
Bachelor Thesis

Developing a Security Analysis
Tool for OpenID-based Single

Sign-On Systems
Ruhr-Universität Bochum

Christian Mainka
Matr.-Nr: 108007212667

5. November 2013

Lehrstuhl für Netz- und Datensicherheit
Ruhr-Universität Bochum

Universitätsstr. 150
D-44789 Bochum

Adviser: Dipl-Ing. Vladislav Mladenov
Lehrstuhl für Netz- und Datensicherheit, Ruhr-Universität Bochum

Supervision: Prof. Dr.-Ing. Jörg Schwenk
Lehrstuhl für Netz- und Datensicherheit, Ruhr-Universität Bochum



Abstract

OpenID is an open standard which can be used for Single Sign-On. It is widely
used in a lot of Service Providers (SPs) like WordPress, ownCloud, OpenStreetMap,
Drupal,. . . . However, the current security analysis mostly concentrate on the sce-
nario of malicious clients and network attackers. This thesis will introduce OpenID
Attacker, an open source malicious OpenID Identity Provider (IdP), which is able
to manipulate arbitrary messages of the OpenID specification. It can generate
OpenID login tokens for arbitrary user identities, which can lead to serious secu-
rity flaws if the SP processes them improperly.



Contents

1 Introduction 5

2 Foundations 7
2.1 Single Sign-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 OpenID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Discovery Phase . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Association Phase . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Token Processing Phase . . . . . . . . . . . . . . . . . . . 14
2.2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Example OpenID Token . . . . . . . . . . . . . . . . . . . 16

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Attack Model 20
3.1 Attacker’s Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Attacker’s Capabilities . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Attacker’s Capabilities in Detail . . . . . . . . . . . . . . . . . . . 21

3.3.1 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Association . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Token Generation . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Token Direct Verification . . . . . . . . . . . . . . . . . . . 23

4 Implementation 24
4.1 Abstract Architecture Overview . . . . . . . . . . . . . . . . . . . 24
4.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Java Beans . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Property Change Support . . . . . . . . . . . . . . . . . . 25
4.2.3 Server Config Model . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Attack Parameter Model . . . . . . . . . . . . . . . . . . . 29

4.3 Logic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Server Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 GUI Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 GUI Overview . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Beansbinding . . . . . . . . . . . . . . . . . . . . . . . . . 37



4.5 Code Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 JUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Hamcrest . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Evaluation 43
5.1 WordPress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Owncloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 52

Appendix 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Eigenständigkeitserklärung . . . . . . . . . . . . . . . . . . . . . . . . . 62



Introduction

1 Introduction

Nowadays, the Internet takes a more and more important role for private users as
well as for business users. While at the end of the last millennium, the Internet was
mainly used as a connecting network for fat-clients like email clients or PC games,
the browser got more and more into the focus of the last years. Several applications
like office suites or navigation software are now provided as web applications, e.g.
Google Docs (17) or OpenStreetMap (12). Even the area of online games has
moved into the browser (42, 45).

This application shifting from fat-clients into the browser leads to an increased
number of web application accounts that must be managed by a user. Years ago,
the user had just to start his game or office application and could begin to use it.
In today’s online applications, he has to use his browser to login into a Service
Provider (SP) and authenticate himself first. The result of this is a rising number
of online accounts. In addition, the user can (1) choose to reuse a password for
multiple SPs, (2) choose a weak but unique password, or (3) somehow remember
secure passwords.

Figure 1: Using Single Sign-On to login into a SP.

To counter this problem, Single Sign-On can be used. Single Sign-On is a mech-
anism which separates the login process, i.e. the user’s authentication, from the
actual service. A so-called Identity Provider (IdP) is used to authenticate one
user at multiple SPs. Thus, the user has only to authenticate once against his IdP
and therefore needs only one password.

5/ 62



Introduction

There exist different frameworks that allow Single Sign-On. Noteworthy are
OAuth (7), Persona (11), SAML (27) and OpenID (36), which have been an-
alyzed by security researchers in the last years (37, 15, 32). One of the most
influencing papers related to this work is shown by Wang et al. (44). The authors
developed a tool analyzing the security of Single Sign-On mechanisms by record-
ing the traffic within a browser. The tool is online available1 and works well for
OpenID. Nevertheless, it behaves very passive. It is e.g. not possible to directly
manipulate specific parts of OpenID messages, nor it is possible to manipulate
the messages between the SP and the IdP, because the communication between
those entities is not seen by the client/browser.

