
SoK: XML Parser Vulnerabilities

Christopher Späth
Ruhr-University Bochum

Christian Mainka
Ruhr-University Bochum

Vladislav Mladenov
Ruhr-University Bochum

Jörg Schwenk
Ruhr-University Bochum

Abstract
The Extensible Markup Language (XML) has become
a widely used data structure for web services, Single-
Sign On, and various desktop applications. The core
of the entire XML processing is the XML parser. At-
tacks on XML parsers, such as the Billion Laughs and
the XML External Entity (XXE) Attack are known since
2002. Nevertheless even experienced companies such as
Google, and Facebook were recently affected by such
vulnerabilities.

In this paper we systematically analyze known attacks
on XML parsers and deal with challenges and solutions
of them. Moreover, as a result of our in-depth analysis
we found three novel attacks.

We conducted a large-scale analysis of 30 different
XML parsers of six different programming languages.
We created an evaluation framework that applies differ-
ent variants of 17 XML parser attacks and executed a
total of 1459 attack vectors to provide a valuable insight
into a parser’s configuration. We found vulnerabilities in
66 % of the default configuration of all tested parses. In
addition, we comprehensively inspected parser features
to prevent the attacks, show their unexpected side effects,
and propose secure configurations.

1 Introduction

The Extensible Markup Language (XML) is a wide
spread data structure used in many application ar-
eas ranging from desktop office tools which use it to
save their documents (*.docx), to XML-based databases
(MarkLogic, eXist), and web protocol standards (SAML,
SOAP).

On a technical level, the parser translates an input
byte-stream into an XML document that can be accessed
by APIs in different programming languages.

Security of XML parsing. By adding a Document Type
Definition (DTD) directly on top of the XML document,

the parser behavior can be influenced. Originally de-
signed to define the structure (grammar) of an XML doc-
ument, it also enables various attacks, such as Denial-of-
Service (DoS), Server Side Request Forgery (SSRF), and
File System Access (FSA).

In 2002, Steuck discovered the powerful XML Ex-
ternal Entity (XXE) attack on XML parsers that allows
FSA [60]. Leading companies like Google [15], Face-
book [59, 53], Apple [8] and others [63, 9, 16, 17] have
been recently affected by this attack.

The Open Web Application Security Project (OWASP)
and other resources [47, 46] [71] only partially list vul-
nerabilities and slightly consider countermeasures. Mor-
gan [40] provides till date the most complete compilation
of available attack vectors. A systematic sampling of 13
parsers was conducted recently [57], however, with only
one prevalent kind of FSA and DoS attack within scope.
Attacks relying on the FTP [41] and netdoc protocol [22],
as well as several bypasses [74] and novel attacks such as
schemaEntity or XML Inclusion (XInclude) based SSRF
are not addressed in any of these sources.

Systematic Parser Analysis. We contribute a compre-
hensive security analysis framework of 30 XML parsers
in six popular programming languages: Ruby, .NET,
PHP, Java, Python, Perl. We identify each parser’s de-
fault behavior by using 17 core tests. This corresponds
to all known attack vectors. Based on them, we introduce
a metric enabling the comparison of all parsers regarding
the security, by computing a Base Vulnerability Score
(BVS).

Complex Attack Prevention. Finding countermeasures
can be tedious, since the parser’s documentation is out-
dated and a thorough inspection of the source code is
necessary. We extended our core tests with parser-
specific tests, to investigate the implication of security
relevant parser features and their interaction with each
other on the overall security. This results in a total of
1459 tests.

Contribution.
? We systematically discuss the so-far largest number

of state-of-the art XML attacks.
? We develop three novel attack vectors.
? We create an evaluation framework [10] consider-

ing all known attacks and apply a comprehensive
evaluation to 30 parsers finding 66 % vulnerable in
their default configuration.

? We propose countermeasures (if possible) against
all attacks and propose a secure configuration for
each parser.

? We apply our framework to Android and reveal a
yet undiscovered attack.

2 XML Foundations

XML is a human-readable, structured document, which
is subject to a set of rules. Documents adhering to these
rules are called well-formed. Due to space limitations,
we will only discuss two components of XML here - el-
ements and DTDs. We release an extended version [11]
and our evaluation framework [10] to support further re-
search in this field.

2.1 XML Elements

Elements structure an XML document as in Listing 1.

1 <data class="products">4</data>

Listing 1: Example of an element and an attribute.

This document declares an element data with a text
content 4 and an attribute class with a value products.

2.2 Document Type Definition

A DTD defines a grammar to reject invalid user input and
is the first component declared in an XML document. In
addition, DTDs allow the declaration of storage units, so
called entities.

Entities. There are four different types of entities: In-
ternal General Entities offer a neat way to define a value
and reference it arbitrarily often within the document.

1 <!DOCTYPE data [
2 <!ENTITY a "Arachibutyrophobia">
3]>
4 <data>&a;</data>

Listing 2: Example of an Internal General Entity

While processing the document, the parser replaces
the reference "&a;" with the term "Arachibutyrophobia".

External General Entities facilitate the inclusion of ex-
ternal files.

1 <!DOCTYPE data [
2 <!ENTITY a SYSTEM "file:///C:/data/a.txt">]>
3 <data>&a;</data>

Listing 3: Example of an External General Entity

The file "a.txt" is a plain text file. The parser retrieves the
file and replaces the reference as before.
1 Arachibutyrophobia

Listing 4: The content of a.txt

Internal Parameter Entities can be used to instantly
modify the value of a General Entity.
1 <!DOCTYPE data [
2 <!ENTITY % m "majoris">
3 <!ENTITY a "Arachibutyrophobia %m;">]>
4 <data>&a;</data>

Listing 5: Example of an Internal Parameter Entity.

The value of Entity "a" instantly changes to
"Arachibutyrophobia majoris".

External Parameter Entities can be used to include ad-
ditional entity declarations, which are stored remotely.
1 <!DOCTYPE data [
2 <!ENTITY % extDTD SYSTEM "file:///C:/data/majoris.dtd"

>
3 %extDTD;
4 <!ENTITY a "Arachibutyrophobia %m;">]>
5 <data>&a;</data>

Listing 6: Example of an External Parameter
Entity.

The corresponding DTD "majoris.dtd" is shown in
Listing 12.
1 <!ENTITY % m "majoris">

Listing 7: Example of an external DTD.

The parser first fetches the External Parameter Entity
"extDTD", makes the declaration of the entity m avail-
able and finally, replaces this reference.

2.3 Other XML Technologies

XInclude. XInclude facilitates the inclusion of an exter-
nal (XML) document into the source document. The fol-
lowing example shows how to include a file other.xml
as a child node of the element data.
1 <data>
2 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

href="other.xml"/>
3 </data>

Listing 8: XML document containing a XInclude
instruction.

XSLT. Extensible Stylesheet Language Transformations
(XSLT) is commonly used to transform XML documents
into other documents and formats, for example, into
JSON or PDF [27] [42].

2

XML Schema. An XML Schema defines gram-
mar using an XML style syntax. The XML
Schema standard allows for the inclusion of external
Schema files by using the schemaLocation and the
noNamespaceSchemaLocation attributes.

3 Attacker Capabilities

For all attacks described in this paper, we assume that
the attacker is able to generate XML messages and that
the XML parser can process these messages. We as-
sume a DTD to contain only such grammatical restric-
tions which do not hinder the attacker. For example, the
attacker can create an XML config file and the targeted
application parses this file on startup. In case of web ap-
plications, the attacker can control or upload an XML file
that is processed by the business logic. Hence in our eval-
uation, we directly invoke the targeted parser and thus
obviously control the parsed message.

4 Denial-of-Service

DoS attacks target system resources, such as network,
storage, memory or CPU processing [29]. An efficient
way to do this is to let the application process a "prob-
lem", thereby allocating a huge amount of resources. At
the same time the attacker can generate and send the at-
tack vector using much fewer resources. As a result, an
offered service is unavailable for benign users or at least
responds significantly slower than normal.

4.1 DoS: Recursive Entities

In the following example, the parser receives an XML
document which declares two entities calling each other
in an infinite loop (see Listing 9).

