
SECRET: On the Feasibility of a Secure, Efficient, and
Collaborative Real-Time Web Editor

Dennis Felsch
Horst Görtz Institute

for IT-Security, Chair for
Network and Data Security
Ruhr-University Bochum

dennis.felsch@rub.de

Christian Mainka
Horst Görtz Institute

for IT-Security, Chair for
Network and Data Security
Ruhr-University Bochum

christian.mainka@rub.de

Vladislav Mladenov
Horst Görtz Institute

for IT-Security, Chair for
Network and Data Security
Ruhr-University Bochum

vladislav.mladenov@rub.de
Jörg Schwenk

Horst Görtz Institute
for IT-Security, Chair for

Network and Data Security
Ruhr-University Bochum

joerg.schwenk@rub.de

ABSTRACT
Real-time editing tools like Google Docs, Microsoft Office
Online, or Etherpad have changed the way of collabora-
tion. Many of these tools are based on Operational Trans-
forms (OT), which guarantee that the views of different
clients onto a document remain consistent over time. Usu-
ally, documents and operations are exposed to the server in
plaintext – and thus to administrators, governments, and
potentially cyber criminals. Therefore, it is highly desirable
to work collaboratively on encrypted documents.

Previous implementations do not unleash the full potential
of this idea: They either require large storage, network, and
computation overhead, are not real-time collaborative, or do
not take the structure of the document into account. The
latter simplifies the approach since only OT algorithms for
byte sequences are required, but the resulting ciphertexts are
almost four times the size of the corresponding plaintexts.

We present SECRET, the first secure, efficient, and col-
laborative real-time editor. In contrast to all previous works,
SECRET is the first tool that (1.) allows the encryption of
whole documents or arbitrary sub-parts thereof, (2.) uses a
novel combination of tree-based OT with a structure pre-
serving encryption, and (3.) requires only a modern browser
without any extra software installation or browser extension.

We evaluate our implementation and show that its en-
cryption overhead is three times smaller in comparison to all
previous approaches. SECRET can even be used by multi-
ple users in a low-bandwidth scenario. The source code of
SECRET is published on GitHub as an open-source project:
https://github.com/RUB-NDS/SECRET/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052982

Keywords
Collaborative Editing; XML Encryption; JSON; Operational
Transforms; Structure Preserving Encryption

1. INTRODUCTION
Services like Google Docs, Microsoft Office Online, or

Etherpad use Operational Transforms (OT) [11] as funda-
mental technology to resolve editing conflicts by many con-
current users automatically. They are thus able to cope
with arbitrary simultaneous and conflicting edit operations.
These services have simplified our working life, and will fur-
ther gain in importance.

However, they have a significant drawback: All documents
are stored on a cloud server as plaintext, thus anyone with
access to the server (system administrators, hackers, gov-
ernments, etc.) may read and modify the documents. In
their seminal paper, Feldman et al. [12] showed a direct way
how to apply OT to encrypted documents: Their proposed
system encrypts each edit operation separately on the client
and sends them to a server that saves and distributes these
edits to all other clients. Each client then has to reconstruct
the document from these encrypted operations. Other pro-
posals (cf. e. g. [17]) encrypt each plaintext byte separately
on a client and use byte stream OT on the ciphertext blocks
to synchronize them with a server. The general question
if encrypted collaborative editing is possible was answered
in the affirmative, and later improved by several publica-
tions [1, 8, 9, 27, 37].

Both approaches are generic, but also come with a generic
penalty: The data the server has to store and transmit is
significantly increased compared to the plaintext. Those pa-
pers that evaluated this overhead require an expansion factor
of at least 3.75. In addition to data expansion, all previous
approaches do not fit into the Software-as-a-Service (SaaS)
model used by Google Docs and others, because they require
additional software like Java applets or browser add-ons to
execute cryptographic operations.

Another problem with previous approaches [1, 8, 9, 12,
17, 27, 37] is that if a new user has been granted edit rights
on a document, he also would get history information. This

 https://github.com/RUB-NDS/SECRET/
http://dx.doi.org/10.1145/3052973.3052982

can include sensitive data that was accidentally written (or
pasted) by other users, e. g., comments or to-do annotations.
To prevent this kind of information leakage, Micciancio [26]
introduced the concept of obliviousness. While oblivious-
ness can easily be achieved by creating a fresh copy of the
document, this requires to re-encrypt all data and is ineffi-
cient for larger documents. Thus, a more scientific goal is
to design a system offering this property directly.

In this paper, we explore the following questions with re-
spect to a real-time and encrypted collaborative web editor:

I Can we eliminate the generic data expansion?

I Can we create a SaaS relying on a browser only?

I Can we achieve obliviousness?

To answer these questions, we created SECRET, a Secure,
Efficient, and Collaborative Real-Time Editor. SECRET
uses a novel combination of structure-preserving encryption
and tree-based OT [10] to enable overcome the generic data
expansion and to achieve obliviousness. SECRET only re-
quires a browser offering state-of-the-art web technologies
(e. g., WebSockets [13] and WebCrypto API [34]), thus be-
ing the first to eliminate all external software dependencies.

The design and implementation of SECRET is more than
just combining existing technologies. We solved several chal-
lenges that lead to new insights of underlying concepts.

(1.) The W3C Web Cryptography API (WebCrypto API)
enables cryptographic operations (symmetric / asym-
metric encryption, digital signatures / MACs, genera-
tion of ephemeral keys), but it does not allow to handle
long-lived, persistent keys. We require this in our ap-
proach.

(2.) We built our system upon ShareJS, a JSON-based col-
laborative cleartext web editing system. Since JSON
Encryption does not support structure preserving en-
cryption of document parts, we had to build an adap-
tation layer which maps XML and XML Encryption to
JSON. This was challenging because of subtle differ-
ences in the document tree structures of both concepts.

(3.) Every edit in the plaintext (e. g., of an encrypted doc-
ument), even if only a single byte is modified, results
in a completely different ciphertext block, which has
to be synchronized among all clients. In order to make
real-time editing applicable and performant, we had to
find an efficient (i. e. not too often, but often enough
to avoid too many editing conflicts) way to trigger an
encryption and synchronization event from changes in
the DOM of the cleartext document in the browser.

Contributions.

I We describe a novel approach to combine structure-
preserving encryption with tree-based OT, surpassing
generic limitations of previous approaches (Section 4).

I We provide a comprehensive list of existing approaches,
comparing and discussing their features and limita-
tions (Section 5).

I We define requirements necessary for the creation of a
secure, collaborative, real-time web editor and discuss
challenges and solutions (Sections 6 and 7).

I We present SECRET, the first working prototype of
a fully collaborative editing tool on encrypted doc-
uments (Section 8). In contrast to all previous ap-

proaches, SECRET is independent of external software
and achieves obliviousness.

I We design and implement two complementary key man-
agement approaches: (1.) using a trusted keyserver
and (2.) without relying on a trusted party by using
the password-to-key functionality of the WebCrypto
API (Section 8).

I We show the feasibility of SECRET by performing
extensive evaluations and reveal that SECRET’s en-
cryption overhead is significantly smaller (92%) com-
pared to all previous approaches ([8, with 382%], [17,
with 275%]). We additionally compare SECRET with
Google Docs and show that the overhead caused by
the encryption is acceptable (Section 10).

The source code of SECRET is published on GitHub:
https://github.com/RUB-NDS/SECRET/

2. FOUNDATIONS
Collaboration is appreciated in modern IT systems, and

through appropriate tools the efficiency of such collabora-
tion can be greatly enhanced. A widely adopted solution to
coordinate software development projects are Version Con-
trol Systems (VCSs). Examples for VCSs are Subversion
(SVN), Git, Mercurial, etc. The basic idea of a VCS is to
record changes of a project’s state. A set of changes is called
a revision. It is common that a VCS allows reverting to
older revisions or viewing the differences between them. In
a VCS, changes are not created in real-time, but have to be
triggered by a user explicitly, which is comparable to using
a save-button. If conflicts between a user’s local copy and
the VCS arise, these usually have to be resolved manually.

Transferring this concept to create a real-time collabora-
tion tool does not work for multiple reasons: The feature
of a VCS to revert to an old revision gives a new user ac-
cess to every intermediate state the document was in since
it was created, which is unacceptable if the history of the
document contains confidential information (e. g., trade se-
crets). Furthermore, changes simultaneously submitted to
the server lead to merging problems. For instance, if the
server created a new revision while a client is merging an
older revision with its current local copy, the server would
reject the merge and force the client to repeat the merge
with the current revision. Real-time collaboration therefore
requires a concept allowing the merge even if the views of the
clients on the document diverge. In other words, a technique
is required that can tolerate messages arriving in wrong or-
der or messages getting lost. It has to guarantee that all
clients end up in a consistent state.