The goal of this thesis is to counter those problems by allowing a more flexible
security analysis. It explains the development of an OpenID security analyis
tool, which is able to manipulate arbitrary messages at any point of the OpenID
protocol. The tool is named OpenID Attacker and is addressed to penetration
testers, who want to have full flexibility on every part of the OpenID specification.
OpenID Attacker is able to act as a (malicious) IdP and can therefore generate
user-defined OpenID tokens, which can e.g. include arbitrary identities. If an SP
improperly processes such a token, the penetration tester will be logged in with
the victim’s identity.

The thesis is structured as follows: The foundations needed to understand this
thesis are explained in Section 2. It mostly concentrates on the OpenID speci-
fication and its protocol messages. In Section 3, the underlying attack model of
OpenID Attacker is explained. This includes all features and aspects which the
tool is able to manipulate. The idea of the implementation and its process, as well
as the tool’s model, logic and view are explained in Section 4. The tool is eval-
uated in Section 5 against two different widespread SPs (WordPress, ownCloud).
This thesis concludes in Section 6.

1http://sso-analysis.org/aaas/brm-analyzer.html

6/ 62

http://sso-analysis.org/aaas/brm-analyzer.html


Foundations

2 Foundations

This section will give an introduction to Single Sign-On in Section 2.1. In Sec-
tion 2.2, the open standard OpenID is explained in detail and Section 2.3 discusses
related work to this thesis.

2.1 Single Sign-On

The common Internet-user makes use of many web applications. Some are for
private use, others are for business use. Many web applications do not require to
login for using them, e.g. the Google search engine, or a weather forecast like Yahoo
Weather. However, a lot of them require a user to authenticate for accessing, e.g.,
his mails, images or for shopping online. In the following, web applications which
offer a special service for a user are named Service Providers (SPs).

User

U
se

rn
am

e
4

 /
 

Pa
ss

w
or

d
4

Figure 2: The login scenario for multiple SPs without Single Sign-On.

Figure 2 shows the login scenario without using Single Sign-On. The user has
multiple personal accounts on each of the SPs. For accessing them, he has to
remember his username and the corresponding password. The user can of course
have the same username on multiple sites, but it is bad practice to reuse the same
username/password combination on more than one site. There are mainly two
good reasons for that:

1. The SP, or some employee at it, might be corrupted and log its users’ cre-
dentials. Those credentials can then be used for trying to login into different
SPs and steal the accounts.

7/ 62



2.1 Single Sign-On Foundations

2. Each SP must somehow store the user’s credentials so that it can allow him
to login. However, an attacker can try to steal those credentials by attacking
the SP’s database2.

The problem of choosing unique username/password combinations is obvious:
Users can easily forget them, especially if they are using strong passwords, e.g.
passwords with at least 20 characters plus special characters. As a result, users
tend to use weak passwords3, which leads to another security problem.

User

Identity Provider

Ask for Token

Get Token

Token

Figure 3: The login scenario for multiple SPs with Single Sign-On.

Using Single Sign-On as an authenticating mechanism can drastically reduce the
number of username/password combinations. Figure 34shows the idea of Single
Sign-On. Instead of having one username/password combination for each SP, the
user makes use of an Identity Provider (IdP). The IdP is a server administrating
identities. In general, there must be a trust relationship between the SP and
the IdP. Additionally, there must be a trust relationship between the user and
the IdP. This chain of trust relationships (user ⇔ IdP ⇔ SP) indicates that
there is an indirect relationship between the user and the SP. This is the basic

2An example for this was the recent hack on Adobe. See http://blogs.adobe.com/
conversations/2013/10/important-customer-security-announcement.html

3See the article on http://www.dailymail.co.uk/sciencetech/article-2223197/
Revealed-The-common-passwords-used-online-year-password-STILL-tops-list.
html

4The Marvel superhero picture is taken from http://desktop.freewallpaper4.
me/view/original/6175/marvel-superheroes.jpg. The Iron Man helmet
is taken from http://img.costumecraze.com/images/vendors/disguise/
11677-Adult-Iron-Man-Helmet-large.jpg.

