victim is necessary – if the exploit works, we could
login at the SP with an arbitrary identity. Only for TRC, it
is necessary that victim V visits a web page SPA hosted
by the attacker A. In our setting, V is already authenticated
to the trusted IdP (stored in a session cookie), so that no
explicit authentication of V is necessary. We verify that the
token t is indeed transferred to SPA, and that we could use
this token from our second browser to gain access to the
target SP .

For the IDS attack we only needed to know the identity
of V . We verified that the target SP is either vulnerable for
strategy 1 or strategy 2. In each case, we are logged in with
the identity V .

To verify KC attacks, we have sketched two strategies in

Section 5. For following the first strategy, the precondition
that an association α exists between the target SP and the
trusted IdP must be fulfilled. We can get the value of α in
message (4.) of Figure 5 when we try to log in with the
victim’s identity. This attempt will not succeed, but we can
see message (4.) nonetheless.

We then established a new association between the target
SP and OpenID Attacker using the same α and analyzed
whether the target SP afterwards accepted our malicious
tokens as valid for V . For the second strategy, only an
association β between the target SP and the malicious
IdP is necessary. We verified that the SP accepted tokens
containing (URL.IDV ,URL.IdPV) that were signed with
the malicious association β.

8. Library Evaluation

We reported all vulnerabilities to the liable security
teams and to the Computer Emergency Response Team
(CERT). In case we got a response from the developers,
the time to fix the reported issues ranged between a few
days and several months. Furthermore, we supported the
developer teams during fixing the reported issues.

Our results are summarized in Table 1: for 12 out of
17 targets, we were able to access a protected resource. On
ten of the twelve targets an attacker can compromise all of
the accounts, without any user interaction. On the other two
targets the account of any victim can be compromised, if he
visits a malicious website.

8.1. ID Spoofing

Eight of the tested targets were vulnerable to IDS. Those
targets were fully compromised – all OpenID accounts could
be accessed without any interaction of the victim, and even
worse, the victim is unable to detect and mitigate IDS.
ownCloud. OwnCloud [19] is a PHP-based, open source
cloud framework. Its OpenID implementation is interesting,
because ownCloud does not verify the token’s signature
itself. Instead, it uses the check authentication OpenID

feature [15, Section 11.4.2]: ownCloud sends the token t
to the according IdP and let it verify t (instead of verifying
t itself). This means that using OpenID Attacker to send,
for example, a token for a Yahoo account would lead
ownCloud to send the token directly to the Yahoo server
for verification, which will not accept it.

By examining the OpenID’s OpenID message flow, we
found out that it is vulnerable to IDS, Strategy 2. The attack
works as follows

8.2. Attacking Owncloud

The attack on ownCloud is depicted in Figure 14.

CA UA ownCloud SP ID ServerA IdPA

(1.) Login request: URL.IDA
(2.) Discovery: lookup URL.IDA

(3.) URL.IdPA

(4.) URL.IdPA,URL.SP

(5.) Token t = (URL.IDA, . . .), signature σ

(6.) Discovery: lookup URL.IDA

(7.) URL.IdPA, URL.IDV

(8.) check authentication on URL.IdPA: t, σ

(9.) is valid: true
(10.) Success: Login with URL.IDV

Figure 10: The ID Spoofing attack on ownCloud: The at-
tacker’s ID server returns URL.IDV on the second discovery.
ownCloud uses this identity value for the login instead of
the identity provided within the token.

(cf. Figure 14): When ownCloud receives the OpenID
token (Step 5.), it performs a rediscovery on the contained
identity. We configured OpenID Attacker to include the
victim’s identity URL.IDV in the discovered document (Step
7.) additionally to URL.IdPA. Afterwards, ownCloud sends
the token to the attacker’s IdPA (Step 8.) by using the
discovered URL.IdPA and it returns that the token is valid
(Step (9.). Surprisingly, instead of using the URL.IDA con-
tained in t to log in the user, ownCloud uses URL.IDV (that
was returned in Step 7.). We were logged in with the victim’s
identity.

We contacted the ownCloud security team, reported the
issue and they acknowledged our work.
Sourceforge. Initially, we started a black-box testing and
detected that Sourceforge was vulnerable against IDS, Strat-
egy 1. This investigation was in 2014 and before our larger
online evaluation described in Section 9. Consequentially,
we contacted the support team and described the issue. Later
on, they answered us that vulnerability is fixed. We analyzed
Sourceforge again. Using OpenID Attacker, we found out
that the IDS attack was no longer possible. However, we
performed a KC attack and found out, that Sourceforge is
vulnerable to this attack class. The attacks on Sourceforge
showed us, how to apply our white-box analysis attacks on
a black-box system. We were able to attack Sourceforge in
a fully-automatic manner without knowing its exact OpenID
implementation.

8.3. Key Confusion with Session Overwriting

Three targets were vulnerable to Key Confusion (KC):
Drupal, Zend Framework and Sourceforge. These imple-
mentations used a key belonging to OpenID Attacker for
verifying the signature instead of using the key belonging
to the victim’s IdP. The attack on Drupal worked as follows:
Drupal.

Drupal [20] is a free open source CMS. It is based on
PHP and according to [21], it is the third most frequently
used CMS. Its OpenID support is shipped with every Drupal
distribution and just needs to be activated within the settings
menu.

Starting our white-box analysis on Drupal, we submitted
URL.IDA on the login form. The SP starts the discovery
on it and receives URL.IdPA belonging to our OpenID At-
tacker IdP. Drupal redirects us to it, but instead of creating a
token for URL.IDA, it creates a token t∗ = (URL.IDV , . . .)
containing the victim’s Yahoo identity (IDS attack, strategy
1). Sending t∗ to Drupal did not succeed. Drupal noticed that
the originally submitted identity URL.IDA differs from the
value URL.IDV contained in t∗. As a result, Drupal starts a
second discovery on URL.IDV , which returns URL.IdPV .
Drupal compares this value to URL.IdPA returned by the
first discovery. Since the values are not equal, we are
not logged in. Interestingly, Drupal does not compare the
discovered value with the value URL.IdP contained in t∗,
thus sending a token t∗ = (URL.IDV ,URL.IdPV , . . .) also
fails.