2.1 Operational Transforms (OT)
Operational Transforms (OT) is a technique to automati-

cally maintain a consistent view on a document even if many
users are editing this document simultaneously. The idea
behind OT is simple: Each user changes the document by
performing a sequence of basic edit operations. If the docu-
ment is modeled as a large sequence of bytes, each operation
can be modeled as follows:

I INS(sub, r): insert substring sub at position r.

I DEL(r, s): delete all bytes from position r to s.

These operations are sent to a server that informs other
users about the changes so that their local copies can be up-

 https://github.com/RUB-NDS/SECRET/

dated. However, simply forwarding the received basic oper-
ations will not work: If another user simultaneously inserted
or deleted text before the actual position r of an operation,
then different bytes will be deleted or sub will be inserted
at a different position than intended.

Therefore, the task of the server is to transform the basic
operations for each user if necessary, and to forward these
transformed operations. Consider the following simple ex-
ample originally taken from Nichols et al. [28]:

Alice and Bob are editing the same string: ABCDE. Al-
ice executes DEL(4,4) and locally gets ABCE. At the same
time, Bob applies DEL(2,2) to get ACDE. If these operations
are simply exchanged, Alice executes DEL(2,2) to get ACE,
while Bob applies DEL(4,4) and gets ACD. An inconsistent
state appears. To avoid this problem, the server applies a
transformation T on the second operations and T will change
Bob’s second operation from DEL(4,4) to DEL(3,3). For a
detailed description of T, we refer to Nichols et al. [28].

If the document is modeled differently, then the operations
and the necessary transforms may be different. Note that T

may also be computed on the client.

2.2 XML and JSON
The eXtensible Markup Language (XML) is a platform-

independent text format that defines rules to encode doc-
uments [6]. XML documents form a tree structure, start-
ing at the document root and consists of Elements with
an opening tag (<x>) and a matching closing tag (</x>).
Elements are nested and can additionally contain text con-
tents (e. g., <x>text</x>) and attributes as key/value pairs
(e. g., <x name="value">).

The JavaScript Object Notation (JSON) [5] is an open
standard that defines an alternative to XML. Like XML,
JSON is platform-independent and describes a tree struc-
ture. Basically, it can be used to describe the same data
structures as XML, but uses a shorter notation. JSON uses
curly brackets to declare objects and name/value pairs to
define data (e. g., {"x": "text"}). JSON can also be used
to describe tree like structures (e. g., {"x": 1, { "y": 2 }}).

2.3 Encryption
Collaborative editing requires fast symmetric encryption

and decryption. Cryptography implemented in pure Java-
Script has proven to be slow (see e. g. [8, 12]). As an efficient
alternative, modern browsers offer the Web Cryptography
API [34]. The WebCrypto API is a W3C recommendation
that describes a JavaScript Application Programming Inter-
face (API) for basic cryptographic operations in web appli-
cations. It offers interfaces to generate keys, to encrypt and
decrypt as well as to sign, verify, and hash data. We imple-
ment SECRET by using the block cipher AES with a key
length of 128 bit in Galois Counter Mode (GCM).

An interesting aspect on the WebCrypto API is, that it
does not offer a specific mechanism to store keys in the
browser persistently (cf. [34, sect. 5.2]). This means, that
the WebCrypto API does not offer a real key management.
A key is technically a JavaScript object that is created when-
ever the API is used to generate or import a key. The key
material itself can be protected by setting the export prop-
erty to false. In this manner, the key can be used by its
object reference, but the key bytes cannot be exported.

3. FORMAL MODEL
We designed SECRET using the following formal model.

3.1 Computational Model
Let U = {U1, ..., Un} be the set of users of SECRET, and

let S = {S1, ..., Sp} be the set of storage servers. We define
a session of SECRET to be a tuple σj = (Mj , Si, kj), where
M ⊆ U , Si ∈ S and kj is a randomly chosen, symmetric
masterkey used with SECRET.

In each session σj , the set of users Mj use SECRET and
kj to compute a plaintext document mt

j and a partially en-
crypted document ctj = Enckj (mt

j), where t indicates the
t-th snapshot of the documents.

Each plaintext document mt
j is a tree, with element nodes

as intermediary nodes, and content and attribute nodes as
leaves. The corresponding ciphertext document is created
by replacing a subtree (i. e. an element together with its
contents) with a ciphertext element.

3.2 Security Model
The goal of an adversary is to learn the plaintext content

of a ciphertext element of some ctj . Several security models
can be used to define the security of SECRET. We analyze
SECRET in all three models in Section 9.

Honest-But-Curious Cloud Server. In this model, the
cloud provider is honestly providing storage services (it does
not forge it), but it is passively reading the stored data and
can forward this data (voluntarily or on court request) to
third parties. This is the standard security model for cloud
storage and for encrypted document editing and also con-
sidered in previous work (e. g., [37]).

Passive Man-In-The-Middle. In this model, the attacker
passively reads all network traffic, but does not perform any
active attacks like deleting or altering network packets. This
model could also be called “honest-but-curious network”.

Web Attacker Model. This model is the standard model
for proving security of web applications [3]. An adversary
in this model can access any open web application, learn
its client-side code, send emails and other messages, and
can set up their own (malicious) web application. The web
attacker is unable to forge web origins [2], because this would
undermine the security of any web application.

3.3 Obliviousness Model
In the obliviousness game, the adversary A can act as a

user and join a session σj . When he is added to this session,
he gets access to the key kj and the actual snapshotmt

j of the
document. The adversary breaks the obliviousness property

if he is able to compute a previous snapshot mt′
j , t

′ < t of
the plaintext, with probability better than just guessing. We
exclude trivial cases, e. g., the empty document (t′ = 0).

4. NOVEL TREE-BASED ENCRYPTED
OPERATIONAL TRANSFORMS

In this section, we present our novel approach of combin-
ing tree-based operational transforms with structure-preser-
ving encryption.

4.1 Structure Preserving Encryption
Usually, encryption is applied to byte streams that are

not required to have a structure. The encryption algorithm

itself may impose its own structure, e. g., by subdividing
the stream into blocks of equal length, by padding, and by
adding prefixes or appendices (e. g., IV, MAC).

A structure-preserving encryption operation will ensure
that the document structure is kept intact, and will encrypt
different parts of the document separately. Amongst all en-
cryption standards used today, only two have this property:
With XML Encryption [16], each element or the content of
each element can be encrypted separately, and the resulting
<EncryptedData> element will be inserted as a replacement
of the plaintext at the exact same position in the document
tree. An alternative to XML Encryption is JSON Web En-
cryption (JWE) [20], where an encrypted JSON object is
again a JSON object using JWE JSON Serialization.

The advantage of using structured encryption in collabo-
rative editing is that encrypted parts of a document blend in
with the rest of the structure. This way, major portions of
the software do not have to take care whether an encrypted
or plain part is processed.

4.2 Tree-based Operational Transforms
The näıve approach to implement OT on tree-structured

documents (e. g., JSON or XML based) is to serialize these
documents into a string and to synchronize this string among
all clients. Any time a modification occurs, the modified tree
is serialized, and the resulting string is compared with the
serialization of the most recent snapshot of the document
tree. Any differences detected will be encoded as operations
and transmitted to the OT server.

Since the server does not know about the semantics of
the string, situations occur where the application of OT
would create unusable documents. Consider the JSON ob-
ject {"1":1}. Alice adds a property named "2" with the
value 2 and locally gets {"1":1,"2":2}. This is translated
to the edit operation INS(',"2":2', 6). At the same time,
Bob deletes the property 1 to get {}. This is translated to
the edit operation DEL(1, 5).

The server receives both edits and detects that the DEL-
command does not need to be transformed. The INS-com-
mand however has to be transformed to INS(',"2":2', 1)

before it is forwarded to Bob. In the end, both Alice and Bob
reach a consistent state, but the resulting string is {,"2":2}
which is no valid JSON document.

In consequence, OT for tree-structured data requires a
server implementation that is aware of the structure so that
it can keep it intact. With ShareJS 0.6 [14], a web applica-
tion library supporting OT on JSON documents is available.

4.3 Combining both primitives
For the purpose of implementing collaborative editing a

disadvantage of JWE becomes visible: JWE requires key,
metadata, and ciphertext to be part of the same data struc-
ture. This way, JSON documents containing multiple en-
crypted objects quickly grow in size which is what we would
like to avoid. With XML Encryption in contrast, most of
the metadata is optional and keys may be referenced and
reused. Therefore, we use XML Encryption to implement
SECRET.