8/ 62

http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://www.dailymail.co.uk/sciencetech/article-2223197/Revealed-The-common-passwords-used-online-year-password-STILL-tops-list.html
http://www.dailymail.co.uk/sciencetech/article-2223197/Revealed-The-common-passwords-used-online-year-password-STILL-tops-list.html
http://www.dailymail.co.uk/sciencetech/article-2223197/Revealed-The-common-passwords-used-online-year-password-STILL-tops-list.html
http://desktop.freewallpaper4.me/view/original/6175/marvel-superheroes.jpg
http://desktop.freewallpaper4.me/view/original/6175/marvel-superheroes.jpg
http://img.costumecraze.com/images/vendors/disguise/11677-Adult-Iron-Man-Helmet-large.jpg
http://img.costumecraze.com/images/vendors/disguise/11677-Adult-Iron-Man-Helmet-large.jpg


2.1 Single Sign-On Foundations

idea of Single Sign-On. Single Sign-On separates between the service itself and
the authentication of the user. In the context of Service Oriented Architectures
(SOAs), Single Sign-On belongs to authentication as a service (AaaS). This allows
the IdP to generate some kind of security assertion, also referred to as a security
token, and to give it to the user. The user can use this token and send it to the
SP. Because of the trust relationship between SP and IdP, the SP is able to verify
if the token is valid in the context of the user. If this is the case, the IdP will map
the identity contained within the token to a local identity used by the SP.

The advantage of Single Sign-On is, that the token itself does not contain any
secret information on the user and, especially that the token does not contain the
user’s password.

C SP IdP

−−
Login wish
−−−−−−−−−−→

←−
Redirect to IdP
−−−−−−−−−−−−−
−−−−−−−−−−−−−

↪→
−−−−−−−−−−−−−−−−−−−→

←−
Login at IdP if not already authenticated
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Create token
t for C

σ = sign(t)

←−−−−−−−−−−−−−
t, σ

−−−−−−−−−−−−−−−−−−−
−−−

t, σ
−−−−−−−−−→

success? =
verify(t, σ)

←−−−
success?
−−−−−−−−−

Figure 4: General overview of an exemplary Single Sign-On authentication. The
protocol may also differ depending on the concrete Single Sign-On frame-
work, but the concept is in most cases very similar.

Figure 4 gives an overview on the general workflow of an exemplary Single Sign-
On authentication. The client C – an example user with a browser – wishes to
login into some SP using a Single Sign-On mechanism. The SP then redirects
C to the IdP. If C has not yet been authenticated on the IdP, he must enter
his credentials. Afterwards, the IdP creates a token for C. The token mainly
contains the C’s username and a cryptographical protection mechanism. This is
commonly a signature which ensures that the token can not be manipulated and
allows to determine the token’s origin. Additionally, most Single Sign-On tokens
also include information about their scope, e.g. for which SP the token can be

9/ 62



2.2 OpenID Foundations

used.

There exist a lot of protocols/frameworks which allow Single Sign-On. Examples
for them are OAuth (7), Persona (11), SAML (27) and OpenID (36). Although the
general idea behind them remains very similar, they differ in flexibility, complexity,
message flow and message format. This thesis will only look at OpenID.

2.2 OpenID

OpenID is an open standard which allows a user to authenticate against different
SPs using an IdP (36). One specialty of OpenID is, that it allows decentralized
Single Sign-On. Everyone can setup a custom IdP and directly use it with an
arbitrary SP that supports the OpenID standard. This section will explain the
OpenID standard. It will give an overview on the protocol messages and describe
the different phases discovery, assocation and token processing in detail.

2.2.1 Protocol Overview

C SP IdP

−
(1) Login wish: identity = C
−−−−−−−−−−−−−−−−−−−−−−−→

−
(2) Discovery: lookup C
−−−−−−−−−−−−−−−−−−−→

←−
(3) xrds(C) or html(C)
−−−−−−−−−−−−−−−−−−−

extract
endpoint from
document

←−−−
(4) Association α
−−−−−−−−−−−−−−−−→

←−
(5) identity = C, assoc = α
−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−
↪→ (6) Redirect: identity = C, assoc = α
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−
Login at IdP if not already authenticated
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−
(7) Token t for identity = C, protected by signature σ, assoc = α
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−
↪→ (8) Redirect: t, σ, α
−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−
(9) success?
−−−−−−−−−−−−−−−−

Figure 5: Simplified overview of the OpenID protocol.

A general overview on the exchanged messages of the OpenID protocol is given in
Figure 5. This thesis will divide the protocol into three phases:

10/ 62



2.2 OpenID Foundations

1. The discovery phase includes steps (1) to (3). In this phase, the SP collects
information on the login wish of the client (C).

2. Afterwards, the association phase takes part in step (4): The SP and IdP
establish a shared secret, which will later be used to sign the token.