1 <!DOCTYPE data [
2 <!ENTITY a "&b;">
3 <!ENTITY b "&a;">]>
4 <data>&a;</data>

Listing 9: XML Infinite Recursion

The parser resolves the entity a to a reference of b
and the entity b resolves to a reference of a. Therefore,
the parser will loop indefinitely and consume CPU re-
sources.

Limitation: Forbidden by XML Specification. The
XML specification addresses this problem and forbids
the processing of entities which call up each one in a
loop. However, our evaluation on Android shows that
not all parsers adhere to this rule.

4.2 DoS: Billion Laughs
Internal General Entities can be abused to create an Ex-
ponential entity attack (Billion Laughs Attack) [28]. The
attack relies on a nested , but limited, level of entity re-
cursions.
1 <!DOCTYPE data [
2 <!ENTITY a1 "dos">
3 <!ENTITY a2 "&a1;&a1;&a1;&a1;&a1;">
4 ...
5 <!ENTITY a13 "&a12;&a12;&a12;&a12;&a12;">]>
6 <data>&a13;</data>

Listing 10: Example of the Billion Laughs Attack

By defining different nesting levels of Internal General
Entities, a file of only 200 kilobytes is expanded to sev-
eral gigabytes (3.5GB) during the parsing process.

Challenge: Thresholds. A number of parsers detect
and counteract this attack by implementing a threshold to
limit the total number of allowed entity references within
a document.

4.3 DoS: Quadratic Blowup
Even if the parser implements such a threshold, there
are other ways to execute a DoS attack by using an at-
tack variant known as the Quadratic Blowup Attack [64].
Here, a single entity is created containing a large string
(e.g. 10 MB). This entity is referenced multiple times
within the document in order to achieve a similar result
as before. Since less entity references are required than
in Listing 10, the threshold limitation can be bypassed.

4.4 DoS with External General Entities
External General Entities can be misused for DoS attacks
by pointing to a large external file [60, 47] which will be
read during processing. As a result, the target system
allocates memory resources. If this file is retrieved over
the network, for example. from the attacker’s server, the
download speed can be reduced in order to improve the
impact of this attack and to allocate additional network
resources for a longer period of time.

Challenge: Not Applicable to Arbitrary Files. Our
investigation shows that all parsers abort processing
if the referenced file is not well-formed. We con-
firmed this for common attack vectors under both UNIX
(/dev/random, /dev/urandom and /dev/zero) and
Windows C:/pagefile.sys. Hence, we conclude that
this attack is only feasible with large XML documents.

4.5 Countermeasures
Applicable countermeasures against these attacks are:
(1.) Prevention by disabling insecure parser features.
(2.) Counteraction by implementing custom thresholds.
(3.) Limitation of the allocated resources

3

5 File System Access

A File System Access (FSA) is utilized to read out ar-
bitrary files from a system. Steuck discovered an XML
based FSA attack called XML External Entity (XXE) for
the first time in 2002 [60]. XML External Entity (XXE)
attacks are instances of injection attacks.

5.1 Classic XML External Entity
XXE attacks misuse a benign feature, namely External
General Entities. In contrast to the benign usage of Ex-
ternal General Entity, the attacker injects a path to an
arbitrary resource (e.g. /etc/passwd) and the contents are
returned.

Extension: No External Entity allowed in Attributes.
The XML specification forbids the reference of External
General Entities in attribute values. Yunusov et al. [74]
showed how to adeptly bypass this limitation in 2013,
namely an Internal General Entity is referenced within
the attribute value. By means of an External Parameter
Entity the content of an external resource is included into
the Internal General Entity and hence the attribute value.
This mimics the same functionality as an External Gen-
eral Entity. We later present a novel attack based on this
bypass in Section 5.5.

Challenge: Well-formedness . The content of files ref-
erenced by an External General Entity which are not
well-formed cause the parser to trigger an exception and
abort processing. Some examples of not well-formed re-
placement text include a start-tag without a correspond-
ing end-tag or characters forbidden in XML, such as the
left angle bracket (<). Therefore, it is, for example, not
possible to read out certain configuration files (e.g. /etc/f-
stab) with a classic XXE attack.

5.2 Parameter-based XXE
Internal Parameter Entities can be used to create a CDATA
element and in this way escape the contents of the file.
Consequently, the parser no longer triggers an exception.
The first variation of this attack is mentioned by Morgan
[40]. We developed a new modified version of this at-
tack. For specific parser configurations, our evaluation
results show that our attack vector succeeds when Mor-
gan’s attack does not and vice versa. Therefore, the two
vectors complement each other.

1 <!DOCTYPE data SYSTEM "http://attacker.com/
parameterEntity_doctype.dtd">

2 <data>&all;</data>

Listing 11: Our short Parameter-based XXE attack.

The parser first retrieves an external DTD with the
contents as in Listing 12.

1 <!ENTITY % start "<![CDATA[">
2 <!ENTITY % file SYSTEM "file:///etc/fstab">
3 <!ENTITY % end "]]>">
4 <!ENTITY all ’%start;%file;%end;’">

Listing 12: An external DTD contains further
Entities.

In the example shown, three parameter entities are
used: (1.) start – begins the escape sequence. (2.) file –
contains the content of the referenced file - all characters
are escaped; hence, the content is well-formed. (3.) end –
closes the escape sequence. The Internal General Entity
named all orders the Internal Parameter Entities (start,
file and end). Parameter Entities can be used exclusively
in an external DTD within General Entities .

Challenge: No direct Feedback Channel. All previ-
ous attacks assume that the XML content is echoed back
to the attacker. This is not always the case. In a Single
Sign-On system (e.g., SAML), the user sends his SAML
token, which is an XML message, to a server and ei-
ther gets logged in or blocked. In other words: the user
receives a true/false answer instead of an echoed XML
message. This scenario is comparable to blind SQL in-
jection attacks where the attacker does not see the pro-
voked error messages [45].

5.3 Blind XXE
Even if such a direct feedback channel is not available, a
FSA attack is still feasible using blind XXE. (This term
is coined analogously to blind SQLi). By referencing a
non-existent file [54, 65], the parser aborts the processing
and displays an error message.

Yunusov et al. [74] invoke an HTTP GET request to
the attacker’ server and includes the contents of the file
with an External Parameter Entity as the path to the re-
source. Consequently, the content of the file corresponds
to the requested file on the attacker’s server. The attacker
only has to review her log files in order to retrieve the
content of the file.

Challenge: Reading out multi-line files. Line termina-
tion characters are not allowed as characters of a URL. If
the parser does not automatically encode line termination
characters, only the first line of a file can be transmitted
by using this attack.

5.4 Blind XXE The FTP Protocol
Novikov reported a solution to this challenge (for Java)
by relying on the FTP protocol [41]. The attacker simu-
lates an FTP server that requests more commands from
the client each time something has been sent. The com-
mands correspond to a line within the document and the
line termination character causes these commands to be
sent. This way a multi-line file can be read out.

4

5.5 Blind XXE SchemaEntity
We too present a solution to this challenge with a novel
Blind XXE attack called schemaEntity. We found three
variations of this attack by using the (1.) noNames-
paceSchemaLocation attribute, (2.) the schemaLocation
attribute or (3.) an XInclude instruction.

Our attack relies on three building blocks. (1.) In-
clusion: Parameter Entities are used to include an
external resource into an attribute value [74, 75].
(2.) Transformation: The Attribute-Normalization
algorithm converts line termination characters into
whitespaces [13]. (3.) Transmission: XInclude or
XML Schema attributes, such as schemaLocation,
noNamespaceSchemaLocation are used to transmit the
content (SSRF) to the attacker [40].

We will now discuss, by way of example, an instance
of this attack based on the noNamespaceSchemaLocation
attribute. The vector is shown in Listing 13.
1 <!DOCTYPE data [
2 <!ENTITY % remote SYSTEM "http://attacker.com/

external_entity_attribute.dtd">
3 %remote;]>
4 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
5 xsi:noNamespaceSchemaLocation="http://192.168.2.31/&

internal;"></data>

Listing 13: SchemaEntity Attack with
noNamespaceSchemaLocation attribute

The following listing shows the external DTD which
is loaded from the attacker’s server.
1 <!ENTITY % payload SYSTEM "file:///etc/passwd">
2 <!ENTITY % param1 "<!ENTITY internal ’%payload;’>">
3 %param1;

Listing 14: External DTD for the schemaEntity
Attack

First, we include the content of the file in order to store
it in the attribute value using parameter entities. Second,
we misuse the Attribute-Normalization algorithm to au-
tomatically transform line termination characters, such
as #xD and #xA into whitespaces. This step is key be-
cause it enables the transmission of multi-line files. Fi-
nally, the transformed file is set as the path of a URL
in the noNamespaceSchemaLocation attribute and hence
the content of the file is transmitted to the attacker’s
server.