Modern browsers provide rich support for XML, but do
not support XML Security out of the box. Especially, they
do not support XML Encryption. Therefore, we imple-
mented a JavaScript library that supplies the necessary logic
to create and process encrypted XML trees or parts thereof.

Even though the feature sets of XML and JSON are fun-
damentally different, there is a conceptual layer at which
there are similarities between these two standards. Seen
from the perspective of an XML element, its children are an
ordered list of elements, like an array of objects in a JSON
object. Its attributes in contrast are an unordered list of
key-value-pairs, much like named properties in a JSON ob-
ject. Text content is simply a string which is not different
from the classic OT approach. The nesting of elements in
XML is not as flexible as with JSON (e. g., attributes can-
not be nested) and using certain data types (e. g., numerical
literals) is not as intuitive as in the JSON case.

Our OT-compliant library for XML documents is an ex-
tension of those parts of ShareJS that were originally written
to support JSON objects. This way, we can reuse the com-
munication subsystem of ShareJS that uses WebSockets to
realize asynchronous messaging. Our extension takes advan-
tage of the common semantic layer outlined above to support
the following 7 basic operations on XML documents:

(1.) Insert a new element based on an XML string.

(2.) Delete an existing element.

(3.) Move an element among its siblings.

(4.) Insert text into a text node.

(5.) Delete text from a text node.

(6.) Set or overwrite an attribute.

(7.) Delete an attribute.

More problematic are XML features that JSON does not
provide like namespaces, comment nodes, and CDATA sec-
tions. From the perspective of the OT algorithm, we model
namespaces as special case of an element’s name. Comments
and CDATA sections are modeled as special elements that
have a different string representation and no attributes, but
apart from that they can be manipulated like normal ele-
ments.

This design then allows us to apply XML Encryption
to an OT-synchronized XML document. Because of using
the structure-preserving property, the OT algorithm does
not need to care about whether an element is encrypted or
not – XML Encryption can be applied transparently. We
thus achieve our goal and have an approach that enables
OTs on (partly) encrypted documents.

5. RELATED WORK
The idea of Operational Transforms was originally in-

vented by Ellis and Gibbs in 1989 [11]. Based upon this
work, other publications refined the idea to enable concur-
rent editing of plain text (cf. e. g. [28, 31, 33]). Real-time col-
laborative working has become famous with Google Wave,
which has been renamed to Apache Wave. It was announced
in 2009 by Google and allows multiple users to edit the same
document simultaneously. Although the Wave project was
stopped by Google, its idea and concept was integrated into
Google Docs. There are other real-time collaborative editing
web applications, like Microsoft Office Online and Etherpad.

In 2002, Davis et al. described OT on Standard General
Markup Language (SGML) documents [10], a predecessor of
XML. This work was later extended to support collaborative
editing of XML documents in centralized architectures with
manual conflict resolution [19, 29] as well as in peer-to-peer
environments [18].

The security property obliviousness was first introduced
by Micciancio [26]. Its definition was later modified by

Author Src Approach OT Struct. OT Obliv RT Coll. Key Mgmt. Vanilla Browser Server

Feldman et al. [12] Journal Yes No No Yes Yes No (Java-PlugIn) Custom

Clear et al. [8] Journal Yes No No Yes No No (Firefox Ext.+Java) Google

D’Angelo et al. [9] Document No No No1 No Yes No (Firefox Ext.) Google

Adkinson-Orellana et al. [1] Document No No No1 No Yes No (Firefox Ext.) Google

Huang and Evans [17] Document Yes No No1 No No No (Firefox Ext.) Google

Zhang et al. [37] Document Yes No No2 No No No (Java Program) Dropbox

Michalas and Bakopoulos [27] Document No No No1 No Yes No (Greasemonkey Ext.) Google

SECRET Document Yes Yes Yes Yes Yes Yes Custom

Table 1: Comparison of related work on cloud based encrypted editing. SECRET fulfills all requirements.

Buonanno et al. to apply it to incremental encryption
schemes [7, Sect. 2.5].

There are two approaches to realize collaborative editing
on encrypted documents in the literature (see Table 1):

Journaling Approach to Encrypted Collaboration.
The first approach is to let each client encrypt every single
edit operation before it is sent to the server. The server then
only stores a long list of encrypted edit operations and pro-
vides it to the clients. We call this the journaling approach.
A client has to download this list before the document can be
displayed and used, which requires large storage and network
overhead [8, Section 4.2]. This problem can be alleviated by
coalescing edit operations on the list or by introducing snap-
shots of the document that can be used as starting point for
a new client. However, such computationally heavy cleanup
work has to be done by one of the clients since the server
cannot decrypt the operations. Furthermore, if edit opera-
tions conflict with each other, the server cannot resolve these
conflicts. Instead, the clients have to compute the conflict
resolving OT algorithms themselves. By definition, journal-
ing based approaches are not oblivious. Even if snapshots
are used, the revision history can be gathered up to the point
where the last snapshot was created.

In 2010, Feldman et al. proposed a collaboration tool [12]
that invented the journaling approach. To the best of our
knowledge, this work was the first one to combine encryp-
tion, integrity protection, and OT in a single application.
However, their solution requires a custom server implemen-
tation. This disadvantage was compensated by a proposal
by Clear et al. in 2012 [8]. In their tool, the custom server
implementation is replaced by Google Docs. The client is
built using a combination of a Mozilla Firefox extension and
a standalone Java module for cryptographic operations.

Document Approach to Encrypted Collaboration.
The second approach does not protect the edit operations,
but the document itself. We call this the document approach.
With this approach, a client does not need to download the
document’s history; the server can provide a client with
the most recent snapshot directly. This approach also of-
floads the computationally expensive conflict resolution to
the server. Since this approach does not require retaining
the history of a document, it allows to gain obliviousness.
However, this approach has other problematic sides. Mod-
ern cryptographic modes of operation are not incremental,

1Google Docs allows a user to access the history
of a document, see e. g. http://features.jsomers.net/
how-i-reverse-engineered-google-docs/
2DropBox allows reverting to previous snapshots of files, see
e. g. https://www.dropbox.com/en/help/11

for instance. Therefore, small changes in the plaintext lead
to huge changes in the corresponding ciphertext. This re-
sults in an increase in network traffic and a certain flurry in
the document if they are used for collaborative editing.

In 2010, D’Angelo et al. as well as Adkinson-Orellana
et al. created Mozilla Firefox extensions to create an encryp-
tion wrapper for documents stored within Google Docs [1,
9]. But these publications focused neither collaboration nor
real-time usability.

The first collaborative solution with a document based
approach was presented by Huang and Evans in 2011 [17].
For this, they made use of the OT algorithms already im-
plemented in Google Docs and therefore did not need to
implement OT within their client, also a Mozilla Firefox
extension. The problem with inefficient re-encryption us-
ing well-known modes of operation was solved using In-
cremental Encryption (cf. [4]) and specially crafted data
structures. However, the tool by Huang and Evans does
not work if multiple users edit a document simultaneously
(cf. [17, sect. VII.A.]). To the best of our knowledge there is
no solution in the literature that realizes encrypted real-time
collaboration using the document approach.

Editing Structured Documents. All aforementioned
publications work on whole documents; they do not con-
sider protecting only parts of them. A publication by Zhang
et al. [37] proposes to split documents into parts and to en-
crypt them separately. The intent for this is reducing load
on light-weight devices and avoiding conflicts since they do
not use OT. Furthermore, those publications that mention
the concrete implementation of OT algorithms, use ones that
were designed for unstructured documents (e. g., documents
are treated as large arrays of characters).

Client Software. Interestingly, the majority of publica-
tions concerning collaboration on encrypted documents used
custom browser extensions (or scripts for an existing exten-
sion like Michalas and Bakopoulos [27]) to realize their func-
tionality. Apart from custom client implementations, only
Feldman et al. mention a standalone web application that
requires Java as client for their tool.

Maliciously Behaving Servers. Several publications as-
sume that a server may not be honest but act maliciously by
tampering with the client- or server-side code. Venus [32],
SUNDR [22], and Depot [23] guarantee integrity and fault
tolerance in this scenario. Mylar [30] provides confidential-
ity on the server by using searchable encryption based on
bilinear maps and verifies the client-side code using digital
signatures in a browser extension. However, several system
design flaws of this tool were found recently [15].

http://features.jsomers.net/how-i-reverse-engineered-google-docs/
http://features.jsomers.net/how-i-reverse-engineered-google-docs/
https://www.dropbox.com/en/help/11

6. DESIGN GOALS
From the literature, we derived a set of six properties for

a collaborative editor that we use as design goals:

A. Confidentiality. Motivated by unprotected systems
like Google Docs or Microsoft Office Online, we require
to use proper encryption for reaching end-to-end confi-
dentiality. This enables using untrusted storage servers
that are honest-but-curious. The main challenge here is
to cover all necessary cryptographic primitives and oper-
ations as-well-as the key management without any extra
software on the client.