3. The last phase processes the token in steps (5) to (9). The token is
created by the IdP and forwarded to the SP via C’s browser.

More detailed, the OpenID login process can be described as follows:

1. C wishes to login into some SP. Therefore, he sends his OpenID identifier,
which is a URL in most cases5, to the SP.

2. The SP must then start the discovery on the given OpenID identifier. There-
fore, he requests the document represented at the URL.

3. The according response can be either an HTML or an XRDS document.
The SP extracts the included information, e.g. the IdP endpoint URL. More
information on this phase is given in Section 2.2.2.

4. Using the IdP endpoint URL, the SP starts the association with the IdP.
This will be explained in Section 2.2.3.

5. The SP does afterwards have all necessary information to validate an OpenID
token. He responds to C’s initial login wish (1) and sends a redirect instruc-
tion to him. This response mainly contains C’s identity and additionally a
value α which identifies the established association between SP and IdP.

6. C is redirected to its IdP. If not yet logged in, C must authenticate on the
IdP.

7. The IdP creates a token for C’s identity. The token is protected by a signa-
ture σ. In fact, this is a Hash MAC, but the OpenID specification always
claimed to it as a signature, so this thesis will do this, too. σ can only be
verified using the shared secret established between SP and IdP in Step (4).
As the SP must be able to choose the correct key, the association value α
will be included within the message. Message (7) is called the authentication
request.

8. C will be redirected to the SP, whereby t, σ and α will be transmitted.
9. The SP will validate σ on t using α. If the signature is valid, the SP will

map the OpenID identity to a local identity on the SP.

5It is also possible to use XRI identifiers (43), but this takes not part of this thesis.

11/ 62



2.2 OpenID Foundations

2.2.2 Discovery Phase

The idea of the OpenID discovery phase is, that the SP can collect all necessary
information to identify the user’s OpenID identity and the corresponding IdP
responsible for the association. It is specified in (36, Section 7.3). Therefore, the
SP will load the OpenID URL provided by the user. The result can be an XRDS
or an HTML document.

1 <xrds:XRDS xmlns :xrds=" x r i : //$ xrds " xmlns=" x r i : //$ xrd ∗($v ∗2 . 0 ) " y
xmlns :openid=" ht tp : // openid . net /xmlns /1 .0 ">

2 <XRD version=" 2 .0 ">
3 <Se rv i c e p r i o r i t y="10">
4 <Type>ht tp : // spec s . openid . net /auth /2 .0/ s ignon</Type>
5 <URI>ht tp : //my. idp . com/openid /</URI>
6 <LocalID>ht tp : //my. idp . com/openid /myname</LocalID>
7 </ Se rv i c e>
8 <Se rv i c e p r i o r i t y="5">
9 <Type>ht tp : // openid . net / s ignon /1 .0</Type>
10 <URI>ht tp : //my. idp . com/openid /</URI>
11 <open id :De l egate>ht tp : //my. idp . com/openid /myname</ y

open id :De l egate>
12 </ Se rv i c e>
13 </XRD>
14 </xrds:XRDS>

Listing 1: An example XRDS document.

Listing 1 shows an example XRDS document. It is an eXtended Markup Lan-
guage (XML) document which contains one or more <Service/> elements. Each
<Service/> element must contain a <Type/> element which indicates the OpenID
version and the login scenario. The <URI/> elements in lines 5 and 10 include the
endpoint URL of the IdP. The <Type/> element in line 4 indicates that OpenID
version 2.0 is supported by the IdP and that the <LocalID/> defined in line 6
should be used. Accordingly, line 9 indicates the usage of OpenID version 1.0.
For 1.0, the name of the element containing the local identifier is named < y
openid:Delegate>. If the <Type> is set to http://specs.openid.net/auth/

2.0/server, no <LocalID/> element must be provided. Instead, the SP will
set openid.identity in its request to http://specs.openid.net/auth/2.0/

identifier_select. This is useful if an IdP wants to provide a general XRDS
document for all users. If the XRDS document contains multiple <Service/> el-
ements, the IdP will use the included priority values, beginning with the lowest
integer value.

If the returned document is an HTML document, the SP will search for the HTML
<link/> elements shown in lines 4-6 of Listing 2.