This attack requires an XML Schema to be processed.
Of course, the attack based on XInclude requires XIn-
clude processing.

5.6 Countermeasures
Applicable countermeasures against these attacks are:
(1.) Prevention by disabling insecure parser features.
(2.) Filtering by implementing input validation based on
a whitelist/blacklist

6 Server Side Request Forgery

SSRF attacks send - in the context of XML - requests
on behalf of the XML parser to other endpoints on the
network [39]. Usually, these endpoints are not accessi-
ble from the Internet (e.g. they are protected by a fire-
wall). SSRF attacks are used to port scan a host, inject
malicious content (e.g. HTTP header injection) [43], use
other URLs or steal Windows credentials [40].

6.1 Classic SSRF
The most prevalent SSRF attack, based on a DOCTYPE,
has already been implemented in popular scanning tools
such as Burp [61]. For our example, we suppose a host
192.168.0.11 on an internal network which offers sev-
eral operations for remote administration, such as "shut-
down". An example of this specific setup is shown in
Listing 15.

1 <!DOCTYPE data SYSTEM "http://192.168.0.11/shutdown">
2 <data>4</data>

Listing 15: SSRF attack based on DOCTYPE.

An attacker can remotely invoke the shutdown opera-
ton on this host by letting the parser send the request.

6.2 Innovative SSRF
We found a novel attack vector based on XInclude.
The schemaLocation/noNamespaceSchemaLocation at-
tributes can also faciliate this attack [40]. Other DTD
based techniques are with External General Entities and
External Parameter Entities.

Challenge: Parser Features. A parser might imple-
ment separate features to deactivate the processing of the
DOCTYPE, External General Entities, External Parame-
ter Entities, XML Schema and XInclude. If only a sub-
set of these features is applied to harden the parser, the
parser is still vulnerable to SSRF attacks.

Challenge: Firewall/missing HTTP support. A num-
ber of parsers do not implement network protocols,
and in other scenarios network access is sometimes re-
stricted. We found no suitable solution to this challenge.

6.3 Countermeasures
Applicable countermeasures against these attacks are:
(1.) Prevention by disabling insecure parser features.
(2.) Filtering by implementing input validation based on
a whitelist/blacklist.

5

7 Additional Attack Techniques

The XML parsing process may consist of other optional
processing steps which might introduce vulnerabilities.
In addition to our current research, we also investigated
other technologies, and we will shortly highlight them in
this section.

XSLT and XInclude. We limited our tests to check
the support of XSLT and XInclude processing in XML
parsers. If a parser processes XSLT or XInclude, it is
potentially vulnerable to all the attacks previously listed,
namely DoS, FSA and SSRF.

XML Schema. The attributes schemaLocation and the
noNamespaceSchemaLocation can be misused to con-
duct SSRF attacks (cf. Section 6).

8 Evaluation Framework

In this section we present our evaluation framework con-
sisting of (1.) the selection of test vectors (2.) the parser
selection (3.) the test methodology.

8.1 Selection of Test Vectors

Our test framework consists of 17 core test vectors which
we have categorized into four groups.

Collection of known test vectors. Initially, we searched
for research results and scientific papers considering
XML based attacks and security problems of XML
parsers by using different search engines. We also
checked for vulnerabilities based on XML related tech-
nologies, such as XInclude and XSLT. As a result, we
found well-known attacks such as the Billion Laughs and
Quadratic Blowup Attack [28, 64], the XXE attack [60],
the whitepaper of Morgan et. al. [40] and the bypass to
include external content in attribute values [74].

We subscribed to multiple CVE newsletters like US-
CERT 1 and Mitre 2 and observed recently reported vul-
nerabilities related to our topic. Each CVE contains in-
formation about the attack goals, used attack vectors and
the affected vendor. This approach, however, did not re-
veal any new insights since all the reported issues were
based on already known attacks.

We also subscribed to leading security professionals in
the field of XML on Twitter. This way we learned about
the Blind XXE attack based on the FTP protocol [41]
and a netdoc based XXE attack in Java [22].

Addition of new Test Vectors. Our investigation
showed that a DoS recursion attack and a parameter

1https://www.us-cert.gov/ncas/alerts
2https://cve.mitre.org

based Billion Laughs attack had not yet been included
in any previous test set.

We created two Parameter-based XXE (Parameter-
based XXE) test vectors to retrieve multi-line files, one
with a direct feedback channel and one for Blind XXE
(schemaEntity).

We considered XInclude to conduct SSRF attacks,
which was not in the scope of any previous research. We
also explicitly used External Parameter Entities as an-
other method to carry out SSRF attacks.

In brief, compared to existing work [40] [57], we cre-
ated three novel attack vectors and included up to ten
new test vectors. Our evaluation framework is therefore
comprised of 17 tests in total.

Denial-of-Service. The parser is vulnerable if the entity
references are completely expanded.

(1.) Recursion: Define a recursion: a -> b -> a ->...
(2.) Billion Laughs: Exceed a predefined threshold [64,

6] of Internal General Entity references.
(3.) Billion Laughs with Parameter Entities: Exceed a

predefined threshold of Internal Parameter Entities.
(4.) Quadratic Blowup: Exceed a predefined threshold

[64, 38] of Entity expansion, regarding the total size
of the Entity.

File System Access. The parser is vulnerable if the con-
tent of the external file is included.

(5.) XXE: Return the content of a file from the system
using a direct feedback channel.

(6.) Parameter-based XXE Classic: Return the content
of a not well-formed file using a direct feedback
channel [40].

(7.) Parameter-based XXE Small: Novel small test vec-
tor to achieve the same result.

(8.) Blind XXE schemaEntity: Return the content of a
multi-line file. Novel test vector.

(9.) Blind XXE FTP: Transmit the contents of a multi-
line file over FTP [41].

Server Side Request Forgery. The parser is vulnerable
if a predefined HTTP 3 resource is invoked.

(10.) Doctype: Doctype based [40].
(11.) External General Entity: External General Entity

based [60].
(12.) External Parameter Entity: External Parameter En-

tity based.
(13.) noNamespaceSchemaLocation: XML Schema at-

tribute [40]

3We limited our tests to the HTTP protocol. The SSRF bible [43]
lists other interesting protocols for Java and PHP, which could also be
tested.

6

https://www.us-cert.gov/ncas/alerts
https://cve.mitre.org

(14.) schemaLocation: XML Schema attribute [40]
(15.) XInclude: Based on XInclude. Novel test vector.

Additonal Attacks.

(16.) XInclude:The parser is vulnerable if the content of
a file from the system is returned to by using a direct
feedback channel.

(17.) XSLT: The parser is vulnerable if the XSLT state-
ment is processed.

8.2 Parser selection
We focused our work on the most popular parsers of
wide-spread web development programming languages
[20] [72], such as .NET, Java, Perl, PHP, Python and
Ruby.

.NET. Microsoft resources [36, 35] list XmlReader as
one of the recommended ways of parsing XML in .NET
[37] and XmlDocument as a parser implementing the
DOM API.

Java. Xerces (SAX/DOM) and its predecessor Crimson
are widely employed, JDOM, dom4j and w3cdocument
are popular among Java developers [67, 24, 19], Oracle
(SAX/DOM) supposedly has support for XSLT, which
would render it vulnerable to additional attacks [23], Pic-
colo is a small, non-validating and faster parser than any
of the others [44] and KXml has been included because
it is also used for parsing XML on Android.

Perl. Although XML::Simple seems by far the most pop-
ular parser, the developer [31] discourages its use for
new projects. A popular Perl forum lists XML::Twig
and XML::LibXml as currently being the best available
parsers for Perl [25, 56, 58].