In order to prevent the second discovery process, which
mitigates the attack, we analyzed the source code. We found
out that Drupal uses the PHP $_SESSION variable to store
and load URL.ID and URL.IdP . In this manner, Drupal
links both messages: the login request and the received
token.

The $_SESSION variable is a globally available PHP
array which holds arbitrary session data on a per-user basis.
Whenever Drupal receives an OpenID token t∗, it first
verifies if the URL.ID parameter, contained in t∗, matches
the value stored in $_SESSION. If they differ, as in the case
of the IDS attack, Drupal starts again a discovery on URL.ID
contained in t∗. The discovery returns the corresponding
URL.IdP and if these values do not match the URL.IdP
parameter stored in $_SESSION, t∗ is not accepted.

To finally prevent the second discovery and to bypass
the verification logic, we had to overwrite the $_SESSION
variable. The attack is shown in Figure 11 and works as
follows:
(1.)-(3.) A login request with the attacker’s account

URL.IDA is started. Drupal discovers it and stores
URL.IDA and URL.IdPA in $_SESSION.

(4.) Drupal starts an association with IdPA, which returns
β (using KC strategy 3).

(5.)-(7.) Drupal redirects the attacker to URL.IdPA.
OpenID Attacker creates a token t∗ =
(URL.IDV ,URL.IdPV , URL.SP, β). Then, the
attacker delays the sending of the token to Drupal.

CA UA Drupal SP ID ServerV IdPV ID ServerA IdPA
(1.) Login request: URL.IDA

(2.) Discovery: lookup URL.IDA

$ SESSION[URL.ID] := URL.IDA
$ SESSION[URL.IdP] := URL.IdPA

(3.) URL.IdPA

(4.) Association β
(5.) URL.IdPA,URL.SP, β

(6.) Redirect to URL.IdPA → URL.SP, β

(7.) Token t∗ = (URL.IDV , URL.IdPV ,URL.SP, β), protected by signature σ

(8.) Login request: URL.IDV
(9.) Discovery: lookup URL.IDV

Session Overwriting:
$ SESSION[URL.ID] := URL.IDV
$ SESSION[URL.IdP] := URL.IdPV

(10.) URL.IdPV

(11.) Association α(12.) Ignored

(13.) Redirect to URL.SP → t∗, σ
Check if:
• $ SESSION[URL.ID]︸ ︷︷ ︸

locally stored URL.ID

== t∗.URL.IDV︸ ︷︷ ︸
URL.ID value in t∗

• true=verify(t∗, σ) using t∗.β
(14.) Success

X
X

Figure 11: Key Confusion attack on Drupal: Before the token t∗ in Step (7.) is forwarded to Drupal in Step (13.), the
attacker CA starts a second login request in Step (8.) using the victim’s identity URL.IDV . This overwrites the URL.ID and
URL.IdP data stored in $_SESSION and prevents the second discovery.

(8.)-(10.) The attacker submits a further login request
to Drupal, but this time with the victim’s iden-
tity URL.IDV . Drupal starts a new discovery on it
and receives URL.IdPV . Both values, URL.IDV and
URL.IdPV , are then stored in $_SESSION, overwrit-
ing URL.IDA and URL.IdPA.

(11.) Drupal starts another association with IdPV , which
returns α.

(12.) Drupal redirects the attacker to URL.IdPV , but this
redirect is not relevant for the attack.

(13.)-(14.) The halted token t in (7.) is now sent to Drupal.
Drupal verifies the signature. The interesting point
at this step is that Drupal loaded the key from the
database by only using β contained in t∗. It does
not verify whether the association β was really estab-
lished with URL.IdPV . Thus, the signature is valid.
Then, Drupal compares the values of URL.IDV and
URL.IdPV contained in the token with the ones stored
in $_SESSION. Because of being equal, there is no
second discovery and we are logged in with the victim’s
identity.

We reported the issue to the Drupal security team and
suggested to fix it by fetching the key via (URL.IdP, α/β)
instead of using α/β only. They accepted the idea and
implemented it in their new release Drupal releases. For a
better understanding, we added a video as a demonstration
of this attack that shows the usage of OpenID Attacker [22].

8.4. Additional Findings

The findings described here did not result in a valid
attack according to our model, but are worth reporting.
Unsigned OpenID Parameters. The OpenID specifi-
cation [15, Section 10.1] requires the following pa-
rameters to be signed: op_endpoint, return_to,
response_nonce, assoc_handle, claimed_id and
identity. 4 of 17 targets (CFOpenID, OpenID CFC,
OpenID 4 Node.js, Zend Framework) accept tokens in which
some of these parameters were not signed, and could thus
be forged by an attacker.
XML External Entity. We determined that 2 of 17 analyzed
targets (OpenID CFC, Net::OpenID::Consumer) are suscep-
tible to XXE attacks [23], [24]. Additionally, we found out
that Slashdot [25] (Alexa rank 1427) was vulnerable to
XXE because of using the Net::OpenID::Consumer library.
Interesting was the fact that lots of implementations used
regular expressions (instead of an XML parser) to process
the discovery phase, thus XXE was not possible in these
cases.
Replay Attack. OpenID has only one parameter containing
a timestamp (openid.response_nonce). It contains
the creation time of the token concatenated with a random
string, but does not include an expiration time. Thus, the SP
can decide on its own how long it accepts such a token.