12/ 62

http://specs.openid.net/auth/2.0/server
http://specs.openid.net/auth/2.0/server
http://specs.openid.net/auth/2.0/identifier_select
http://specs.openid.net/auth/2.0/identifier_select


2.2 OpenID Foundations

1 <html>
2 <head>
3 <t i t l e>HTML Discovery</ t i t l e>
4 <l ink rel="openid . s e r v e r " href="http ://my. idp . com/openid /"/>
5 <l ink rel="openid . d e l e ga t e " href="http ://my. idp . com/openid /myname y

"/>
6 <l ink rel="openid2 . prov ide r " href="http ://my. idp . com/openid /"/>
7 <l ink rel="openid2 . l o ca l_ id " href="http ://my. idp . com/openid / y

myname"/>
8 </head>
9 <body/>
10 </html>

Listing 2: An example HTML discovery document.

The values of openid.server and openid2.provider represent the endpoint of
the IdP and additionally indicate the supported OpenID version. The values
of openid.delegate and openid2.local_id are optional and contain the corre-
sponding openid.idenitity.

In addition, it is possible to provide the XRDS location by adding an HTTP
header named X-XRDS-Location to the HTTP response.

2.2.3 Association Phase

OpenID uses the association phase to establish a trust relationship between SP
and IdP, see (36, Section 8). As described in (36, Section 8.4), OpenID defines
three association types to establish a secret MAC key: 1. no-encryption, 2. DH-
SHA1 and 3. DH-SHA256.

If no-encryption is used, the IdP sends the MAC key in plaintext to the SP.
Therefore, no-encryption must be avoided unless the exchanged messages are using
transport layer security.

Case 2. and 3. use Diffie-Hellman key-exchange (DHKE) to establish a common
secret. This secret is then used to encrypt the MAC key chosen by the IdP using
the XOR function. Afterwards, the encrypted MAC key is transmitted to the
SP.

Because of the fact that the SP as well as the IdP will have to manage multiple
MAC keys, both use an assoc_handle to store the key and later refer to it. The
value of assoc_handle is chosen by the IdP and transmitted to the SP using the
openid.assoc_handle parameter, see (36, Section 8.2.1).

13/ 62



2.2 OpenID Foundations

Additionally, the IdP can define the expiration time for each association. There-
fore, the IdP defines the openid.exires_in parameter within the association
response, see (36, Section 8.2.1).

The exchanged messages and their included parameters can be seen in detail in (36,
Section 8.1 and Section 8.2).

It is important to note that the association can only be established if the SP is
able to store the MAC key. If this is not the case, OpenID offers a way to verify
a token using direct verification (36, Section 11.4.2).

2.2.4 Token Processing Phase

The token processing phase can divided into four parts (see Figure 5).

1. Messages (5) and (6) form the authentication request : The SP redirects the
user to the IdP and asks for a specified token, e.g. for a fixed identity C
using the association α. See (36, Section 9) for details.

2. The IdP generates the token using the information of the authentication
request, see (36, Section 6).

3. The token is sent to the user with message (7) and redirected to the SP in
message (8). Details can be taken from (36, Section 10).

4. The SP verifies the token, see (36, Section 11).

The most interesting part for this thesis is the token generation and verification.
To go into detail, the token generation consists of two parts. The first part collects
all data that shall be contained within the token, e.g. the identity, the association
handle, etc. In a second step, the token is signed. A pseudo code for the signature
generation is shown in Listing 3.

1 public void s i gn (Token token )
2 {
3 St r ing handle = token . getHandle ( ) ;
4
5 // t r y shared a s s o c i a t i o n s f i r s t , then p r i v a t e
6 Assoc i a t i on as soc = _sharedAssoc iat ions . load ( handle ) ;
7
8 i f ( a s soc == null )
9 as soc = _pr iva teAssoc i a t i ons . load ( handle ) ;
10
11 i f ( a s soc == null ) throw new ServerExcept ion (
12 "No␣ a s s o c i a t i o n ␣ found␣ f o r ␣handle : ␣" + handle ) ;
13
14 St r ing s ignedText = createS ignedText ( token ) ;
15 token . s e tS i gna tu r e ( s i gn ( signedText , a s soc ) ) ;

14/ 62



2.2 OpenID Foundations

16 }
17
18 public St r ing createS ignedText (Token token )
19 {
20 S t r i ngBu f f e r s ignedText = new St r i ngBu f f e r ( "" ) ;
21
22 St r ing [ ] signedParams = token
23 . getParameterValue ( " openid . s i gned " )
24 . s p l i t ( " , " ) ;
25
26 for ( S t r ing signedParam : signedParams ) {
27 signedText . append ( signedParam ) ;
28 s ignedText . append ( ’ : ’ ) ;
29 St r ing value = getParameterValue ( " openid . " + signedParam ) ;
30 i f ( va lue != null ) {
31 s ignedText . append ( value ) ;
32 }
33 signedText . append ( ’ \n ’ ) ;
34
35 }
36 return s ignedText . t oS t r i ng ( ) ;
37 }

Listing 3: Pseudo code for OpenID signature generation.