PHP. We selected SimpleXML, DOMDocument and
XMLReader because they are part of the standard library
[49].

Python. We selected etree, minidom, xml.sax and pull-
dom. These are included in the standard library [52, 18]
lxml [12] is a fast parser based on expat. defusedxml
[64]provides secure implementations of the aforemen-
tioned parsers. BeautifulSoup [55] has been used in var-
ious projects in the past.

Ruby. We selected REXML, included in the standard
library, and Nokogiri, a third party module. [50, 73, 68,
70].

Therefore, our evaluation framework comprises of 30
parsers from six programming languages.

8.3 Testing Methodology
We implemented our evaluation framework using unit
tests, allowing us to easily verify the findings and re-run
all tests against each new version of a parser. All previ-
ously listed test vectors (see Section 8.1) are executed on
all parsers and are therefore called "core tests".

Base Vulnerability Score (BVS). In order to reflect a
parser’s vulnerability when factory defaults are being
used, we define the BVS as the sum of all core tests.
Since each vulnerability adds 1 to this score, the high-
est possible score is 17. By consulting the BVS, parsers
with secure factory defaults can be easily identified and
it is possible to compare different parsers.

Additional tests. Many parsers implement unique fea-
tures which change the processing of a DTD. We iden-
tify DTD security related features by thoroughly check-
ing the documentation, API and even the source code
of each parser. We contribute "additional tests" which
check both the effects on processing if a single feature
or multiple features are set simultaneously. Finally, we
propose features which can be used to counteract vulner-
abilities.

Remaning Vulnerability Score (RVS). After applying
the proposed countermeasures, we re-evaluate the secu-
rity of the parser and summarize these results in the Re-
maning Vulnerability Score (RVS).

9 Evaluation

In this section we present our evaluation results of 30
tested parsers. Our claims are based on a total of 1,459
tests.

Here we also discuss the implemented countermea-
sures for each parser. These correspond for DoS in Sec-
tion 4.5, for FSA in Section 5.6 and for SSRF in Sec-
tion 6.3.

9.1 .NET

Overview. XmlReader (BV S = 0) is not vulnerable to
any attack vector. XmlDocument (BV S = 7) is suscepti-
ble to FSA and SSRF attacks.

Countermeasures. XmlDocument should be invoked
with an XmlReader [62] to mitigate all attacks (RV S = 0)
(see Listing 19).

Caveats. XmlReader supports XInclude processing.
Setting the feature DtdProcessing (DtdProcessing.Parse)
renders the parser insecure.

SchemaEntity: Both XmlReader and XmlDocument
are vulnerable if XML Schema processing is enabled
(ValidationType (ValidationType.Schema)).

7

XXE XInclude XSLT # Vulnerabilities

Re
cu

rs
io

n*

Bi
llio

n
La

ug
hs

Qu
ad

ra
tic

 B
lo

wu
p

XX
E

Cl
as

sic

Sm
al

l

FT
P

Pr
ot

oc
ol

sc
he

m
aE

nt
ity

*

DO
CT

YP
E

Ex
te

rn
al

En
tit

y

Ex
te

rn
al

Pa
ra

m
et

er

sc
he

m
aL

oc
at

io
n*

no
Na

m
es

pa
ce

Sc
he

m
aL

oc
at

io
n*

Xi
nc

lu
de

*

Xi
nc

lu
de

*

XS
LT

1 .NET/XmlReader 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 4

2 .NET/XmlDocument 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 10

3 Java/Xerces SAX 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13

4 Java/Xerces DOM 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13

5 Java/w3cDocument 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13

6 Java/Jdom 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13

7 Java/dom4j 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13

8 Java/Crimson SAX 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 8

9 Java/Oracle SAX 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 11

10 Java/Oracle DOM 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 11

11 Java/Piccolo 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 9

12 Java/KXml 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 Perl/XML::Twig 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

14 Perl/XML::LibXml 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 10

15 PHP/SimpleXML 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 PHP/DOMDocument 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 3

17 PHP/XMLReader 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2

18 Python/etree 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3

19 Python/xml.sax 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 6

20 Python/pulldom 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 6

21 Python/lxml 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 4

22 Python/defusedxml.etree 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

23 Python/defusedxml.sax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 Python/defusedxml.pulldom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 Python/defusedxml.lxml 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 Python/defusedxml.minidom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 Python/minidom 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2

28 Python/BeautifulSoup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 Ruby/REXML 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Ruby/Nokogiri 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 3

1 Android/DocumentBuilder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 Android/SaxParser 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 Android/PullParser 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Vulnerable Parsers 1 15 20 15 11 11 9 9 13 13 13 3 8 11 13 0

Parameter XXEDOS SSRF

Figure 1: Results of our evaluation framework; 1 = parser is vulnerable to the attack; Novel attacks are highlighted in
bold font; * = When certain prerequisites are met, otherwise default settings;

Blind XXE FTP: Both XmlReader (DtdProcessing
(DtdProcessing.Parse)) and XmlDocument initiate a
connection to the FTP server. No data is sent though.
This might be due to an implementation flaw of the FTP
server in use.

9.2 Java

Overview. All tested Java parsers are vulnerable to in-
stances of DoS, FSA and SSRF (BV S = 8) except KXml
which is not vulnerable to any attack vector (BV S = 0).

Our tests show that w3cDocument, JDOM and dom4j
are different implementations of the DOM in Java. All
these implementations rely on an underlying parser to
process the XML document (here: Xerces DOM). There-
fore, the detected vulnerabilities directly correlate to the
configuration of this parser.

We confirmed the report of Goldshlager [22] to misuse
the netdoc protocol [14] for XXE attacks.

Countermeasures. An EntityResolver mitigates FSA
and some SSRF attacks by filtering the input. A De-
clHandler mitigates DoS attacks. Secure implementa-
tions of the interfaces EntityResolver [33, 30] and De-
clHandler [32] trigger exceptions for the methods re-
solveEntity(), externalEntityDecl() and internalEntity-
Decl() and hence abort the processing. If both counter-

measures are applied, the resulting configuration is se-
cure (RV S = 0).

Additionally, (i) Xerces, (ii) Oracle and (iii) Piccolo
have parser-specific features to mitigate these attacks.
(i) Setting the feature disallow-doctype-decl (true) aborts
the processing if a DTD is found, thus mitigating all at-
tacks resulting in a secure configuration (RV S = 0). This
is an instance of the countermeasure Prevention and it
mitigates all attacks. Listing 17 shows how to apply this
feature on a SAX and DOM parser.

(ii) Setting the feature EXPAND_ENTITYREF (false)
mitigates DoS, FSA and some SSRF attacks. A secure
implementation of an EntityResolver is still necessary in
order to secure the parser. Listing 18 shows how to apply
this parser-specific countermeasure.

(iii) Piccolo implements the SAX features external-
general-entities and external-parameter-entities [34].
These can be used as an alternative to an EntityResolver.
As shown in Listing 17, the features have to be applied
analogously in an instance of Piccolo.

Caveats. When applying countermeasures, the available
features might not work as expected. A DeclHandler
does not mitigate a Doctype based SSRF attack.

The features external-general-entities and external-
parameter-entities are part of the SAX API; however,
parsers are not required to implement them. Crimson,

8

for instance, does not.
Piccolo reports the value of external-general-entities

for both features, and the feature external-general-
entities (false) inhibits the loading of an external DTD.
This is clearly an implementation flaw.

Xerces implements the features load-dtd-grammar
and load-external-dtd [7]. However, they do not prevent
the anticipated attack vectors (e.g. SSRF). A Security-
Manager prevents External General Entity based FSA
attacks. However, it does not mitigate External General
Entity based SSRF attacks.

SchemaEntity: Both Xerces and Oracle are vulnerable
if XML Schema processing is enabled (Xerces: valida-
tion/schema (true) and namespaces (true), Oracle: set-
ValidationMode (SCHEMA_VALIDATION)).

Blind XXE FTP: Both Xerces and Piccolo are vulner-
able by default.

9.3 Perl

Overview. XML::Twig (BV S = 3) is vulnerable to DoS
and FSA attacks. XML::LibXml (BV S = 8) is exposed
to DoS, FSA and SSRF attacks.

Countermeasures. Setting the feature NoExpand (false)
in XML::Twig mitigates all attacks (RV S = 0). The ap-
plication is shown in Listing 20.