B. Real-Time Collaboration. Interactive collaboration
requires all users that open a document to see edits of
other users with little to no delay. As outlined before,
OT algorithms enable this functionality while providing
all users a consistent view onto a document.

C. Software-as-a-Service (SaaS). The success of the SaaS
delivery model shows that users demand applications
that can be used without having to install a software
component first. Ideally, a collaborative editor should
be available as a web application since that enables us-
ing it on different platforms, including mobile, and makes
it independent of the underlying operating system.

D. Flexibility. While previous approaches require all users
editing a document collaboratively to have access to the
same symmetric key, we want to go one step further.
With SECRET, documents may be edited by multiple
user-groups with different access rights. Sections of doc-
uments should be protected in a fine granular manner
for a specific user, a user-group, or any combination of
these. Only users that are allowed to view and edit the
particular section of a document can get access to the
corresponding key.

E. Obliviousness. A collaborative editor should hide the
revision history of a document or a section even to some-
one knowing the corresponding secret key. Motivation
for this property is that a new user joining the collabo-
ration should not be able to learn about the edits made
in the course of creating the document.

F. Efficiency. We require SECRET to be usable in low
bandwidth scenarios, such as mobile devices. Therefore,
the network traffic after initial loading the editor page
must not exceed typical mobile bandwidth (32 Kbit/s).

We also discuss integrity to prevent unwanted document
modifications (see Appendix A).

7. SECRET
With SECRET, we show that the properties discussed in

Section 6 can be realized. For confidentiality, we refer to
Section 9.

7.1 Real-Time Collaboration
Each user enters data via the SECRET editor (see left

side in Figure 1). Edits are processed once a second by the
SECRET core that orchestrates the functionality: Modified
elements are encrypted and formatted as XML Encrypted
Data elements. These Encrypted Data elements are syn-
chronized with the untrusted storage server via our XML-
enabled variant of ShareJS.

TLS

ShareJS

OT

JSON XML

ShareJS

JSON XML

Websocket XML Parser

XMLSec.js

SECRET Core

SECRET Editor SECRET Crypto (iframe)

Local storage:
key name → key object

PostMessage
API:

message,
key name Web Crypto API

message key object

A
u

th
en

ti
ca

ti
o

n
ke

y
n

am
e

K
ey

 o
b

je
ct

Controller

Synchronization
Module

Splitter
Module

Untrusted
Storage Server

Storage Trusted Keyserver

User/Browser

Authentication
Module

Key Storage
Module

Developed by the authors of this submission

Existing component

Browser component

Same Origin Policy

Optional

Web Origin: Editor Web Origin: Crypto

Figure 1: SECRET’s detailed architecture overview.

7.2 Software-as-a-Service (SaaS)
SECRET must be easily available without any extra soft-

ware or installation process. Therefore, we implemented it
as a web application using CoffeeScript and Node.js. In or-
der to use it, only a recent browser is required. SECRET
has been tested with Google Chrome 50.

7.3 Flexibility
The flexibility to protect sections of documents respect-

ing fine granular access rights can be achieved since we only
consider structured documents and apply our new approach
combining tree-based OT with structure-preserving encryp-
tion. We treat subtrees of the document tree as our basic
units for OT, and replace them by ciphertext elements in
the stored document while maintaining the document struc-
ture. This concept is depicted in Figure 2. Since the editor
we use makes sure that an edit affects exactly one subtree,
each edit operation will result in one subtree being sent to
the server. Thus each edit operation will only affect one
ciphertext element.

The fine granular access rights in SECRET require dis-
tributing a set of keys to every user. A classical approach
to this problem is using a Public Key Infrastructure (PKI)
where each user holds a key pair. In such an approach, the
keys for document sections would be wrapped using a user’s
public key and could be integrated in the document struc-
ture. However, the PKI approach has several drawbacks:

1. Key objects created by the WebCrypto API like a user’s
private key are not persistent. For key storage, the Web-
Crypto API refers to the Indexed Database API [24].
However, private keys stored in such a database are prone
to be deleted by mistake (e. g., if the Clear Browser Data
feature is used).

2. Private keys are not distributed. A user that wants to
continue editing a document with a different device would
need to import her private key to that device. However,
if the key is protected (export set to false), this is im-
possible.

3. Public keys are not distributed. If user A wants to give
user B access to a document, A would need to know B’s

<document>

<part 1.1> <part 1.2> <part 2.1> <part 2.2>

<block 1> <block 2>

<document>

Client view Server view

<encrypted
Block 1>

<encrypted
Block 1>

Figure 2: Views of clients and untrusted storage server.

public key first. To solve this, a directory for public keys
would be required.

To cope with this problem, we offer two different solutions
to fit different use-cases (cf. Section 8.1). Both approaches
allow relying solely on symmetric cryptographic primitives
without being affected from the drawbacks of a PKI. Keys
are either requested from a keyserver by indicating the key
name given in the encrypted document, or derived from a
password using the WebCrypto API. In both cases, the sym-
metric keys are then stored in the local storage of a SECRET
crypto module, where they are protected from unauthorized
access. The crypto module itself is bound to particular web
origin (named Crypto on the right side of Figure 1) and
thus protected by the Same-Origin-Policy from illegitimate
access.

7.4 Obliviousness
Obliviousness cannot be achieved with the journaling ap-

proach to encrypted collaboration. Therefore, we choose the
document approach to realize SECRET.

7.5 Efficiency
For a flexible document editing solution with fine granular

access control for groups having access only to some docu-
ment parts, encrypting larger document parts (e. g., sections
or pages) is an obvious solution. In case of multiple users
issuing frequent edits to a document however, this approach
is inefficient since even a small change requires re-encryption
and transmission of the whole encrypted part. This prob-
lem was already identified by Huang and Evans [17] and was
tackled by using an uncommon encryption mode of opera-
tion called RPC (cf. [4]) that supports efficient incremental
updates of ciphertexts. This mode of operation is however
not supported by the WebCrypto API, which only offers
CTR, CBC, CFB, and GCM modes of operation. In our
scenario, all these modes of operation have a major down-
side: A small change (e. g., inserting a single character) to
the content leads to a new ciphertext, which has to be syn-
chronized.

In contrast to Huang and Evans, we rely on the structure
of a document rather than treating it as a large array of char-
acters. We keep efficiency by encrypting smaller parts of the
document using the well-known GCM mode of operation.
This way, we also keep SECRET’s bandwidth requirement
low enough to use it with a slow mobile connection.

8. SECRET’S ARCHITECTURE
A detailed architecture overview on SECRET is depicted

in Figure 1. In general, there are three different entities
taking part:

1. An optional trusted keyserver managing the symmetric
keys used to encrypt/decrypt blocks of the document. If

no keyserver is used, keys are managed by deriving them
from passwords.

2. An untrusted storage server, for example, a cloud service,
that hosts the web application, stores the encrypted doc-
ument, and provides a graphical editor to visualize and
edit the document.

3. Users who have access to different parts of the document.
Their access to the document is restricted by the access to
the key that is necessary to decrypt the document part.

8.1 Key Management
SECRET’s key management consists of two parts. On

the one side, there is a key concept that allows to encrypt
different document parts with different keys. On the other
side, there is SECRET’s crypto module that executes all
cryptographic operations and locally caches keys.

Key Concept with Keyserver. Our first key concept
variant makes use of a keyserver. On a quick peek, one
might think, that using a keyserver simply moves the trust
from one party to another one (e. g., in comparison to un-
encrypted Google Docs). This is true, when considering
individual end-users for SECRET. But a keyserver is an
important and desired goal in business use-cases: here, a
company only maintains a key server, which can be a small
and easy-to-backup server included into an isolated network
environment. All company members have access to it and
can thus use SECRET. The encrypted working data itself
can be hosted on an untrusted storage server at low cost and
high availability (Google, Amazon, . . .).