In a first step, the algorithm searches for the association which belongs to the
association handle parameter (openid.assoc_handle) within the token. If there
is no such shared association (line 8), the algorithm will search for a private
association connected with this handle (line 9). This is e.g. the case if the SP uses
direct verification, because it is unable to store keys.

Line 14 creates the string to be signed. The algorithm for this is shown in line
18-37 and works in simple words as follows:

For each OpenID parameter contained in openid.signed, get the parameter value
and append the string "openid.parameterName:␣parameterValue\n" to the re-
sulting string. Note that the parameter names contained in openid.signed are
not prefixed by openid., therefore the prefix must be added manually (line 29).

Afterwards, this string is signed using the association, which includes the key as
well as the signature algorithm (line 15).

If the SP has stored a shared association, it must perform the signature verification
itself. This procedure is straightforward: The SP creates the signature value using
the same algorithm as the IdP and compares the calculated value with the one
stored within the token.

15/ 62



2.2 OpenID Foundations

In the case that the SP has not stored the association, it must use direct verifi-
cation (36, Section 11.4.2). Therefore, the SP sends the token with all OpenID
parameters to the IdP. The only difference is that the openid.mode parameter
is changed to check_authentication. Then, the IdP performs the signature
verification and responds to the SP whether it was valid or not.

2.2.5 Extensions

The OpenID standard also allows the use of extensions (36, Section 12). The
most commonly used ones are the Attribute Exchange (Ax) (35) and the Simple
Registration (SReg) (34) extension. Both allow to exchange additional personal
data. An example could be an email address, or the user’s birthday. This infor-
mation could then be added automatically to the profile on the SP, e.g. for the
registration. To use an extension within a token, an OpenID namespace must be
defined using the openid.ns.prefixname parameter. The value of this parameter
points to the namespace URI of the extension. Afterwards, parameters defined
by the extension can be used with openid.prefixname.parametername.

A detailed example can be seen in the following section.

2.2.6 Example OpenID Token

This section will show an example use-case of an OpenID token. Therefore, the
authentication request and the token response during the login process on Source-
forge6 are captured.

Listing 4 show the authentication request generated by the Sourceforge SP, which
is redirected by the client to the IdP.

1 openid .mode : checkid_setup
2 openid . assoc_handle : myAssocHandle
3 openid . claimed_id : http :// xml . nds . rub . de :8080/ s imp l e id /www/ index . y

php?q=xrds / remote
4 openid . i d e n t i t y : http :// xml . nds . rub . de :8080/ s imp l e id /www/ index . php? y

q=xrds / remote
5 openid . return_to : https : // s ou r c e f o r g e . net / account / openid_ver i fy . php
6 openid . ns : http :// specs . openid . net /auth /2 .0
7 openid . ns . s r eg : http :// openid . net / ex t en s i on s / s r eg /1 .1
8 openid . s r eg . op t i ona l : nickname , email , ful lname , country , language , y

t imezone

Listing 4: Example OpenID authentication request.

6https://sourceforge.net/account/login.php

16/ 62

https://sourceforge.net/account/login.php


2.2 OpenID Foundations

The value of openid.mode is set to checkid_setup, because it is an authentication
request. It is also possible to set it to checkid_immediate (36, Section 9.3), if
the SP does not want the user to interact with the IdP. This is e.g. usefull for
Javascript. If checkid_immediate is used, the SP must respond immediately that
the authentication was successful or that the request cannot be processed without
further user interaction. Line 2 defines the handle of the association as explained
in Section 2.2.3. Line 3 and 4 define the user’s identity. While OpenID 1.0 and
1.1 only define openid.identity, OpenID 2.0 introduces the openid.claimed_id
parameter. There is an important difference between them:

. openid.claimed_id refers to the value submitted by the user within the
OpenID login form.

. openid.identity is the value of the identity known at the IdP.