The lifetime of a token is additionally limited by the
lifetime of the association and the corresponding key. We

found that this lifetime varies heavily: associations with
Yahoo have a lifetime of 4 hours, with Google 13 hours,
and with MyOpenID 14 days.

9. Online Website Evaluation

One year after our reports to the developers of vulnerable
OpenID implementations, we wanted to find out, if online
websites are vulnerable to the attacks discussed in this paper.
Searching Methodology. The first task for the evaluation
is to identify websites offering OpenID as a login system.
Since there is no Alexa-like database that could be queried
to get a list of OpenID websites, we elaborated techniques
facilitating the searching process:
I The detailed knowledge of the protocol and

the according parameters in the authentication
request and token can be used to improve the
searching results. For instance, a possible search
term is inurl: openid.claimed_id and
openid.identity. As a result, all URLs containing
this parameters, will be displayed.

I Observing the analyzed frameworks in Table 1, we
estimated that the term login?openid is commonly
used in the URLs. By using this search term, we found
the most of the analyzed websites.

I By using different search engines like Google, Bing
and Yahoo, we extended our list of target websites.

I A helpful search engine is NerdyData, which analyses
the source code of websites.

I There are also websites and blog entries listing several
websites supporting OpenID, but visiting them reveals
that they do no longer support the protocol.

All in all, we found 137 websites.
Set-Up. Next, we analyzed the login mechanisms on the
websites. In 49% of them, we cannot provide the security
evaluation due to the following problems:
I The website does not offer a public user registration

(closed community). Thus, the registration of our test
accounts was not possible.

I Faulty implementations led to unknown errors on the
website and the login via OpenID was not feasible.

I The website supports only fixed IdPs (e.g. Yahoo) so
that we could not apply our malicious IdP approach.

I The website requires payment with a credit card during
registration. Testing non-free accounts was considered
out-of-scope during this research.

I The website contained OpenID elements, like
openid2.provider. However, no OpenID login
mechanisms were provided. For instance, Amazon
uses OpenID parameters for the transport of data, but
not for authentication and within a SSO login.

As a result, on 70 of 137, we were able to login with
OpenID (51%). Consequentially, we evaluated the websites
satisfying our methodology described in Section 7.
Results. 26% of the tested websites (18 of 70) were vul-
nerable to one of our three attacks. On eleven websites,

IDS was possible (16%), four were vulnerable to KC (6%)
and TRC affected eight websites (16%). Although this
was a black-box evaluation, we could identify Drupal and
Net:OpenID:Consumer implementations in 7% of the cases.
The websites used an updated version (after our security
report) and were no longer vulnerable. Our results are
depicted in Figure 12.

Compared to the analyzed frameworks in Table 1, where
71% were vulnerable, the number of vulnerable websites is
lower – 26%. The reason for the result is the fact that many
of the websites (41%) use the JanRain library since it is
easy to integrate and supports plethora of SSO protocols like
OAuth, Facebook Connect, OpenID and OpenID Connect.
Thus, IDS Strategy 1 and 2, KC and TRC are not applicable
on this websites.
OXID Shopping System. During our analysis, we success-
fully applied the IDS attack on eleven targets. The surprising
fact was that six of them used the JanRain OpenID library,
so we expected them to be not vulnerable (cf. Table 1).
But instead of identifying a user by the URL.ID parameter,
they used the email parameter. Thus, these implementations
were vulnerable to IDS Strategy 3. This example illustrates
that even a secure implementation like JanRain can be
bypassed, if it is used incorrect. We investigated the websites
further and found out, that they all used the OXID Shopping
System19. We contacted the vendor and they acknowledged
our work [26].

10. Related Work

Related work can be divided into three parts: research on
analysis of SSO systems, specific investigations in the field
of OpenID, and development of SSO testing tools. Please
note that none of the previous papers considers malicious
IdPs as part of the attacker, and none of the OpenID papers
considered attacks on the association phase.
SSO Security. Various vulnerabilities have been found over
the last two decades. In 2003 and 2006, Groß [6], [7]
analyzed the SAML Browser/Artifact profile and identified
several flaws in the SAML specification that allow connec-
tion hijacking/replay attacks, as well as Man-in-the-Middle
(MitM) attacks and HTTP referrer attacks. We used these
attacks as model for the TRC attack. In 2008 and 2011,
Armando et al. [27], [28] built a formal model of the SAML
V2.0 Web Browser SSO protocol and analyzed it with the
model checker SATMC. The authors found vulnerabilities in
Google’s SAML interface. In 2012, Somorovsky et al. [14]
investigated the XML Signature validation of several SAML
frameworks. By using the XML Signature Wrapping (XSW)
attack technique, they bypassed the authentication mecha-
nism in 11 out of 14 SAML frameworks.

Sun et al. [29] analyzed the implementation of nearly
100 OAuth implementations, and found serious security
flaws in many of them. Their research concentrated on
classical web attacks like XSS, CSRF and TLS misconfigu-
rations. Further security flaws in OAuth based applications

19. http://www.oxid-esales.com/

http://www.oxid-esales.com/

49%
OpenID tests
not possible

51%
Tests with

OpenID Attacker
 possible

67%
Not vulnerable

67%
Not vulnerable

Fixed library

7%

26%
vulnerable

16%

6%

11%

Vulnerable: TRC

Vulnerable: KC

Vulnerable: IDS

Figure 12: Statistic of our online website evaluation.

were discovered in [30]–[36], whereby the authors concen-
trated on individual attacks. In 2013 Wang et al. introduced
a systematic process for identifying critical assumptions
in SDKs, which led to the identification of exploits in
constructed apps resulting in changes in the OAuth 2.0
specification [37]. Chen et al. revealed in 2014 serious
vulnerabilities in OAuth applications on mobile devices
caused by the developer’s misinterpretation of the OAuth
protocol [17].

In 2014 Fett et al. [38] built a formal model of the
BrowserID protocol [39] , which allows them detect new
weaknesses and vulnerabilities in BrowserID.