SECRET’s key concept differentiates two types of sym-
metric keys: Group Keys (GKs) and Block Keys (BKs).
GKs are accessible by a group of users. They are stored on
the keyserver and provided to authorized users. Each GK
is labeled with a unique ID that is used to identify the key
when requested by the browser.
BKs are used to encrypt a specific part of the document

encapsulated in blocks. If a group is meant to have access to
the block, its BK is wrapped (encrypted) using the GK of
the group. This wrapped key is stored in the XML structure
of the block, together with the ID as information to which
group it belongs to. If multiple groups have access to a block,
the (identical) BK is wrapped using all corresponding GKs
and deposited within the block (see Figure 3).

Encrypted Block (EB)

Encrypted Keys Encrypted Data (ED)Encrypted Data (ED)

Wrapped BK for group A Wrapped BK for group B

Figure 3: Components included in each Encrypted Block.

Key Concept without Keyserver. A different use-case
exists if end-users not related to a specific company want to
use SECRET. In this case, a keyserver does not make sense,
because the end-user would have to trust it. Because of this,
we designed a key concept without the usage of a keyserver.

This is realized by using a Password-Based Key Deriva-
tion Function (PBKDF) and works as follows: Instead of
enforcing a user to authenticate to a keyserver (e. g., with
username/password), we can use a password to derive the
GK. For this purpose, the WebCrypto API offers a
crypto.deriveKey() function that can trigger PBKDF2.

The password is then a secret that has to be shared between
the parties, for example, via email or instant messaging.

SECRET’s Crypto Module. The crypto module exe-
cutes all cryptographic operations. It works as an encryp-
tion/decryption oracle for the editor component. In other
words, the editor can ask the oracle to encrypt or decrypt a
specific block. If the user is granted to do so, for instance, if
he is able to unwrap the BK, the crypto module executes the
operation. It also offers generating fresh BKs and wrapping
those using existing GKs.

Results are returned to the editor by using the PostMes-
sage API [35] enabling the communication between different
origins within the browser. The purpose of this design is to
ensure, that GKs never leave the crypto module and that
BKs are only exported in encrypted form. All communi-
cation between the editor page and the crypto module uses
well-defined interfaces. Technically, we designed the crypto
module as an iframe element that is embedded in the editor
component. The web origin [2] of the crypto module is set
to a different domain (e. g., to the keyserver’s domain), so
that the DOM access from the editor is restricted by the
Same Origin Policy.

The connection of SECRET’s crypto module to the key-
server requires a secure channel. This can be achieved by
using TLS with mutual authentication via client certificates,
and by manually registering each client’s certificate at the
keyserver. After the user’s authentication with the key-
server, the crypto module can request keys to which the
user has access to.

8.2 Untrusted Storage Server
The untrusted storage server is a publicly available web

application providing three main features:

Editor. A graphical editor delivered to the client and exe-
cuted by the browser. It enables the visualization and edit-
ing of the document in the browser.

OT with ShareJS. The server component of ShareJS keeps
a list of operations that were sent by clients in a database.
After receiving a new operation from a client, the server
checks the snapshot of the document to which the client
refers to and whether there are other operations that are
conflicting with the new one. If that is the case, the server
applies OT algorithms to generate operations shifting ev-
ery connected client to the latest snapshot of the document
based on the snapshot of the document the server suspects a
client to have. This process is complex and computationally
expensive. We did not modify the ShareJS server compo-
nent, but added our XML API (cf. Section 4).

To identify a component of the document (i. e. an ele-
ment, attribute, text, etc.) to operate on, the server expects
a path to that component. A path is technically a list of zero-
indexed integers and names that identify child nodes below
each respective element. For example, consider the following
document: <root><a>text<x>456</x></root>.
A path to identify the b element is [2,0] since the x element
is the third node below root and b is the first node below x.
Paths can even identify single characters in text nodes; the
character 5 in the text node 456 has the path [2,0,0,1].

Storage. For each document, the untrusted storage server
stores a gzip compressed file containing the latest snapshot
and a list of recent operations related to these documents

Document

Encrypted Block (EB) Unencrypted Block (UB)

Encrypted Block (EB) Unencrypted Block (UB)

Figure 4: Example document containing encrypted and un-
encrypted blocks.

in a database. Compressing XML documents is a common
technique (e. g., for office files). Note that the untrusted
storage server has no access to any key and therefore cannot
decrypt protected parts.

8.3 SECRET in the Browser
SECRET consists of different components executed in the

user’s browser. Figure 6 shows a screenshot of our proof-of-
concept implementation that we developed and evaluated.

8.3.1 SECRET Editor
If multiple users simultaneously edit a document, each

client has to handle two types of events: (1.) the user itself
generates local edits of the document and (2.) the untrusted
storage server provides external edit operations executed by
other users to the client.

Local Edits. For local edits, SECRET uses a combination
of editable HTML elements (i. e. contenteditable is set to
true) and Mutation Observers [36]. Every second the editor
checks whether the user modified text contents. If that is the
case, the implementation fetches the XML element in which
the edit took place and extracts the modification. Then, this
modification is forwarded to the Controller which handles
the rest of the processing (see below).

External Edits. Whenever an operation sent by the un-
trusted storage server is ready to be displayed, the Con-
troller forwards it to the editor. The editor is then respon-
sible for identifying the corresponding UI component and
applying the operation to it. There have been some tech-
nical challenges in the implementation, which we outline in
Section 8.3.6.

8.3.2 SECRET Controller
The Controller module has several interfaces to the other

modules of SECRET in the browser, which are explained in
the following sections. The job of the Controller is to route
edit events and messages from the untrusted storage server
to the responsible modules.

Initially, the browser receives a document snapshot, which
can contain multiple Unencrypted Blocks (UBs) and En-
crypted Blocks (EBs) as shown in Figure 4. Note that
SECRET supports any mix of UBs and EBs. Particularly,
a snapshot may contain only a single EB for protecting the
whole document as well as only UBs leaving the document
unprotected. The UBs can be directly displayed in the ed-
itor, but the EBs have to be further processed: Next to
the required key, an EB contains multiple Encrypted Datas
(EDs) (see Figure 3).

An ED element contains an XML tree compatible to the
XML Encryption specification [16]. Thus, it contains meta-
data information like key references, information about the
used cryptographic algorithms, etc. Usually, there are mul-
tiple ED elements within one block, which we added for
performance reasons. Further details on this are presented

in Section 8.3.4. Once the ED is decrypted, the browser
puts all blocks together and hands them over to the editor
displaying the content.

If the Controller receives a modification from the editor,
it forwards the modification to the other modules, which
are explained below. Lastly, after the local processing is
completed, the Controller triggers the creation of a ShareJS
operation that is sent to the untrusted storage server.

8.3.3 Synchronization Module
Our system stores three different document views in the

browser: the encrypted document, the decrypted document,
and the content displayed in the editor. Edit events in the
editor trigger modifications in the decrypted document as
well as in the encrypted one. An edit may have happened in
either an UB or an EB. Therefore, the synchronization mod-
ule keeps track of whether a block is an UB or EB. This is
used in order to recognize which block is affected and prob-
ably needs to be re-encrypted. A similar problem arises in
the opposite direction: Since an operation that modifies a ci-
phertext does not tell any information about the underlying
edit (i. e. the plaintext element that was edited), it is diffi-
cult to tell where to update the user interface. This problem
is solved by the synchronization module which artificially
creates a one to one correlation between plain elements and
their encrypted counterparts.

8.3.4 Splitter Module
If an encrypted document contains large blocks of text

without any further structure, AES-GCM becomes ineffi-
cient as outlined in Section 7.5. To prevent this inefficiency,
the splitter module artificially splits such text blocks in
smaller parts (by using multiple ... elements)
that are encrypted individually. Each encrypted is
stored in a separate Encrypted Data element, see Figure 3.
The splitter module also removes elements if the user
deletes their content. However, it is unclear how big or small
these parts of a document have to be to have an optimal bal-
ance between network and storage overhead. This problem
is evaluated in detail in Section 10.

8.3.5 XMLSec.js
Our XMLSec library creates the necessary XML Encryp-

tion data structures. It uses our SECRET crypto mod-
ule as cryptographic oracle. The communication between
the crypto module and the XMLSec library is done via the
PostMessage API. In the end, the XMLSec library makes
use of the WebCrypto API to provide encryption and de-
cryption functionality.

8.3.6 Implementation Challenges
During the development of SECRET we stumbled upon

interesting implementation challenges. We outline three of
these here to highlight the gap between specifying the archi-
tecture of a system and implementing it. This might help
developers and researchers in their future projects.