1 $t= XML::Twig−>new();
2 $t−>parsefile(’../../xml_files_windows/dos_core.xml’, NoExpand => 1);

Listing 16: Applying countermeasures for
XML::Twig.

Setting the feature load_ext_dtd (false) in
XML::LibXml mitigates all but DoS attacks (RV S = 2).
The application is shown in Listing 21.

Caveats. XML::LibXml supports XInclude. The fea-
ture expand_entities only affects the processing of Ex-
ternal General Entities but not External Parameter En-
tities. The feature validation has precedence over ex-
pand_entities, that is if both features are set simultane-
ously; then only the feature validation affects the pro-
cessing.

According to the API of XML::Twig [56], features
can be spelled either using Java CamelCase style (No-
Expand) or Perl style (no_expand). Also, features can
be set either in the new() constructor or in the method
parsefile(). There are two implementation flaws regard-
ing these features. First, the same feature affects the
processing of entities differently when used in different
methods. Second, using a different spelling renders a
feature useless. Table 1 exemplary summarizes the be-
havior for the feature NoExpand. Other features are also
affected by this problem.

The file:// protocol is not implemented in Twig; hence
an XXE attack must be conducted without it.

Blind XXE FTP: LibXML initiates a connection to the
FTP server. However, no data is sent. This might be due
to an implementation flaw of the FTP server in use.

9.4 PHP

Overview. XMLReader (BV S = 0) is not vulnerable
to any attack vector. SimpleXML and DOMDocument
(BV S = 1) are both susceptible to DoS attacks.

Countermeasures. No countermeasures are available
for any of these parsers (BV S = RV S).

Caveats. Both XmlReader and DOMDocument sup-
port XInclude. Using the proposed countermeasure dis-
able_entity_loader (true) [47, 48] is neither suitable for
SimpleXML nor for DOMDocument because it either
does not affect the parsing process or it prevents the
parser from loading the input XML document. All
tested PHP parsers are based on the libxml2 library
and hence offer the corresponding features DTDATTR,
DTDLOAD, DTDVALID, NOENT. We advise readers
to not set any of these features primarily because it ren-
ders the corresponding parser vulnerable to a plethora of
attacks. Additionally, in XmlReader there are two imple-
mentation flaws.

(1.) Features behave differently for different input files
(e.g. XMLReader::VALIDATE and DTDVALID for Ex-
ternal General Entities) and (2.) The parser-specific fea-
tures are not implemented analogously to the libxml2
features (e.g. LOADDTD/DEFAULTATTRS vs DTD-
LOAD/DTDATTR)

This is counterintuitive because usually one would ex-
pect that (1.) the same feature affects the processing of
the same underlying data structure in an identical way
and (2.) that parser-specific features modify the process-
ing in an identical way as the features of the underlying
library.

Blind XXE FTP: All parsers are vulnerable if DTD
processing is enabled (DTDLOAD/VALIDATION).

9.5 Python

Overview. defusedxml and BeautifulSoup are not vul-
nerable to any attack vector (BV S = 0). etree and
minidom (BV S = 2) are susceptible to DoS attacks. lxml
is exposed to DoS and FSA attacks (BV S = 2). xml.sax
and pulldom (BV S = 6) are vulnerable to DoS, FSA and
SSRF attacks.

Countermeasures. If applicable, an instance of de-
fusedxml [64] should be used (RV S = 0). If another
parser must be used, we propose the following advice:

9

Setting the feature resolve_entities (False) in lxml miti-
gates all attacks (RV S = 0). The application of this coun-
termeasure is shown in Listing 22. Applying a secure
EntityResolver (see Section 9.2) to xml.sax and pull-
dom leaves the parser vulnerable DoS attacks (RV S = 2).
Other countermeasures are not available.

Caveats. Both etree and lxml support XInclude. Setting
the feature no_network (false) in lxml to activate network
access renders the parser vulnerable to Parameter-based
XXE and SSRF attacks. Disabling the built-in protection
for Billion Laughs Attacks (huge_tree (true)) renders the
parser vulnerable to exactly this attack.

Blind XXE FTP: lxml initiates a connection to the FTP
server. However, no data is sent. This might be due to an
implementation flaw of the FTP server in use.

9.6 Ruby

Overview. REXML (BV S = 0) is not vulnerable to any
attack vector. Nokogiri (BV S = 1) is vulnerable to DoS
attacks.

Countermeasures. Setting the features en-
tity_expansion_limit and entity_expansion_text_limit
[69] of REXML can be used to restrict the number and
size of Entities even more (BV S = RV S).

Nokogiri’s underlying libxml2 library is configured
identically to the PHP implementation of DOMDocu-
ment and SimpleXML. Therefore, the same advice ap-
plies. No countermeasures are available (RV S = 1).

Blind XXE FTP: Nokogiri initiates a connection to the
FTP server if DTD processing is enabled (DTDLOAD/-
VALIDATION). However, no data is sent. This might be
due to an implementation flaw of the FTP server in use.

10 Android

Six months after we created our evaluation framework,
we applied it without any modifications to Android (API
23). XML processing on Android is based on Java [66,
4].

Overview. DocumentBuilder [2] and XmlPullParser [3]
(BV S = 0) are not vulnerable to any attack vector. Sax-
Parser [5] is vulnerable to DoS attacks (BV S = 2).

Countermeasures. There applicable countermeasures
from 9.2 are not implemented on Android and hence not
applicable.

Caveats. XmlPullParser is based on KXml (BV S = 0);
however on Android, methods and features specifically
for processing DTDs have been implemented. This is
particularly infelicitous since setting the feature PRO-
CESS_DOCDECL (true) renders the parser vulnerable

to the DoS Recursion Attack. Therefore, processing only
stops if the App crashes or quits. Obviously, this is an im-
plementation flaw. Other attacks, such as FSA or SSRF,
are not feasible because neither External General nor Pa-
rameter Entities are implemented.

11 Conclusion

DTD attacks are still a prevalent problem in popular
XML parsers. We found that multiple parsers are vul-
nerable to DoS, FSA and SSRF attacks in their default
configuration. We also showed, how our attack frame-
work can be used to evaluate new systems by the example
of Android and thus revealed a vulnerability that has not
been found on any other parser before. The security of
other parsers, especially if contained in a closed source
system, such as iOS , IBM DataPower or Axway Secu-
rity Gateway is an interesting research area. Therefore
we released an extended version [11] and our evaluation
framework [10] to support further research in this field.

Our evaluation is focused on XML, but its conclusion
is valid for structured document parsers in general. In
order to mitigate such existing risks, we advise the de-
velopers of an parser to: (1.) Turn off all security criti-
cal features by default. An application developer using
the parser must be able to decide if he should turn on
the according feature or not. (2.) In addition to the previ-
ous aspect, make the enabling of security critical features
possible (instead of the need to disable security critical
features that are enabled as default) (3.) Document the
risks of security critical features and thus make other de-
velopers aware of them.

This is especially important when it comes to more
recently developed parsers, for example JSON, as the
attacks known from XML can be adapted. Examples
are: (1.) JSLT is a JavaScript alternative to XSLT [1].
(2.) JSON Include, which is comparable to XInclude [51,
21]. (3.) JSON Schema [26].

This leads to the research question whether JSON (or
other) parsers are also vulnerable to DoS, SSRF, and
FSA attacks.

Acknowledgements

The research was supported by the German Ministry
of research and Education (BMBF) as part of the
VERTRAG and OpenC3S research project and by the
FutureTrust project funded by the European Commis-
sion (Grant agreement number: 700542-Future-Trust-
H2020-DS-2015-1).