This feature can be used to save e.g. an HTML or XRDS discovery file at a custom
webserver, e.g. http://my.server.com/myid. This document itself points to a
different identity at another OpenID IdP, e.g. http://yahoo.com. The user can
then use http://my.server.com/myid to login at some SP. The SP will then
redirect the user to http://yahoo.com. If the user wants to change his OpenID
provider, e.g. to http://myopenid.com, he just has to adjust the document a
http://my.server.com/myid. However, to login, he can still use the same URL
as before, there is no need to change anything at the SP side.

The token contains additional information about the URL the user will return
to (line 5). It also defines the SReg extension as described before (line 7) and
requests some attributes (line 8).

The response by the IdP is shown in Listing 5.
1 openid .mode : id_res
2 openid . assoc_handle : myAssocHandle
3 openid . claimed_id : http :// xml . nds . rub . de :8080/ s imp l e id /www/ index . y

php?q=xrds / remote
4 openid . i d e n t i t y : http :// xml . nds . rub . de :8080/ s imp l e id /www/ index . php? y

q=xrds / remote
5 openid . return_to : https : // s ou r c e f o r g e . net / account / openid_ver i fy . php
6 openid . op_endpoint : http :// xml . nds . rub . de :8080/ s imp l e id /www/
7 openid . response_nonce : 2013−10−23T12 : 0 3 : 3 5 Z0
8 openid . ns : http :// specs . openid . net /auth /2 .0
9 openid . ns . s r eg : http :// openid . net / s r eg /1 .0
10 openid . s r eg . emai l : Rub@nds . rub . de
11 openid . s r eg . fu l lname : Test User
12 openid . s i gned : op_endpoint , claimed_id , i d en t i t y , return_to , y

response_nonce , assoc_handle , ns . sreg , s r eg . email , s r eg . fu l lname
13 openid . s i g : 3QasakorZ583wnfxZgghdplV8uXxtd7IYHJVh+gg9JU=

17/ 62

http://my.server.com/myid
http://yahoo.com
http://my.server.com/myid
http://yahoo.com
http://myopenid.com
http://my.server.com/myid


2.3 Related Work Foundations

Listing 5: Example OpenID token.

The mode is set to id_res. The values for openid.assoc_handle, openid.claimed_id,
openid.identity and openid.return_to are the same as in the authentication
request (lines 2-5).

There is an additional parameter openid.op_endpoint which includes the URL of
the IdP (line 6). The SP will compare this value to the value of the XRDS/HTML
document. The IdP also adds some nonce to prevent replay attacks (line 7).

An email and fullname parameter is included using the SReg extension (line 10,11).
The other optional SReg elements from the authentication request are not in-
cluded.

Lastly, the openid.signed parameter (line 12) lists the name of the signed ele-
ments. The signature itself is stored in the openid.sig parameter (line 13).

2.3 Related Work

Research related to the topic of the thesis can be divided into three parts. First,
there is research about protocol analysis in general. Second, analysis of Single
Sign-On systems. Third, specific investigations in the field of OpenID.

The research on protocol security is, compared to the age of recent Single Sign-On
protocols like OpenID, very old. Burrows et al. (6) created the BAN-logic, a formal
analysis system for cryptographic protocols, in 1989. Later on, software tools for
protocol verification were created and used in 1995 (25) and 1996 (24). The tools
were applied e.g. on the Needham-Schroeder protocol and could automatically
detect vulnerabilities.

One of the most frequently used Single Sign-On frameworks is SAML (27). SAML
is based on XML and uses the XML Signature standard to protect the SAML
token (8, 16). Groß (15) has analyzed the Browser/Artifact profile and identified
several flaws in the SAML specification which allow connection hijacking/replay
attacks, as well as Man-in-the-Middle (MitM) attacks and HTTP referrer attacks.
In 2012, Somorovsky et al. (32) investigated the XML Signature validation of
several SAML frameworks. By using the XML Signature Wrapping (XSW) attack
technique, originally published by McIntosh and Austel (23) in 2005, they could
bypass the authentication mechanism in 11 out of 14 SAML frameworks and login
with arbitrary identities.

18/ 62



2.3 Related Work Foundations

Sun and Beznosov (37) analyzed the implementation of several OAuth frameworks
and found serious security flaws in Microsoft, Facebook and Google implementa-
tion. However, they do not seem to provide their analyzer tool to the public and
concentrate more on XSS/CSRF and session swapping rather than on logic flaws
the OAuth protocol itself.