Cursor Placement with Splitting. Consider the user
having entered the string 1234, resulting in the following
document fragment: 1234. The cursor is
placed within the behind the 4. If we assume that the
implementation is configured to use a split size of 4, then en-
tering one more character (e. g., 5) creates the following doc-
ument fragment: 12345 which

is displayed to the user as 12345. However, the browser
keeps the cursor in the first element, so that en-
tering a new character is prepended (instead of appended)
to the 5. The editor displays 12346 5. We solved this by
programmatically moving the cursor after splitting into the
correct element by using the JavaScript Range API
(createRange(), setStart(), . . .).

Synchronization and Deletion. Another problem be-
comes apparent if a user deletes text in a <div> element with
contenteditable set to true. Consider a user editing the
document fragment 12345,
placing the cursor behind the 5, and pressing backspace to
delete a character. Intuitively one would expect the second
 to be empty and the cursor being placed in it. But
this is not the case. Instead, Google Chrome removes the
second completely and places the cursor at the end
of the previous span. This is a huge problem since SECRET
is unable to detect a Local Edit, because the second

is deleted. To solve this problem, we use Mutation Ob-
servers [36]. They allow – besides other operations – to get
notified if an object is deleted (e. g., the respective

element), and we are thus notified that an edit appears.

Preventing Edit Loops. A technical challenge is to make
sure that applying an external edit to the editor is not mis-
taken for a local edit: suppose that user A receives an edit
operation executed by user B. If it is accidentally handled as
a Local Edit, it is executed and then again send to the un-
trusted storage server, which then sends the operation back
to user B and so forth. This will result in an endless loop of
edit events and render the system unusable.

To resolve this, our editor caches the content that an ele-
ment is supposed to contain (based on the decrypted docu-
ment maintained by the Synchronization Module) in a cus-
tom cache property in the DOM object. If this cache and
the actual content differ, then the user must have edited
the content. If an external edit deleted an element, we set
a custom flag on the corresponding HTML element before
deleting it. This helps discarding the mutation event that is
fired after the deletion.

9. SECURITY DISCUSSION
In this section, we analyze SECRET in three models.

Honest-But-Curious Cloud Server. A cloud server
S – the adversary – only sees ctj for any session σj = (∗, S, ∗).
He is able to learn the structure of the document, consist-
ing of plaintext and ciphertext nodes, but he learns nothing
about the plaintext contents of a ciphertext node. A client
may simply exchange such a node with a totally different ci-
phertext node of equal length, and the adversary is not able
(due to the IND-CPA property of the used encryption mode
AES128-GCM) to distinguish between these two nodes.

Passive Man-in-the-Middle. For a passive Man-in-the-
Middle attacker, the same argument holds: by passively ob-
serving all network traffic, this adversary may be able to re-
construct the document structure, but due to the IND-CPA
property of the encryption, he is not able to learn the con-
tent of the ciphertext nodes.

Web Attacker Model. It is not possible to ”prove” a
complex web application like SECRET secure in the web at-
tacker model – even Google and Facebook suffer from time

to time from vulnerabilities under this attacker model. How-
ever, the design rationales for SECRET can be given here.

The client application of SECRET is conceptually divided
into two components, loaded from different web origins (cf.
Figure 1). We assume that the session key kj is only avail-
able in the SECRET Crypto component (right). This com-
ponent is configured to accept PostMessageAPI calls only
from a well-known web origin. Thus if the adversary simply
copies the left component to his own malicious server, this
copy is unable to establish a connection to the SECRET
crypto component, and thus remains unable to decrypt ci-
phertext.

Attack on Web Origins. If we allow the adversary to
manipulate web origins [2], SECRET is, like any other web
application, no longer secure.

1. The attacker builds his own malicious web application, by
simply copying the left part (cf. Figure 1) of the SECRET
code (this part is public and does not contain the session
key) and adding a new function transferCleartext().

2. The attacker tricks the victim to access this malicious
application, e. g., by DNS Spoofing, and forges the web
origin with the same techniques. He loads the right part
of the code (including the secure key management) from
the original web origin.

3. The malicious application can now systematically load
encrypted documents for all sessions in which the user
participates, decrypt them, and send the plaintexts to
the adversary. SECRET’s crypto module will cooperate
with the malicious application, since it has the correct
(but forged) web origin.

The same attack holds for Cross-Site-Scripting (XSS). Here,
the attacker can inject and execute a malicious JavaScript
into so benign SECRET editor. This script then runs in the
web origin of the original editor. The security of SECRET
can be increased against XSS by using further techniques
(e. g., Content-Security-Policy), which is out-of-scope.

Information Leakage. Information about the structure of
a document may leak. We are aware of this issue, and have
included it in the formal model (cf. Section 3). We consider
it a design feature that is appreciated by applications.

10. PERFORMANCE EVALUATION
Using encryption for collaborative editing leads to two

problems: storage overhead and network overhead. Con-
sequentially, the question rises how large this overhead is
for SECRET and if our system is usable despite these over-
heads. Additionally, the splitter module SECRET provides
is meant to optimize the performance and reduce the over-
heads. This is evaluated in the following in order to find a
reasonable boundary defining when to split.

10.1 Evaluation Setup
To simulate real edits, we used Google Chrome 50 with

Selenium 2.49.13. This enables the automated invocation of
URLs, webpage navigation and performance measurement
in the browser. We use Selenium’s WebDriver API to start
a browser and to navigate to the untrusted storage server
and start SECRET.

3http://docs.seleniumhq.org/

Tests. Once the editor is loaded we generate random strings
with different lengths (64, 128, 512, 1024, 2048, and 4096
bytes) and simulate keystrokes typing each string. We insert
a character every 300 milliseconds, which results in 200 key
strokes per minute. This is a typical speed of an experienced
typist, for example, an office assistant.

During the tests we use two typing areas: one ends up in
an encrypted block, the other one in an unencrypted block.
We issue the same key strokes to each area. The splitting
into separate parts is carried out in both areas. We repeat
all tests for different split sizes (32, 64, 128, 256, and 512
bytes).

Measurement. Selenium allows injecting JavaScript code
into a loaded website and accessing defined variables. Thus,
we are able to get the size of the encrypted and unencrypted
document during testing. In addition, we get access to the
operations sent to the server. Thus, we can measure the
network traffic triggered by editing the document.

10.2 Storage Overhead
In Figure 5a, the document size of an unencrypted doc-

ument with random characters in dependence on the con-
tent length is presented. Independent from the fact that the
content is not encrypted, the content is split. This split-
ting leads to an overhead since each part of the content is
encapsulated in a ... element. As a result,
the more the content gets split, the more elements
are added causing storage overhead. Observing Figure 5a,
one can see that compression is very effective for our struc-
ture. Comparing the same document with split size 32 and
with split size 512 after compression shows only 5.7% size
increase despite it contains 16 times the number of

elements.
Figure 5b shows the same comparison for an encrypted

document. The values in this case are much larger than
in the unencrypted case. This has several reasons: First,
the ciphertext is binary data that has to be Base64 encoded
before it can be stored in XML, This alone results in an ex-
pansion factor of 1.33. Second, each split operation leads to
the creation of a new ED element. Since an ED element con-
tains metadata information like a random ID, the resulting
encrypted document’s size is further increased.

Split size 32 64 128 256 512
Storage expansion 3.50 2.46 1.92 1.66 1.53

Table 2: Ciphertext expansion of a 4096 byte document.

As Table 2 shows, avoiding small split sizes alleviates the
overhead. For example, a document with 4096 bytes of plain
content with a split size of 128 byte has an encryption over-
head factor of 1.92 (= 92% overhead). This number look
high, but in fact it is three times better in comparison to
previous work. For example, Clear et al. [8] achieve an
expansion factor of 4.82 (= 382% overhead), Huang and
Evans [17] get 3.75 (= 275% overhead).

Summarized, the larger the split size gets, the less stor-
age overhead it becomes. This is an obvious result since
each split operation leads to additional overhead. However,
another side effect needs consideration: the communication
overhead. This overhead is directly related to the content,
which has to be synchronized.

http://docs.seleniumhq.org/

0

1

2

3

4

64 128 256 512 1024 2048 4096P
la

in
 D

o
cu

m
e

n
t

Si
ze

(K

B
yt

e
)

Content Text (Byte)

16

(a) Storage requirements for un-
encrypted documents.

0

4

8

12

16

64 128 256 512 1024 2048 4096

En
cr

yp
te

d
 D

o
cu

m
e

n
t

Si
ze

 (
K

B
yt

e
)

Content Text (Byte)

(b) Storage requirements for en-
crypted documents.

0

40

80

120

160

0 512 1024 1536 2048N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

yt
e

)
P

la
in

te
xt

 B
lo

ck

Appended Text (Byte)

(c) Network overhead in an unen-
crypted document.