10

References

[1] ajaxian: Jslt: A javascript alternative to xslt (2007),
http://ajaxian.com/archives/jslt-a-
javascript-alternative-to-xslt

[2] android.com: Documentbuilder. https:
//developer.android.com/reference/
javax/xml/parsers/DocumentBuilder.html
(2016)

[3] android.com: Documentbuilder. https:
//developer.android.com/reference/
org/xmlpull/v1/XmlPullParser.html (2016)

[4] android.com: Parsing xml data. https:
//developer.android.com/training/
basics/network-ops/xml.html (2016)

[5] android.com: Saxparser. https://developer.
android.com/reference/javax/xml/
parsers/SAXParser.html (2016)

[6] apache.org: Class securitymanager.
https://xerces.apache.org/xerces2-
j/javadocs/xerces2/org/apache/
xerces/util/SecurityManager.html#
getEntityExpansionLimit%28%29 (2010)

[7] apache.org: Parser features. https://xerces.
apache.org/xerces2-j/features.html
(2010)

[8] apple.com: Office viewer (Aug 2015), http:
//lists.apple.com/archives/security-
announce/2015/Aug/msg00002.html

[9] authors of this submission: Slashdot acknowl-
edgement (2014), http://beta.slashdot.org/
journal/1083427

[10] Authors of this submission: Core tests and parser
specific tests (source code). Zip, Google Drive
(May 2016), https://goo.gl/nfKuaL

[11] Authors of this submission: Security implications
of dtd attacks against a wide range of xml parsers.
Pdf, Google Drive (May 2016), https://goo.gl/
qGMlpw

[12] Behnel: lxml - xml and html with python. http:
//lxml.de/index.html (2015)

[13] Bray, T., Paoli, J., Sperberg-McQueen, C.M.,
Maler, E., Yergeau, F.: Extensible markup language
(xml) 1.0 (fifth edition) (November 2008), http:
//www.w3.org/TR/2008/REC-xml-20081126/

[14] Byrne: netdoc. http://www.docjar.com/
html/api/sun/net/www/protocol/netdoc/
Handler.java.html (2015)

[15] detectify: How we got read access on
Google’s production servers (Nov 2014),
http://blog.detectify.com/post/
82370846588/how-we-got-read-access-
on-googles-production-servers

[16] erpscan.com: SAP Mobile Platform 2.3
– XXE in application import (Aug 2015),
http://erpscan.com/advisories/erpscan-
15-020-sap-mobile-platform-2-3-xxe-in-
application-import/

[17] erpscan.com: SAP NetWeaver 7.4 – XXE (2015),
http://erpscan.com/advisories/erpscan-
15-018-sap-netweaver-7-4-xxe/

[18] etutorials.org: 5.4 understanding xml.
http://etutorials.org/Programming/
Python.+Text+processing/Chapter+5.
+Internet+Tools+and+Techniques/5.4+
Understanding+XML/ (2015)

[19] FilipJirsak: Dom4j. http://dom4j.
sourceforge.net/ (2015)

[20] fromdev.com: 5 best programming languages
for web developers (Sep 2013), http://www.
fromdev.com/2013/09/Best-Programming-
Languages-Web-Development.html

[21] github: composer-merge-plugin (2016),
https://github.com/wikimedia/composer-
merge-plugin

[22] Goldshlager: Pro tip. https://
twitter.com/Nirgoldshlager/status/
618417178505814016 (2015)

[23] Harold: Sax conformance testing. http://
cafeconleche.org/SAXTest/ (2004)

[24] Hunter: Jdom. http://jdom.org/ (2015)

[25] ikegami: Re: best xml parser in 5.18. http:
//www.perlmonks.org/?node_id=1127488
(2015)

[26] Kashyap: An introduction to json schema (2014),
http://crypt.codemancers.com/posts/
2014-02-11-An-introduction-to-json-
schema/

[27] Kay, M.: XSL Transformations (XSLT) Ver-
sion 2.0 (Second Edition). W3C proposed
edited recommendation, W3C (Apr 2009),

11

http://ajaxian.com/archives/jslt-a-javascript-alternative-to-xslt
http://ajaxian.com/archives/jslt-a-javascript-alternative-to-xslt
https://developer.android.com/reference/javax/xml/parsers/DocumentBuilder.html
https://developer.android.com/reference/javax/xml/parsers/DocumentBuilder.html
https://developer.android.com/reference/javax/xml/parsers/DocumentBuilder.html
https://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://developer.android.com/training/basics/network-ops/xml.html
https://developer.android.com/training/basics/network-ops/xml.html
https://developer.android.com/training/basics/network-ops/xml.html
https://developer.android.com/reference/javax/xml/parsers/SAXParser.html
https://developer.android.com/reference/javax/xml/parsers/SAXParser.html
https://developer.android.com/reference/javax/xml/parsers/SAXParser.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/util/SecurityManager.html#getEntityExpansionLimit%28%29
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/util/SecurityManager.html#getEntityExpansionLimit%28%29
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/util/SecurityManager.html#getEntityExpansionLimit%28%29
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/util/SecurityManager.html#getEntityExpansionLimit%28%29
https://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/features.html
http://lists.apple.com/archives/security-announce/2015/Aug/msg00002.html
http://lists.apple.com/archives/security-announce/2015/Aug/msg00002.html
http://lists.apple.com/archives/security-announce/2015/Aug/msg00002.html
http://beta.slashdot.org/journal/1083427
http://beta.slashdot.org/journal/1083427
https://goo.gl/nfKuaL
https://goo.gl/qGMlpw
https://goo.gl/qGMlpw
http://lxml.de/index.html
http://lxml.de/index.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.docjar.com/html/api/sun/net/www/protocol/netdoc/Handler.java.html
http://www.docjar.com/html/api/sun/net/www/protocol/netdoc/Handler.java.html
http://www.docjar.com/html/api/sun/net/www/protocol/netdoc/Handler.java.html
http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production-servers
http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production-servers
http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production-servers
http://erpscan.com/advisories/erpscan-15-020-sap-mobile-platform-2-3-xxe-in-application-import/
http://erpscan.com/advisories/erpscan-15-020-sap-mobile-platform-2-3-xxe-in-application-import/
http://erpscan.com/advisories/erpscan-15-020-sap-mobile-platform-2-3-xxe-in-application-import/
http://erpscan.com/advisories/erpscan-15-018-sap-netweaver-7-4-xxe/
http://erpscan.com/advisories/erpscan-15-018-sap-netweaver-7-4-xxe/
http://etutorials.org/Programming/Python.+Text+processing/Chapter+5.+Internet+Tools+and+Techniques/5.4+Understanding+XML/
http://etutorials.org/Programming/Python.+Text+processing/Chapter+5.+Internet+Tools+and+Techniques/5.4+Understanding+XML/
http://etutorials.org/Programming/Python.+Text+processing/Chapter+5.+Internet+Tools+and+Techniques/5.4+Understanding+XML/
http://etutorials.org/Programming/Python.+Text+processing/Chapter+5.+Internet+Tools+and+Techniques/5.4+Understanding+XML/
http://dom4j.sourceforge.net/
http://dom4j.sourceforge.net/
http://www.fromdev.com/2013/09/Best-Programming-Languages-Web-Development.html
http://www.fromdev.com/2013/09/Best-Programming-Languages-Web-Development.html
http://www.fromdev.com/2013/09/Best-Programming-Languages-Web-Development.html
https://github.com/wikimedia/composer-merge-plugin
https://github.com/wikimedia/composer-merge-plugin
https://twitter.com/Nirgoldshlager/status/618417178505814016
https://twitter.com/Nirgoldshlager/status/618417178505814016
https://twitter.com/Nirgoldshlager/status/618417178505814016
http://cafeconleche.org/SAXTest/
http://cafeconleche.org/SAXTest/
http://jdom.org/
http://www.perlmonks.org/?node_id=1127488
http://www.perlmonks.org/?node_id=1127488
http://crypt.codemancers.com/posts/2014-02-11-An-introduction-to-json-schema/
http://crypt.codemancers.com/posts/2014-02-11-An-introduction-to-json-schema/
http://crypt.codemancers.com/posts/2014-02-11-An-introduction-to-json-schema/

http://www.w3.org/TR/2009/PER-xslt20-
20090421/

[28] Klein: Multiple vendors xml parser (and soap/web-
services server) denial of service attack using dtd.
http://www.securityfocus.com/archive/
1/303509 (2002)

[29] Liverani: Defending against application level
dos attacks. https://www.owasp.org/
images/0/04/Roberto_Suggi_Liverani_
OWASPNZDAY2010-Defending_against_
application_DoS.pdf (2010)

[30] McLaughlin: Tip: Using an entity resolver.
http://www.ibm.com/developerworks/
library/x-tipent/index.html (2001)