The concept of malicious IdPs was previously described
in [40]–[42]. But please note that the described attacks are
trivial in the sense that only those accounts are compromised
which use (and therefore trust) this specific malicious IdP.
These researches additionally investigate privacy concerns
when users are using such a malicious IdP. In contrast,
our malicious IdP-based attacks compromise accounts con-
trolled by other benign IdPs (e.g. Yahoo). To the best of our
knowledge, none of the previous work considered this kind
of attacks, which is our main contribution.
OpenID Security. The analysis of the OpenID protocol
started with version 1.0. Eugene Tsyrklevich and Vlad
Tsyrklevich [43] presented several attacks on this OpenID
version at Black Hat in 2007. They identified, for instance, a
threat in the IdP endpoint URL (URL.IdP) published within
the discovery phase. It can point to critical files on the local
machine or can even be abused in order to start a Denial-
of-Service (DoS) attack by enforcing the SP to download
a large movie file. Comparable to [29], they also looked at
replay and CSRF attacks.

In 2008, Newman and Lingamneni [44] created a model
checker for OpenID 2.0, but for simplicity, they removed the
association phase out of their model. By using it, they could
identify a session swapping vulnerability, which enforces
the victim to log in into attacker’s account on an SP.
In this manner, an attacker could eavesdrop the victim’s
activities. In comparison to our work, the attacks presented
in [44] do not result in unauthorized access. Interestingly,
the authors of the paper modeled an IdP capable to make
associations with legitimate SPs. However, they did not
consider a malicious IdP capable to start attacks like IDS.
Since KC is related to the association phase, the attack was
not covered by the model checker. Later on, Sun et al. [45]

provide a comprehensive formal analysis on OpenID and an
empirical evaluation of 132 popular websites. The authors
investigated CSRF, Man-in-the-middle attacks and the SSL
support of OpenID implementations. In contrast to our work,
they assumed that the SP and the IdP were trustworthy, so
that they could not identify any of the attacks presented in
this paper.

In 2010, Delft et al. [46] published an attack describing
KC Strategy 1 – overwriting key material on the SP. How-
ever, Strategy 2 of KC was not considered. Additionally,
the authors evaluated three OpenID libraries as part of their
research.

Finally, Wang et al. [16] concentrated on real-life SSO
systems instead of a formal analysis. They have well demon-
strated the problems related to token verification with dif-
ferent attacks. They developed a tool named BRM-Analyzer
that handles the SP and IdP as black-boxes by analyzing
only the traffic visible within the browser. Their paper served
as a model for our research. However, the BRM-Analyzer
is rather passive (it analyzes the browser related messages),
while OpenID Attacker acts as an IdP and as such, it can
actively interfere with the OpenID workflow (e.g. create
SSO tokens).

In 2014, Silva et al. [24] exploited an XML External
Entity vulnerability in Facebook’s parsing mechanism of
XRDS documents during the discovery phase. The same
attack is supported by the OpenID Attacker and is part of our
evaluation. Simultaneously to our research, in 2014 Wang et
al. [47] reported serious flaws in OAuth and OpenID, which
are related to TRC.
SSO Security Tools. In 2013, Bai et al. [48] have proposed
AuthScan, a framework to extract the authentication proto-
col specifications automatically from implementations. They
found security flaws in several SSO systems. The authors
concentrated on MitM attacks, Replay attacks and Guessable
tokens. More complex attacks, like IDS or KC, cannot be
evaluated. In the same year, Wang et al. [49] developed
a tool named InteGuard detecting the invariance in the
communication between the client and SP to prevent logical
flaws in the latter one. Another tool similar to InteGuard is
BLOCK [50]. Both tools should be able to detect Replay
attacks and TRC. Since all HTTP messages between the
adversary and the SP are valid and do not show abnormali-
ties, neither InteGuard nor BLOCK is able to mitigate IDS,
KC and XML External Entity. Zhou et al. [35] published

on USENIX’14 a fully automated tool named SSOScan
for analyzing the security of OAuth implementations and
described five attacks, which can be automatically tested by
the tool.

11. Lessons Learned

Trusted IdPs. When Microsoft introduced MS Passport,
the first web SSO system, criticism concentrated on the
closed nature of the system: only a single IdP at the domain
passport.com was used. Subsequent approaches like MS
Cardspace and SAML Web SSO allowed multiple IdPs, but
still retained the idea that an IdP should only be run by
trusted parties, and that trust relationship between an SP
and an IdP should be established manually. With OpenID,
“openness” for the first time became more important than
“trustworthiness”, and this resulted in new attack classes.
Lesson learned: the establishment of trust should not be
fully automated, if it is not backed up by solid cryptography
(like e.g. in PKI scenarios).
Identities are Important. Attacks similar to TRC have been
described before in the literature. For example Armado et al.
discovered a bug in the Google SSO implementation where
the identity of the target SP was omitted from the SAML
assertion. Thus an assertion issued for (low-security) service
A (controlled by the attacker) could be used to log into
(high-security) service B. Including identities in protocol
messages, and checking these values, is good engineering
practice (e.g. in TLS certificate verification). Lesson learned
from the TRC: checking identity of the SP is always impor-
tant and should be enforced in any application.
References to Cryptographic Keys. KC exploits weak-
nesses in the association between the identity of the IdP,
the key handle and the key value used for the signature
verification. In OpenID the only connection between the
key and the corresponding IdP is the association handle
α. Unfortunately, the value of α can be freely chosen by
any IdP. If the loading of the key occurs only on basis
of α and without verifying the corresponding IdP, KC is
applicable. Lessons learned: The identification of the correct
cryptographic keys should be unambiguous. If keys are
related to the identity of a communicating party, then this
identity should be part of the key identifier (e.g., keys should
be stored indexed by a pair [IdPID, α]).
Multiple Equivalent Parameters. If two or more different
parameters are used for the same purpose, then it is difficult
to formally specify how to react if these two parameters
have different semantics. This fact was exploited in the IDS
attack (Strategy 2), which is only possible if two different
strings are used as identifiers for the same entity. Similar
problems have been reported in multi-layer messaging: E.g.
in SOAPAction Spoofing, the SOAPAction can be specified
in the HTTP and in the SOAP Header. By specifying two
different values, inconsistent behavior can be triggered.
Complex Information Flow Specification. In many cases,
developers of OpenID frameworks deviated from the spec-
ification, which resulted in a different, vulnerable message