0

200

400

600

800

0 512 1024 1536 2048N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

yt
e

)
En

cr
yp

te
d

 B
lo

ck

Appended Text (Byte)

(d) Network overhead in the en-
crypted document.

0

200

400

600

800

0 512 1024 1536 2048

N
et
w
or
k	
Tr
af
fic
	(K

By
te
)

En
cr
yp

te
d	
Bl
oc
k

Appended	Text	(Byte)

Split	size	=	32 Split	size	=	64 Split	size	=	128 Split	size	=	256 Split	size	=	512 Google	Docs

Figure 5: SECRET evaluation results. Larger pictures can be found in Figure 8 (Appendix).

10.3 Network Overhead
We evaluated the network communication overhead by in-

serting the same text with different lengths in the unen-
crypted and encrypted area. During typing, we collected
all operations transmitted to the untrusted storage server
and measured the transmitted bytes. In order to compare
SECRET with a well-spread collaboration platform, we re-
peated the same edits on Google Docs and measured the
network overhead.

10.3.1 Unencrypted Network Overhead
Figure 5c shows the network communication (in bytes)

caused by edits in an unencrypted document in dependence
on the appended text length and chosen split size. There
is a linear relation between the inserted amount of text and
the network traffic. The reason for the growth in traffic
is the addition of new elements and the protocol
overhead of ShareJS. Even for the smaller split size values,
the network utilization is almost identical.

In order to compare SECRET with Google Docs we ob-
served the communication between our browser and Google
during editing a freshly generated document. Google Docs
synchronizes the content via HTTP POST requests trans-
mitting a parameter named bundles that contains OT infor-
mation. For our measurement, we extracted only this HTTP
parameter and left out all other parameters4.

Compared to Google Docs, SECRET needs less commu-
nication to synchronize the unencrypted document content.
The main reason for this difference is the meta information
that Google Docs transmits within each OT synchroniza-
tion request (e. g., session management information). Some
of this information is even redundant since it is sent simul-
taneously as a GET and POST parameter.

10.3.2 Encrypted Network Overhead
In Figure 5d the network overhead of editing an encrypted

block in SECRET is displayed. With encryption enabled,
almost every key stroke causes a re-encryption of an existing
ED element, which is then sent over the network. This leads
to a substantial growth of network traffic.

The traffic utilization of SECRET is always above the one
of Google Docs5, regardless of the chosen split size. This is
an expected result caused by the enabled encryption. One

4Since we did not reverse-engineer Google Docs, it is possible
that our measurement technique misses some OT related
messages. However, these messages would only increase the
bandwidth required by Google Docs.
5Since no related work measured network traffic utilization,
we cannot compare our solution with other encrypted ap-
proaches.

can see that SECRET has a linear relation between the in-
serted text and network traffic, similar to the unencrypted
Google Docs.

10.4 Bandwidth Requirements
Despite the overhead of our approach, the system is us-

able: At a typing speed of 200 key strokes per minute, enter-
ing a 1024 byte document takes 307 seconds. With encryp-
tion and a split size of 128 bytes, the total payload traffic
sent by the client is roughly 119 Kbyte. However, the traffic
being transmitted is larger. The two main reasons for this
is URL encoding that is applied to the messages and HTTP
headers being added to the messages.

We measured the required traffic bandwidth of SECRET
using the network analysis tool Wireshark. Using the set-
tings given above, our tool requires a bandwidth of
14 kbit/s (see Figure 7).

If other users of the system type at the same speed, then
each of them generates incoming traffic at a similar rate.
Considering that even very slow mobile connections provide
a connection speed of 32 Kbit/s or more, it would require at
least a couple of users typing simultaneously to exceed such
a connection.

Summarized, a split size value of 128 bytes seems to be a
good trade-off between the storage overhead and the network
overhead. With this setting, SECRET requires a storage
overhead of factor 1.92 and a network utilization that does
not exceed even very slow connections.

SECRET is the first considering network bandwidth in
addition to storage overhead in its evaluation.

11. CONCLUSION AND OUTLOOK
We presented SECRET, the first fully collaborative web

editor on encrypted data with obliviousness using a docu-
ment based approach. By that, we have answered a research
question that has been open for the last four years. Our ex-
tensive evaluation reveals that – with the right choice of
parameters – SECRET achieves three times lesser storage
overhead compared to all existing solutions. SECRET is
frugal with network bandwidth and could also be applied to
mobile low-bandwidth application areas.

Although SECRET is fully working, there are still open
research questions. Most notably, whether it is possible
to include SECRET’s concept to full-fledged office docu-
ments such as Microsoft Office, LibreOffice, or OpenOffice;
maybe by integrating it into their online collaboration ser-
vices. To help the research community in this field, we pub-
lished SECRET and its novel structure preserving encryp-
tion concept using OTs as open source software.

12. ACKNOWLEDGMENTS
This research results from work in the research projects

SyncEnc and VERTRAG, which are funded by the Ger-
man Federal Ministry of Education and Research (BMBF,
FKZ: 16KIS0412K and 13N13097), as well as the FutureTrust
project funded by the European Commission (grant 700542-
Future-Trust-H2020-DS-2015-1).

References
[1] L. Adkinson-Orellana, D. A. Rodŕıguez-Silva, F. Gil-

Castiñeira, and J. C. Burguillo-Rial. Privacy for google
docs: Implementing a transparent encryption layer. In
CloudViews, pages 20–21, 2010.

[2] A. Barth. The Web Origin Concept. RFC 6454 (Pro-
posed Standard), Dec. 2011. URL http://www.ietf.org/
rfc/rfc6454.txt.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. In USENIX Secu-
rity, 2008.

[4] M. Bellare, O. Goldreich, and S. Goldwasser. Incremen-
tal cryptography: The case of hashing and signing. In
CRYPTO, pages 216–233. Springer, 1994.

[5] T. Bray. The JavaScript Object Notation (JSON) Data
Interchange Format. RFC 7159 (Proposed Standard),
Mar. 2014. URL http://www.ietf.org/rfc/rfc7159.txt.

[6] T. Bray, F. Yergeau, E. Maler, J. Paoli, and
M. Sperberg-McQueen. Extensible markup language
(XML) 1.0 (fifth edition). W3C recommendation, W3C,
Nov. 2008.

[7] E. Buonanno, J. Katz, and M. Yung. Incremental un-
forgeable encryption. In FSE, pages 109–124. Springer,
2001.

[8] M. Clear, K. Reid, D. Ennis, A. Hughes, and H. Tewari.
Collaboration-preserving authenticated encryption for
operational transformation systems. In ISC, pages 204–
223. Springer, 2012.

[9] G. D’Angelo, F. Vitali, and S. Zacchiroli. Content
cloaking: preserving privacy with google docs and other
web applications. In SAC, pages 826–830. ACM, 2010.

[10] A. H. Davis, C. Sun, and J. Lu. Generalizing opera-
tional transformation to the standard general markup
language. In CSCW, pages 58–67. ACM, 2002.

[11] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In SIGMOD, volume 18, pages 399–
407. ACM, 1989.

[12] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group collaboration using untrusted
cloud resources. In OSDI, pages 337–350, 2010.

[13] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455 (Proposed Standard), Dec. 2011. URL http:
//www.ietf.org/rfc/rfc6455.txt.

[14] J. Gentle, N. Smith, and Others. ShareJS. https://
github.com/share/ShareJS/tree/0.6. (Retrieved: Oc-
tober 2016).

[15] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart,
and V. Shmatikov. Breaking web applications built on
top of encrypted data. In CCS, pages 1353–1364. ACM,
2016.

[16] F. Hirsch, T. Roessler, J. Reagle, and D. Eastlake. XML
encryption syntax and processing version 1.1. W3C rec-
ommendation, W3C, Apr. 2013.

[17] Y. Huang and D. Evans. Private editing using un-
trusted cloud services. In ICDCSW, pages 263–272.
IEEE, 2011.

[18] C.-L. Ignat and G. Oster. Peer-to-peer collaboration
over xml documents. In CDVE. Springer, 2008.

[19] C. L. Ignat, G. Oster, et al. Flexible reconciliation
of xml documents in asynchronous editing. In ICEIS,
pages 359–368, 2007.

[20] M. Jones and J. Hildebrand. JSON Web Encryption
(JWE). RFC 7516 (Proposed Standard), May 2015.
URL http://www.ietf.org/rfc/rfc7516.txt.

[21] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. RFC 2104
(Informational), Feb. 1997. URL http://www.ietf.org/
rfc/rfc2104.txt. Updated by RFC 6151.

[22] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, page 9,
2004.

[23] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In TOCS. ACM, 2011.