[31] McLean: Xml::simple. http://search.cpan.
org/~grantm/XML-Simple-2.20/lib/XML/
Simple.pm (2002)

[32] Megginson: Interface declhandler. http:
//www.saxproject.org/apidoc/org/xml/
sax/ext/DeclHandler.html (2015)

[33] Megginson: Interface entityresolver. http:
//www.saxproject.org/apidoc/org/xml/
sax/EntityResolver.html (2015)

[34] Megginson: Package org.xml.sax. http://www.
saxproject.org/apidoc/ (2015)

[35] Meier: Chapter 9 — improving xml per-
formance. https://msdn.microsoft.com/en-
us/library/ff647804.aspx (2004)

[36] microsoft.com: Xml processing. https:
//msdn.microsoft.com/en-us/library/
aa478996.aspx#aspnet-jspmig-
xmlprocessing_topic3 (2003)

[37] microsoft.com: Xmlreader class. https://msdn.
microsoft.com/en-us//library/system.
xml.xmlreader%28v=vs.110%29.aspx (2015)

[38] microsoft.com: Xmlreaderset-
tings.maxcharactersfromentities property.
https://msdn.microsoft.com/en-us/
library/system.xml.xmlreadersettings.
maxcharactersfromentities%28v=vs.110%
29.aspx (2015)

[39] mitre: Cwe-918: Server-side request forgery (ssrf).
http://cwe.mitre.org/data/definitions/
918.html (2013)

[40] Morgan: Xml schema, dtd, and entity attacks.
http://vsecurity.com/download/papers/
XMLDTDEntityAttacks.pdf (2014)

[41] Novikov: Xxe oob exploitation at java 1.7+.
http://lab.onsec.ru/2014/06/xxe-oob-
exploitation-at-java-17.html (2014)

[42] Onder, R., Bayram, Z.: XSLT version 2.0 is turing-
complete: A purely transformation based proof. In:
Implementation and Application of Automata, pp.
275–276. Springer (2006)

[43] @ONsec_Lab: Ssrf bible. cheatsheet.
https://docs.google.com/document/d/
1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/
edit# (2014)

[44] Oren: Sourceforge logo sax parser benchmarks.
http://piccolo.sourceforge.net/bench.
html (2004)

[45] owasp.org: Blind sql injection. https:
//www.owasp.org/index.php/Blind_SQL_
Injection (2013)

[46] owasp.org: Testing for denial of service.
https://www.owasp.org/index.php/
Testing_for_Denial_of_Service (2013)

[47] owasp.org: Xml external entity (xxe) processing.
https://www.owasp.org/index.php/XML_
External_Entity_%28XXE%29_Processing
(2015)

[48] php.net: libxml_disable_entity_loader. http:
//php.net/manual/en/function.libxml-
disable-entity-loader.php (2015)

[49] php.net: Xml manipulation. http://php.net/
manual/en/refs.xml.php (2015)

[50] ruby portal.de: Xml und ruby (Nov 2015), http:
//wiki.ruby-portal.de/XML_und_Ruby

[51] Python: json-include (2015), https://pypi.
python.org/pypi/json-include

[52] python.org: Python and xml. https://wiki.
python.org/moin/PythonXml (2012)

[53] Ramadan, M.: How I hacked Facebook
with a Word Document (Oct 2015), http:
//www.attack-secure.com/blog/hacked-
facebook-word-document

[54] Rantasaari: Forcing xxe reflection through server
error messages. https://blog.netspi.com/
forcing-xxe-reflection-server-error-
messages/ (2015)

12

http://www.securityfocus.com/archive/1/303509
http://www.securityfocus.com/archive/1/303509
https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_application_DoS.pdf
https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_application_DoS.pdf
https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_application_DoS.pdf
https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_application_DoS.pdf
http://www.ibm.com/developerworks/library/x-tipent/index.html
http://www.ibm.com/developerworks/library/x-tipent/index.html
http://search.cpan.org/~grantm/XML-Simple-2.20/lib/XML/Simple.pm
http://search.cpan.org/~grantm/XML-Simple-2.20/lib/XML/Simple.pm
http://search.cpan.org/~grantm/XML-Simple-2.20/lib/XML/Simple.pm
http://www.saxproject.org/apidoc/org/xml/sax/ext/DeclHandler.html
http://www.saxproject.org/apidoc/org/xml/sax/ext/DeclHandler.html
http://www.saxproject.org/apidoc/org/xml/sax/ext/DeclHandler.html
http://www.saxproject.org/apidoc/org/xml/sax/EntityResolver.html
http://www.saxproject.org/apidoc/org/xml/sax/EntityResolver.html
http://www.saxproject.org/apidoc/org/xml/sax/EntityResolver.html
http://www.saxproject.org/apidoc/
http://www.saxproject.org/apidoc/
https://msdn.microsoft.com/en-us/library/ff647804.aspx
https://msdn.microsoft.com/en-us/library/ff647804.aspx
https://msdn.microsoft.com/en-us/library/aa478996.aspx#aspnet-jspmig-xmlprocessing_topic3
https://msdn.microsoft.com/en-us/library/aa478996.aspx#aspnet-jspmig-xmlprocessing_topic3
https://msdn.microsoft.com/en-us/library/aa478996.aspx#aspnet-jspmig-xmlprocessing_topic3
https://msdn.microsoft.com/en-us/library/aa478996.aspx#aspnet-jspmig-xmlprocessing_topic3
https://msdn.microsoft.com/en-us//library/system.xml.xmlreader%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us//library/system.xml.xmlreader%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us//library/system.xml.xmlreader%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.xml.xmlreadersettings.maxcharactersfromentities%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.xml.xmlreadersettings.maxcharactersfromentities%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.xml.xmlreadersettings.maxcharactersfromentities%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.xml.xmlreadersettings.maxcharactersfromentities%28v=vs.110%29.aspx
http://cwe.mitre.org/data/definitions/918.html
http://cwe.mitre.org/data/definitions/918.html
http://vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
http://vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
http://lab.onsec.ru/2014/06/xxe-oob-exploitation-at-java-17.html
http://lab.onsec.ru/2014/06/xxe-oob-exploitation-at-java-17.html
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit#
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit#
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit#
http://piccolo.sourceforge.net/bench.html
http://piccolo.sourceforge.net/bench.html
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Testing_for_Denial_of_Service
https://www.owasp.org/index.php/Testing_for_Denial_of_Service
https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Processing
https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Processing
http://php.net/manual/en/function.libxml-disable-entity-loader.php
http://php.net/manual/en/function.libxml-disable-entity-loader.php
http://php.net/manual/en/function.libxml-disable-entity-loader.php
http://php.net/manual/en/refs.xml.php
http://php.net/manual/en/refs.xml.php
http://wiki.ruby-portal.de/XML_und_Ruby
http://wiki.ruby-portal.de/XML_und_Ruby
https://pypi.python.org/pypi/json-include
https://pypi.python.org/pypi/json-include
https://wiki.python.org/moin/PythonXml
https://wiki.python.org/moin/PythonXml
http://www.attack-secure.com/blog/hacked-facebook-word-document
http://www.attack-secure.com/blog/hacked-facebook-word-document
http://www.attack-secure.com/blog/hacked-facebook-word-document
https://blog.netspi.com/forcing-xxe-reflection-server-error-messages/
https://blog.netspi.com/forcing-xxe-reflection-server-error-messages/
https://blog.netspi.com/forcing-xxe-reflection-server-error-messages/

[55] Richardson: Beautiful soup. https://www.
crummy.com/software/BeautifulSoup/
(2016)

[56] Rodriguez: Xml::twig. http://search.cpan.
org/~mirod/XML-Twig-3.49/Twig.pm (2015)

[57] Sadeeq: Known xml vulnerabilities are still a
threat to popular parsers and open source systems.
http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=7272938&tag=1 (2015)

[58] Sergeant: Xml::libxml::parser. http:
//search.cpan.org/~shlomif/XML-LibXML-
2.0121/lib/XML/LibXML/Parser.pod (2015)

[59] Silva, R.: XXE in OpenID: one bug to rule them
all, or how I found a Remote Code Execution
flaw affecting Facebook’s servers (Jan 2014),
http://www.ubercomp.com/posts/2014-01-
16_facebook_remote_code_execution