flow. It seems that the OpenID specification is not clear
enough to unambiguously implement the desired message
flow. It is an interesting open question how to formally
specify the desired flow, such that computer-aided enforce-
ment of this flow, or computer-aided checking of this flow,
becomes possible.

12. Future Work

We showed that SSO protocols and implementations are
a high-value attack target. Although there is a lot of research
in the area of SSO [14], [29], [35] and OpenID [16], [45],
[51], the number of vulnerabilities found is surprisingly
high.

We believe that the concept of a malicious IdP is a threat
to all open SSO protocols, thus future work includes apply-
ing the methodology developed in this paper to different
protocols like OAuth, SAML an OpenID Connect.

We made the source code of OpenID Attacker pub-
lic [13], encouraging researchers and penetration tester to
use this tool to further improve security in SSO systems,
and to adapt it to other protocols.

Acknowledgments

We would like to thank Juraj Somorovsky for fruitful
discussions and his advice to extend our evaluation and
Christian Koßmann for extending OpenID Attacker in his
master thesis. The research was supported by the German
Ministry of Research and Education (BMBF) as part of the
VERTRAG research project and by the SkIDentity project of
the German Federal Ministry of Economics and Technology
(BMWi, FKZ: 01MD11030).

References

[1] C. Mainka, V. Mladenov, and J. Schwenk, “Do not trust me: Using
malicious idps for analyzing and attacking single sign-on,” in IEEE
European Symposium on Security and Privacy (Euro S&P). IEEE,
3 2016.

[2] J. Bonneau, “The science of guessing: analyzing an anonymized
corpus of 70 million passwords,” in Security and Privacy (SP), 2012
IEEE Symposium on. IEEE, 2012, pp. 538–552.

[3] D. Silver, S. Jana, E. Chen, C. Jackson, and D. Boneh, “Password
managers: Attacks and defenses,” in Proceedings of the 23rd Usenix
Security Symposium, 2014.

[4] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password
manager: Security analysis of web-based password managers,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014.

[5] Janrain. (2013) 2013 consumer research: The value of social login.
Janrain. [Online]. Available: http://janrain.com/resources/industry-
research/2013-consumer-research-value-of-social-login/

[6] T. Groß, “Security analysis of the saml single sign-on browser/ar-
tifact profile,” in Computer Security Applications Conference, 2003.
Proceedings. 19th Annual. IEEE, 2003.

[7] T. Groß and B. Pfitzmann, “SAML artifact information flow revis-
ited,” Research Report RZ 3643 (99653), IBM Research, 2006.

[8] M. Jones, J. Bradley, M. Machulak, and P. Hunt, “OAuth 2.0
Dynamic Client Registration Protocol,” 2015. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-29

http://janrain.com/resources/industry-research/2013-consumer-research-value-of-social-login/
http://janrain.com/resources/industry-research/2013-consumer-research-value-of-social-login/
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-29

[9] The OpenID Foundation (OIDF), OpenID Connect Discovery 1.0,
The OpenID Foundation (OIDF) Std., February 2014. [Online].
Available: http://openid.net/specs/openid-connect-discovery-1_0.html

[10] ——, OpenID Connect Dynamic Client Registration 1.0, The
OpenID Foundation (OIDF) Std., February 2014. [Online]. Available:
http://openid.net/specs/openid-connect-registration-1_0.html

[11] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communi-
cation in browsers,” in In Proceedings of the 17th USENIX Security
Symposium, 2008.

[12] OpenID, “Openid libraries,” 2014, [online] http://wiki.openid.net/w/
page/12995176/Libraries. [Online]. Available: http://wiki.openid.net/
w/page/12995176/Libraries

[13] Christian Mainka and Vladislav Mladenov and Christian Koßmann,
“Openid attacker, source code and executable,” 2015. [Online].
Available: https://github.com/RUB-NDS/OpenID-Attacker

[14] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking saml: Be whoever you want to be,” in Proceedings of
the 21st USENIX conference on Security symposium, Security, vol. 12,
2012.

[15] specs@openid.net, “OpenID Authentication 2.0 – Final,” Dec. 2007.
[Online]. Available: https://openid.net/specs/openid-authentication-
2_0.html

[16] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of
commercially deployed single-sign-on web services,” in Proceedings
of the 2012 IEEE Symposium on Security and Privacy, ser. SP ’12.
Washington, DC, USA: IEEE Computer Society, 2012.

[17] E. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth
demystied for mobile application developers,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS).
ACM – Association for Computing Machinery, November 2014.
[Online]. Available: http://research.microsoft.com/apps/pubs/default.
aspx?id=231728

[18] Dice Holdings, Inc., “SourceForge,” 2014. [Online]. Available:
https://sourceforge.net/

[19] ownCloud Inc., “ownCloud,” 2014. [Online]. Available: http:
//owncloud.org/

[20] Drupal Team and D. Buytaert, “Drupal Open Source CMS,” 2014.
[Online]. Available: https://drupal.org/

[21] W3Techs – World Wide Web Technology Surveys, “Usage
of content management systems for websites,” 2014, accessed:
05.11.2014. [Online]. Available: http://w3techs.com/technologies/
overview/content_management/all/

[22] Christian Mainka and Vladislav Mladenov, “Screencast: Attacking
drupal 7 with key confusion,” 2015, [online] https://www.dropbox.
com/s/5np7hpujjyxn4fd/Attacking_Drupal7.mpg [MPEG2, 2:09min,
54mb]. [Online]. Available: http://bit.ly/drupalattack

[23] G. Steuck, “XXE (Xml eXternal Entity) Attack,” OWASP, October
2002. [Online]. Available: http://www.securiteam.com/securitynews/
6D0100A5PU.html

[24] R. Silva. (2014, 01) XXE in OpenID: one bug to rule them
all, or how I found a Remote Code Execution flaw affect-
ing Facebook’s servers. http://www.ubercomp.com/posts/2014-01-
16_facebook_remote_code_execution.