[24] N. Mehta, J. Sicking, E. Graff, A. Popescu, J. Orlow,
and J. Bell. Indexed database API. Recommendation,
W3C, Jan. 2015.

[25] R. C. Merkle. A digital signature based on a conven-
tional encryption function. In CRYPTO, pages 369–
378. Springer, 1987.

[26] D. Micciancio. Oblivious data structures: applications
to cryptography. In STOC, pages 456–464. ACM, 1997.

[27] A. Michalas and M. Bakopoulos. SecGOD Google Docs:
Now I feel safer! In ICITST. IEEE, 2012.

[28] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In UIST. ACM, 1995.

[29] G. Oster, H. Skaf-Molli, P. Molli, H. Naja-Jazzar, et al.
Supporting collaborative writing of xml documents. In
ICEIS, pages 335–341, 2007.

[30] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich,
and H. Balakrishnan. Building web applications on top
of encrypted data using mylar. In NSDI, pages 157–172,
2014.

[31] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser.
An integrating, transformation-oriented approach to
concurrency control and undo in group editors. In
CSCW, pages 288–297. ACM, 1996.

[32] A. Shraer, C. Cachin, A. Cidon, I. Keidar,
Y. Michalevsky, and D. Shaket. Venus: Verification
for untrusted cloud storage. In CCSW. ACM, 2010.

[33] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality preservation, and in-
tention preservation in real-time cooperative editing
systems. TOCHI, 5(1):63–108, 1998.

[34] M. Watson. Web cryptography API. W3C recommen-
dation, Jan. 2017.

[35] WHATWG. Html – posting messages. Online,
https://html.spec.whatwg.org/#posting-messages, Oc-
tober 2015.

[36] WHATWG. Dom – mutation observers. Online,
https://dom.spec.whatwg.org/#mutation-observers,
May 2016.

[37] C. Zhang, J. Jin, E.-C. Chang, and S. Mehrotra. Secure
quasi-realtime collaborative editing over low-cost stor-
age services. In SDM, pages 111–129. Springer, 2012.

http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc7159.txt
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt
https://github.com/share/ShareJS/tree/0.6
https://github.com/share/ShareJS/tree/0.6
http://www.ietf.org/rfc/rfc7516.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
https://html.spec.whatwg.org/#posting-messages
https://dom.spec.whatwg.org/#mutation-observers

APPENDIX
A. INTEGRITY PROTECTION

Ensuring the integrity of a whole document is easy: One
can simply append a Message Authentication Code (e. g.
an HMAC [21]) or use an authenticated encryption scheme
like AES-GCM. This has been done before, for example,
by Clear et al. [8]. However, if parts of a document are
to be left unprotected intentionally, it is crucial to identify
all parts which must not be left unprotected in order to
keep integrity for the sensitive parts. The remainder of this
section, we describe a concept to provide integrity we are
currently working on.

A.1 Definition of Integrity
We assume, that encrypted parts are leafs in the tree,

which holds for ED elements, and that the leafs are individ-
ually integrity protected by AES-GCM. This ensures that
even an adversary changing a single bit in the ciphertext
would be detected. However, if we furthermore assume an
adversary that may insert, delete, or reorder parts of a docu-
ment, we would not be able to detect if the adversary modi-
fied the document structure (e. g., by swapping ED elements
without changing any bit within these elements). For that
reason, we need to categorize nodes in the document tree.

Definition 1. A critical node is a node in a document
tree that has at least one critical node as child. All ED ele-
ments are critical nodes.

The intuition behind this definition is as follows: If there is
any encrypted data in a document tree, then all nodes on
the path from the document root to that ED element are
critical. If there are at least two ED elements in a document
tree, then the critical nodes build a subtree of the document
tree.

We define integrity of a partially encrypted document tree
as follows:

Definition 2. Integrity of a partially encrypted docu-
ment tree is given if no attacker is able to efficiently modify
the structure of the subtree formed by the critical nodes or
the content of ED elements in it without being detected.

Informally spoken, this definition prevents all unauthorized
modifications of the document structure except of parts that
consist entirely of unencrypted branches and leafs. Note that
this definition only covers the tree structure. The content
of a critical node may be modified without violating the
integrity6.

A.2 Technical Concept
For our integrity concept, we use the fact that every ED

element in the document tree has a randomly generated
unique ID in form of an XML attribute. These IDs are used
as Additional Authenticated Data (AAD) in AES-GCM upon
encryption of the content of that element. Every other crit-
ical node is also provided with an ID attribute. The value
of that attribute is computed as the hash value of the ID
attributes of all critical child nodes. This way, we build a
Merkle-Tree [25] using the IDs to protect the structure. At

6This probably sounds undesirable. However, if the content
is not meant to be modifiable, one should simply put the
corresponding subtree into an ED element.

the root node, we introduce another XML attribute named
IntegrityTag. Its value is either an HMAC or a digital
signature of the root’s ID, depending on whether public ver-
ification of the integrity is required or not.

A.3 Security Consideration
If a collision-resistant hash function is used, the security

properties of Merkle-Trees guarantee that every modification
in the structure of critical nodes result in a different ID of
at least the root node. Given that the IntegrityTag was
build using a secure construction (i. e. an attacker cannot
forge a valid value), every unauthorized modification of the
structure can be detected.

There is a hypothetical modification an unauthorized at-
tacker can perform that remains undetectable for some users
of the system: An attacker could replace the ciphertext of
an ED element with a different ciphertext (probably gener-
ated under the same key), but keeping the original ID. This
modification is detected once a user tries to decrypt that
ED element since different AAD were involved in the origi-
nal encryption. However, all users who do not have access to
the key for that ED element cannot detect this attack. They
can only check the ED elements they have keys for and com-
pute and compare the IntegrityTag, which succeeds since
the attacker did not change any IDs or other ED elements.

Nevertheless, this issue is negligible since the modification
is instantly detected by users who have the corresponding
keys. Users, who do not have the corresponding keys, are
not concerned of that particular ED element anyway since
they cannot decrypt it.

B. ADDITIONAL FIGURES

Figure 6: Screenshot of our proof-of-concept demo.

Figure 7: Screenshot from Wireshark measuring the re-
quired bandwidth for SECRET at 200 key strokes per
minute with a split size of 128 bytes.

0

1

2

3

4

64 128 256 512 1024 2048 4096P
la

in
 D

o
cu

m
e

n
t

Si
ze

(K

B
yt

e
)

Content Text (Byte)

16(a) Storage requirements for unencrypted documents.

0

4

8

12

16

64 128 256 512 1024 2048 4096
En

cr
yp

te
d

 D
o

cu
m

e
n

t
Si

ze
 (

K
B

yt
e

)
Content Text (Byte)

(b) Storage requirements for encrypted documents.

0

40

80

120

160

0 512 1024 1536 2048N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

yt
e

)
P

la
in

te
xt

 B
lo

ck

Appended Text (Byte)

(c) Network overhead in an unencrypted document.

0

200

400

600

800

0 512 1024 1536 2048N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

yt
e

)
En

cr
yp

te
d

 B
lo

ck

Appended Text (Byte)

(d) Network overhead in the encrypted document.

0

200

400

600

800

0 512 1024 1536 2048

N
et
w
or
k	
Tr
af
fic
	(K

By
te
)

En
cr
yp

te
d	
Bl
oc
k

Appended	Text	(Byte)

Split	size	=	32 Split	size	=	64 Split	size	=	128 Split	size	=	256 Split	size	=	512 Google	Docs

Figure 8: SECRET evaluation results.

	Introduction
	Foundations
	Operational Transforms (OT)
	XML and JSON
	Encryption

	Formal Model
	Computational Model
	Security Model
	Obliviousness Model

	Novel Tree-based Encrypted Operational Transforms
	Structure Preserving Encryption
	Tree-based Operational Transforms
	Combining both primitives

	Related Work
	Design Goals
	SECRET
	Real-Time Collaboration
	Software-as-a-Service (SaaS)
	Flexibility
	Obliviousness
	Efficiency

	SECRET's Architecture
	Key Management
	Untrusted Storage Server
	SECRET in the Browser
	SECRET Editor
	SECRET Controller
	Synchronization Module
	Splitter Module
	XMLSec.js
	Implementation Challenges

	Security Discussion
	Performance Evaluation
	Evaluation Setup
	Storage Overhead
	Network Overhead
	Unencrypted Network Overhead
	Encrypted Network Overhead

	Bandwidth Requirements

	Conclusion and Outlook
	Acknowledgments
	Integrity Protection
	Definition of Integrity
	Technical Concept
	Security Consideration

	Additional Figures