[60] Steuck: Xxe (xml external entity) attack.
http://www.securityfocus.com/archive/
1/297714/2002-10-27/2002-11-02/0 (2002)

[61] Stuttard: Burp suite now reports blind xxe in-
jection. http://blog.portswigger.net/
2015/05/burp-suite-now-reports-blind-
xxe.html (2015)

[62] Sullivan: Security briefs - xml denial of service at-
tacks and defenses. https://msdn.microsoft.
com/en-us/magazine/ee335713.aspx (2009)

[63] threatpost.com: Adobe Patches XXE Vulnera-
bility in LiveCycle Data Services (Aug 2015),
https://threatpost.com/adobe-patches-
xxe-vulnerability-in-livecycle-data-
services/114331

[64] tiran: defusedxml 0.4.1. https://pypi.python.
org/pypi/defusedxml/ (2013)

[65] Tran: Advisory: Xxe injection in oracle database
(cve-2014-6577). https://blog.netspi.
com/advisory-xxe-injection-oracle-
database-cve-2014-6577/ (2015)

[66] tutorialspoint: Android - xml parser tutorial.
http://www.tutorialspoint.com/android/
android_xml_parsers.htm (2016)

[67] Ullenboom: Java ist auch eine Insel, chap. 16.3.
Galileo Computing (2011), http://openbook.
rheinwerk-verlag.de/javainsel/
javainsel_16_003.html#dodtp80ec559d-
9ea1-435d-9b81-e786274f1786

[68] Unsung: Xml parsing in ruby (Jan 2012),
http://stackoverflow.com/questions/
8798179/xml-parsing-in-ruby

[69] usa: Entity expansion dos vulnerabil-
ity in rexml (xml bomb, cve-2013-1821).
https://www.ruby-lang.org/en/news/
2013/02/22/rexml-dos-2013-02-22/ (2013)

[70] Vervloesem: Rexml: Processing xml in ruby
(Nov 2005), http://www.ml.com/pub/a/
2005/11/09/rexml-processing-xml-in-
ruby.html?page=1

[71] vsespb: Best xml library to validate xml from
untrusted source. http://www.perlmonks.org/
?node_id=1104296 (2014)

[72] w3techs.com: Usage of server-side program-
ming languages for websites (Nov 2015),
http://w3techs.com/technologies/
overview/programming_language/all

[73] yahoo.com: Parse xml using ruby (Nov 2015),
https://developer.yahoo.com/ruby/ruby-
xml.html

[74] Yunusov: Xml out-of-band data retrieval.
https://media.blackhat.com/eu-
13/briefings/Osipov/bh-eu-13-XML-
data-osipov-slides.pdf (2013)

[75] Yunusov: Xml data retrieval. https:
//media.blackhat.com/eu-13/briefings/
Osipov/bh-eu-13-XML-data-osipov-wp.pdf
(2014)

A Appendix

1 factory.setFeature("http://apache.org/xml/features/
disallow-doctype-decl", true);

Listing 17: Applying countermeasures for Xerces.

1 parser.setAttribute(SAXParser.EXPAND_ENTITYREF, false)
;

Listing 18: Applying countermeasures for Oracle.

1 String filename = "/home/user/someFile.xml";
2 XmlReaderSettings settings = new XmlReaderSettings();
3 XmlReader reader = XmlReader.Create(filename, settings);
4 XmlDocument xmlDoc = new XmlDocument();
5 xmlDoc.Load(reader);

Listing 19: Example of using XmlDocument with
XmlReader.

13

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
http://search.cpan.org/~mirod/XML-Twig-3.49/Twig.pm
http://search.cpan.org/~mirod/XML-Twig-3.49/Twig.pm
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7272938&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7272938&tag=1
http://search.cpan.org/~shlomif/XML-LibXML-2.0121/lib/XML/LibXML/Parser.pod
http://search.cpan.org/~shlomif/XML-LibXML-2.0121/lib/XML/LibXML/Parser.pod
http://search.cpan.org/~shlomif/XML-LibXML-2.0121/lib/XML/LibXML/Parser.pod
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.securityfocus.com/archive/1/297714/2002-10-27/2002-11-02/0
http://www.securityfocus.com/archive/1/297714/2002-10-27/2002-11-02/0
http://blog.portswigger.net/2015/05/burp-suite-now-reports-blind-xxe.html
http://blog.portswigger.net/2015/05/burp-suite-now-reports-blind-xxe.html
http://blog.portswigger.net/2015/05/burp-suite-now-reports-blind-xxe.html
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://threatpost.com/adobe-patches-xxe-vulnerability-in-livecycle-data-services/114331
https://threatpost.com/adobe-patches-xxe-vulnerability-in-livecycle-data-services/114331
https://threatpost.com/adobe-patches-xxe-vulnerability-in-livecycle-data-services/114331
https://pypi.python.org/pypi/defusedxml/
https://pypi.python.org/pypi/defusedxml/
https://blog.netspi.com/advisory-xxe-injection-oracle-database-cve-2014-6577/
https://blog.netspi.com/advisory-xxe-injection-oracle-database-cve-2014-6577/
https://blog.netspi.com/advisory-xxe-injection-oracle-database-cve-2014-6577/
http://www.tutorialspoint.com/android/android_xml_parsers.htm
http://www.tutorialspoint.com/android/android_xml_parsers.htm
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_16_003.html#dodtp80ec559d-9ea1-435d-9b81-e786274f1786
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_16_003.html#dodtp80ec559d-9ea1-435d-9b81-e786274f1786
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_16_003.html#dodtp80ec559d-9ea1-435d-9b81-e786274f1786
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_16_003.html#dodtp80ec559d-9ea1-435d-9b81-e786274f1786
http://stackoverflow.com/questions/8798179/xml-parsing-in-ruby
http://stackoverflow.com/questions/8798179/xml-parsing-in-ruby
https://www.ruby-lang.org/en/news/2013/02/22/rexml-dos-2013-02-22/
https://www.ruby-lang.org/en/news/2013/02/22/rexml-dos-2013-02-22/
http://www.ml.com/pub/a/2005/11/09/rexml-processing-xml-in-ruby.html?page=1
http://www.ml.com/pub/a/2005/11/09/rexml-processing-xml-in-ruby.html?page=1
http://www.ml.com/pub/a/2005/11/09/rexml-processing-xml-in-ruby.html?page=1
http://www.perlmonks.org/?node_id=1104296
http://www.perlmonks.org/?node_id=1104296
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
https://developer.yahoo.com/ruby/ruby-xml.html
https://developer.yahoo.com/ruby/ruby-xml.html
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-wp.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-wp.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-wp.pdf

Feature new() parsefile() Comment
NoExpand working not

working
External Gen-
eral Entity

NoExpand not
working

working Internal Gen-
eral Entity

no_expand not
working

not
working

Internal Gen-
eral Entity

Table 1: Processing of XML::Twig when feature NoEx-
pand is used in different contexts and on different input
files.

1 $t= XML::Twig−>new();
2 $t−>parsefile(’../../xml_files_windows/dos_core.xml’, NoExpand => 1);

Listing 20: Applying countermeasures for
XML::Twig.

1 $dom = XML::LibXML−>load_xml(
2 location => $file,
3 load_ext_dtd => 0);

Listing 21: Applying countermeasures for
XML::LibXml.

1 parser = XMLParser(resolve_entities=False)

Listing 22: Applying countermeasures for lxml.

14

	Introduction
	XML Foundations
	xml Elements
	dtd
	Other xml Technologies

	Attacker Capabilities
	dos
	dos: Recursive Entities
	dos: Billion Laughs
	dos: Quadratic Blowup
	dos with External General Entities
	Countermeasures

	fsa
	Classic xxe
	xxep
	Blind xxe
	Blind xxe The FTP Protocol
	Blind xxe SchemaEntity
	Countermeasures

	ssrf
	Classic ssrf
	Innovative ssrf
	Countermeasures

	Additional Attack Techniques
	Evaluation Framework
	Selection of Test Vectors
	Parser selection
	Testing Methodology

	Evaluation
	.NET
	Java
	Perl
	PHP
	Python
	Ruby

	Android
	Conclusion
	Appendix