[25] Slashdot, “SlashDot.org,” 2015. [Online]. Available: http://slashdot.
org/

[26] OXID eSales AG, “Oxid security bulletins/2015-001,” 2015. [Online].
Available: http://wiki.oxidforge.org/Security_bulletins/2015-001

[27] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L.
Tobarra, “Formal Analysis of SAML 2.0 Web Browser Single Sign-
On: Breaking the SAML-based Single Sign-On for Google Apps,” in
Proceedings of the 6th ACM Workshop on Formal Methods in Security
Engineering, FMSE 2008, V. Shmatikov, Ed. Alexandria and VA
and USA: ACM, 2008, pp. 1–10.

[28] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pellegrino, and
A. Sorniotti, “From Multiple Credentials to Browser-Based Single
Sign-On: Are We More Secure?” in SEC, ser. IFIP Advances in In-
formation and Communication Technology, J. Camenisch, S. Fischer-
Hübner, Y. Murayama, A. Portmann, and C. Rieder, Eds., vol. 354.
Springer, 2011, pp. 68–79.

[29] S.-T. Sun and K. Beznosov, “The devil is in the (implementation)
details: an empirical analysis of oauth sso systems,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012.

[30] Egor Homakov. (2014, Februrary) How I hacked Github again.

[31] ——. (2013, Februrary) How we hacked Facebook with OAuth2
and Chrome bugs. [Online]. Available: http://homakov.blogspot.ca/
2013/02/hacking-facebook-with-oauth2-and-chrome.html

[32] ——. (2013, March) OAuth1, OAuth2, OAuth...?

[33] Nir Goldshlager. (2013, February) How I Hacked Facebook OAuth
To Get Full Permission On Any Facebook Account (Without App
"Allow" Interaction). [Online]. Available: http://www.nirgoldshlager.
com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html

[34] ——. (2013, March) How I Hacked Any Facebook Account...Again!
[Online]. Available: http://www.nirgoldshlager.com/2013/03/how-i-
hacked-any-facebook-accountagain.html

[35] D. E. Yuchen Zhou, “Automated testing of web applications for
single sign-on vulnerabilities,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/zhou

[36] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler, “More
guidelines than rules: Csrf vulnerabilities from noncompliant oauth
2.0 implementations,” in Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2015, pp. 239–260.

[37] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and
Y. Gurevich, “Explicating sdks: Uncovering assumptions underlying
secure authentication and authorization,” in Proceedings of the
22Nd USENIX Conference on Security, ser. SEC’13. Berkeley,
CA, USA: USENIX Association, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534801

[38] D. Fett, R. Küsters, and G. Schmitz, “Paper: An Expressive Model for
the Web Infrastructure: Definition and Application to the BrowserID
SSO System,” in 35th IEEE Symposium on Security and Privacy
(S&P 2014). IEEE Computer Society, 2014.

[39] M. Corporation, “Browserid specification,” https://openid.net/specs/
openid-authentication-2_0.html", http://www.mozilla.org, Tech. Rep.,
2011. [Online]. Available: https://github.com/mozilla/id-specs/blob/
prod/browserid/index.md

[40] A. Dey and S. Weis, “Pseudoid: Enhancing privacy in federated
login,” Hot topics in privacy enhancing technologies, pp. 95–107,
2010.

[41] G. Elahi, Z. Lieber, and E. Yu, “Trade-off analysis of identity man-
agement systems with an untrusted identity provider,” in Computer
Software and Applications, 2008. COMPSAC’08. 32nd Annual IEEE
International. IEEE, 2008, pp. 661–666.

[42] Z. A. Khattak, S. Sulaiman, and J. Manan, “A study on threat model
for federated identities in federated identity management system,” in
Information Technology (ITSim), 2010 International Symposium in,
vol. 2. IEEE, 2010, pp. 618–623.

[43] E. Tsyrklevich and V. Tsyrklevich, “Single sign-on for
the internet: A security story,” July and August 2007.
[Online]. Available: https://www.blackhat.com/presentations/bh-usa-
07/Tsyrklevich/Whitepaper/bh-usa-07-tsyrklevich-WP.pdf

[44] B. Newman and S. Lingamneni, “Cs259 final project: Openid (session
swapping attack),” 2008. [Online]. Available: http://www.stanford.
edu/class/cs259/projects/cs259-final-newmanb-slingamn/report.pdf

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://wiki.openid.net/w/page/12995176/Libraries
http://wiki.openid.net/w/page/12995176/Libraries
http://wiki.openid.net/w/page/12995176/Libraries
http://wiki.openid.net/w/page/12995176/Libraries
https://github.com/RUB-NDS/OpenID-Attacker
https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://research.microsoft.com/apps/pubs/default.aspx?id=231728
http://research.microsoft.com/apps/pubs/default.aspx?id=231728
https://sourceforge.net/
http://owncloud.org/
http://owncloud.org/
https://drupal.org/
http://w3techs.com/technologies/overview/content_management/all/
http://w3techs.com/technologies/overview/content_management/all/
https://www.dropbox.com/s/5np7hpujjyxn4fd/Attacking_Drupal7.mpg
https://www.dropbox.com/s/5np7hpujjyxn4fd/Attacking_Drupal7.mpg
http://bit.ly/drupalattack
http://www.securiteam.com/securitynews/6D0100A5PU.html
http://www.securiteam.com/securitynews/6D0100A5PU.html
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://slashdot.org/
http://slashdot.org/
http://wiki.oxidforge.org/Security_bulletins/2015-001
http://homakov.blogspot.ca/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://homakov.blogspot.ca/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://www.nirgoldshlager.com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html
http://www.nirgoldshlager.com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html
http://www.nirgoldshlager.com/2013/03/how-i-hacked-any-facebook-accountagain.html
http://www.nirgoldshlager.com/2013/03/how-i-hacked-any-facebook-accountagain.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
http://dl.acm.org/citation.cfm?id=2534766.2534801
https://openid.net/specs/openid-authentication-2_0.html"
https://openid.net/specs/openid-authentication-2_0.html"
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://www.blackhat.com/presentations/bh-usa-07/Tsyrklevich/Whitepaper/bh-usa-07-tsyrklevich-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Tsyrklevich/Whitepaper/bh-usa-07-tsyrklevich-WP.pdf
http://www.stanford.edu/class/cs259/projects/cs259-final-newmanb-slingamn/report.pdf
http://www.stanford.edu/class/cs259/projects/cs259-final-newmanb-slingamn/report.pdf

[45] S.-T. Sun, K. Hawkey, and K. Beznosov, “Systematically breaking
and fixing openid security: Formal analysis, semi-automated
empirical evaluation, and practical countermeasures.” Computers &
Security, vol. 31, no. 4, 2012. [Online]. Available: http://dblp.uni-
trier.de/db/journals/compsec/compsec31.html#SunHB12

[46] B. van Delft and M. Oostdijk, “A security analysis of openid,” in
Policies and Research in Identity Management, ser. IFIP Advances
in Information and Communication Technology, E. de Leeuw,
S. Fischer-Hübner, and L. Fritsch, Eds. Springer Berlin Heidelberg,
2010, vol. 343, pp. 73–84. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-17303-5_6

[47] W. Jing. (2014, 2 May) Serious security flaw in oauth,
openid discovered. http://www.cnet.com/news/serious-security-flaw-
in-oauth-and-openid-discovered/. Ph.D. student at the Nanyang
Technological University in Singapore. [Online]. Avail-
able: http://www.cnet.com/news/serious-security-flaw-in-oauth-and-
openid-discovered/

[48] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun,
Y. Liu, and J. S. Dong, “Authscan: Automatic extraction of web
authentication protocols from implementations,” NDSS, February,
2013.

[49] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard: Toward au-
tomatic protection of third-party web service integrations,” in Pro-
ceedings of 20th Annual Network & Distributed System Security
Symposium, 2013.

[50] X. Li and Y. Xue, “Block: A black-box approach for detection of
state violation attacks towards web applications,” in Proceedings
of the 27th Annual Computer Security Applications Conference,
ser. ACSAC ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/2076732.2076767

[51] P. Sovis, F. Kohlar, and J. Schwenk, “Security analysis of openid.”
in Sicherheit, ser. LNI, F. C. Freiling, Ed., vol. 170. GI,
2010. [Online]. Available: http://dblp.uni-trier.de/db/conf/sicherheit/
sicherheit2010.html#SovisKS10

Appendix

This sections gives a more detailed description of the
OpenID protocol flow.

1. Protocol

OpenID consists of three phases as shown in Figure 13.
In the discovery phase, the SP collects information
about C’s requested identity (URL.IDC) and determines
URL.IdPC . In the association phase, the SP and the IdP
establish a shared secret α intended to be used for signing
and verifying the token. The token processing phase then
includes the creation of the token by the IdP, its transport
to the SP via C’s UA, and its verification by SP. Figure 13
describes the OpenID login process more precisely:

(1.) C wishes to access a resource at the SP and enters his
identity URL.IDC .

(2.) The SP then starts the discovery by requesting the
document at URL.IDC .

(3.) A document containing URL.IdPC is returned.
(4.) Using URL.IdPC , the SP can establish an association

with the IdP. This is basically a Diffie-Hellman key
exchange to establish a shared secret s. Additionally,
the IdP freely chooses a string α that is used as a
name for the association. It is used to reference the
key material k derived from s on both sides, and has
an expiration time. Note that in this phase, the SP and
the IdP are directly communicating with each other,
which means that a web attacker cannot interfere with
this communication.

(5.) Afterwards, the SP has all necessary information to
validate an OpenID token created by IdPC . It responds
to C’s initial login request of Step (1.) and sends an au-
thentication request containing URL.IdPC , URL.SP
and optionally α.

(6.) C is redirected to URL.IdPC .
(7.) If C is not yet logged in, he must authenticate to IdPC .
(8.) IdPC creates a token t for C containing C’s iden-

tity URL.IDC , its own URL address URL.IdPC and
URL.SP . IdPC then generates a signature σ for t
using the key referenced by α. Message (8) is called
the authentication response and is sent as an HTTP
redirect to URL.SP .

(9.) The authentication response is forwarded to the SP.
(10.)-(11.) The SP can optionally start a rediscovery, for

example, if it has not cached the previous discovery,
cf. Step (2.)-(3.).

(14.) If the signature is valid, the SP will map URL.IDC to
a local identity and respond accordingly to C.

2. Direct Verification

Establishing an association is optional according to the
OpenID standard. If the communication (4.) is missing, the

http://dblp.uni-trier.de/db/journals/compsec/compsec31.html#SunHB12
http://dblp.uni-trier.de/db/journals/compsec/compsec31.html#SunHB12
http://dx.doi.org/10.1007/978-3-642-17303-5_6
http://dx.doi.org/10.1007/978-3-642-17303-5_6
http://www.cnet.com/news/serious-security-flaw-in-oauth-and-openid-discovered/
http://www.cnet.com/news/serious-security-flaw-in-oauth-and-openid-discovered/
http://doi.acm.org/10.1145/2076732.2076767
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2010.html#SovisKS10
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2010.html#SovisKS10

C UA SP ID Server IdPC

(1.) Login request: URL.IDC
(2.) Discovery: lookup URL.IDC

(3.) URL.IdPC

(4.) Optional: association α
(5.) URL.IdPC ,URL.SP [, α]

(6.) Redirect to URL.IdPC → URL.SP [, α]

(7.) Optional: Login at IdPC with identity URL.IDC if not yet already authenticated

(8.) Token t = (URL.IDC ,URL.IdPC ,URL.SP, α), protected by signature σ Create assoc = α
if not existing(9.) Redirect to URL.SP → t, σ

(10.) Optional: rediscovery URL.IDC

(11.) URL.IdPC

association established?

verify

yes

send

no

(12.) Check authentication: t, σ

(13.) Success?
Verify:
t, σ

(14.) Success?

1. Discovery

2. Association

3. Token
processing

Figure 13: The OpenID protocol flow.

authentication request does not contain α, and no shared
secret was established with IdPC . In this case, the IdP
generates a fresh key and signs the token with it. In this
case, the SP will not be able to verify the authenticity of the
token by itself. Instead, it must send the token directly to the
IdP in Step (12.), and accepts the result of the verification
from Step (13.).

3. Discovery in Detail

To receive URL.IdPC in Step (3.), the SP fetches the
document at URL.IDC (e.g. http://myserver.org). This can be
either an HTML or an XRDS document. Listing 1 shows a
minimal HTML document.
<html><head>< t i t l e / >
< l i n k r e l =" open id2 . p r o v i d e r "

hre f =" h t t p s : / / myidp . com / " / >
< / head><body / >< / html>

Listing 1: Minimal HTML discovery document.

The element <link /> contains URL.IdPC within the
href attribute. XRDS documents contain the same infor-
mation, but stored in XML data format.

Note that Step (5.) of the protocol does not contain
URL.IDC . This is not necessary, since C must authenticate
to IdPC . Consequently, IdPC knows the value of URL.IDC .
However, the discovered document in Step (3.) allows op-
tionally to include a second “local” identity URL.IDC∗ (the
value of the href attribute in Listing 2):
< l i n k r e l =" open id2 . l o c a l _ i d "

hre f =" h t t p s : / / myidp . com / bob " / >
Listing 2: C’s identity stored in an HTML document.

If this is the case, steps (5.) and (6.) will include this
value as well and IdPC is asked to use URL.IDC∗. This is,
for example, useful if C owns multiple IDs at IdPC .

4. Attacking Owncloud

The attack on ownCloud is depicted in Figure 14.

CA UA ownCloud SP ID ServerA IdPA

(1.) Login request: URL.IDA
(2.) Discovery: lookup URL.IDA

(3.) URL.IdPA

(4.) URL.IdPA,URL.SP

(5.) Token t = (URL.IDA, . . .), signature σ

(6.) Discovery: lookup URL.IDA

(7.) URL.IdPA, URL.IDV

(8.) check authentication on URL.IdPA: t, σ

(9.) is valid: true
(10.) Success: Login with URL.IDV

Figure 14: The ID Spoofing attack on ownCloud: The at-
tacker’s ID server returns URL.IDV on the second discovery.
ownCloud uses this identity value for the login instead of
the identity provided within the token.

5. Log Inspection

Figure 15 shows the log view of OpenID Attacker.

6. Report

OpenID Attacker outputs a detailed report as shown in
Figure 9.

Table 2 lists the notations used in this paper.

http://myserver.org

Figure 15: IDS attack on Sourceforge. The OpenID Attacker
log viewer window lists all exchanged OpenID messages.
The Screenshot shows that the SP requests a token for
URL.IDA, but the tools ignores the wish and responds with
a token for URL.IDV .

Notation Explanation
URL.ID A URL representing a user’s login name
URL.IDC A URL representing C’s login name at

URL.IdPC
URL.IDA A URL representing A’s login name at

URL.IdPA
URL.SP The URL of the SP, e.g. http://mysp.com
URL.SPA The URL of the attacker A controlled

SP, e.g. http://sp.attacker.com
URL.IdP The URL of the user’s IdP, e.g. https:

//www.google.com/accounts/o8/ud
URL.IdPC The URL of C’s IdP, e.g. https://www.

google.com/accounts/o8/ud.
URL.IdPA The URL of the attacker A controlled

IdP, e.g. http://idp.attack.com.
t The OpenID token, containing at least

URL.ID, URL.SP and URL.IdP .
σ The signature value for token t.
α The value α is used to identify the key

to verify (t, σ). Note that α is just a
reference value to the key and does not
contain any key material. For the attack
on Drupal, we also used β, because there
are two different associations.

TABLE 2: List of notations used in this paper.

http://mysp.com
http://sp.attacker.com
https://www.google.com/accounts/o8/ud
https://www.google.com/accounts/o8/ud
https://www.google.com/accounts/o8/ud
https://www.google.com/accounts/o8/ud
http://idp.attack.com

	Introduction
	Security Model
	OpenID: Technical Background
	SSO Token verification
	Novel Attacks
	ids
	kc
	trc

	OpenID Attacker
	Fully Automated Analysis

	Methodology
	Library Evaluation
	ids
	Attacking Owncloud
	kc with Session Overwriting
	Additional Findings

	Online Website Evaluation
	Related Work
	Lessons Learned
	Future Work
	References
	Appendix
	Protocol
	Direct Verification
	Discovery in Detail
	Attacking Owncloud
	Log Inspection
	Report