The analysis of the OpenID protocol started with version 1.0. Tsyrklevich and
Tsyrklevich (41) presented several attacks on this OpenID version at Black Hat in
2007. They identified e.g. a threat in which the endpoint URL published within
the discovery phase can point to unwanted files on the local machine or can even be
abused to start a Denial-of-Service (DoS) attack by enforcing the SP to download
a large movie file. Additionally, they showed the attack potential of a malicious
SP which redirects the user to an attacker controlled IdP, and also the potential of
a malicious IdP, which can track its users. Comparable to (37), they also looked
at replay and CSRF attacks. In 2008, Newman and Lingamneni (26) created a
model checker for OpenID 2.0, although they simplified the OpenID protocol by
removing the association phase and assuming all messages are not protected by
transport layer security. Using their model checker, they could identify a ses-
sion swapping vulnerability, which allows an attacker to get logged in into some
SP by using the victim’s account. Sovis, Kohlar, and Schwenk (33) showed in
2010 how identity information, set within OpenID messages, can be manipulated
if the verification logic is improper and the authentication logic is not integrity
protected. They showed a technique named parameter injection which could be
used to append additional SReg and Ax extension parameters without invalidating
the token’s signature. However, the problem with this attack is, that the addi-
tional parameters are not processed by most SPs, because they are not requested.
Thus they described the parameter forgery attack, which allows to manipulate
and change the value of extension parameters which are requested and therefore
processed by an SP.

Finally, Wang et al. (44) concentrated on real life Single Sign-On systems instead of
a formal analysis. They developed a tool named BRM-Analyzer which handles the
SP and IdP as block-boxes by analyzing only the traffic seen within the browser.
Although their approach can be adopted to arbitrary Single Sign-On systems,
they mainly concentrate on OpenID. However, in contrast to this thesis, the tool
works rather passive – it just analyzes the browser’s traffic. This restriction also
includes that they do respect the threat of a malicious IdP, which the presented
OpenID Attacker is.

19/ 62



Attack Model

3 Attack Model

This section will describe the used attack model for analyzing the security of
OpenID. Therefore, the attacker’s goal is described in Section 3.1, whereas the
attacker’s capabilities are described in Section 3.2 and 3.3.

3.1 Attacker’s Goal

Suppose there are two Identities A and V known at a given SP. Identity A is
owned by the attacker, therefore he can use this identity to login into the SP.
The victim’s identity V is not under the attacker’s control, i.e. he does not know
V ’s credentials. Thus he can not login at the SP using this identity. Given this
scenario, the attacker’s goal is to convince the SP that he is under the control of
identity V , i.e. to login as V .

3.2 Attacker’s Capabilities

The attacker is able to simulate a malicious IdP, notated as IdPA, and a malicious
client. Note that for the later implementation, it is not necessary for the client
to be malicious. This is because the malicious IdP can control each of the steps
performed by the client. E.g. IdPA could enforce the client to send the token to a
different location by changing the redirection URL. Thus, the approach presented
in this thesis does not require to write a custom OpenID client. To perform a
penetration test, a valid browser will be sufficient.

Identity A belongs to IdPA, so that IdPA can manipulate every single parameter
for tokens requested by the client. Identity V belongs to IdP V . Thus we have
four participants as shown in Figure 6.

IdPA Client SP IdPV
Read/Write

Read

Read/Write

No Access

Under attacker’s control.

Figure 6: Overview of the attacker’s capabilities.

1. The IdP of the attacker (IdPA).
2. The attacker’s client (Client).

20/ 62



3.3 Attacker’s Capabilities in Detail Attack Model

3. The attacked SP (SP).
4. The IdP of the victim (IdP V).

The attacker’s capabilities are the following:

. The attacker can read and write/manipulate all traffic between the IdP and
the client.

. The attacker can read all messages received from the SP. Additionally, he
can send arbitrary, manipulated messages to the SP.

. The attacker can neither read, nor manipulate the messages exchanged be-
tween the SP and the victim’s IdP.

The fact that the client can only read and not manipulate the messages received
from the SP is not relying to technical issues. Theoretically, he could also ma-
nipulate the messages, but it simply does not make any sense, since the message
could also be manipulated by the malicious IdP (or by the client).

An important fact of the attacker’s capabilities is, that he cannot access the mes-
sages exchanged between SP and the victim’s IdP. A so-called network-attacker
is not in the scope of this thesis. Even the OpenID specification relies on the fact
that this channel is save, see (36, Section 15.1.2). Otherwise an attacker could
simply apply a MitM attack during the association phase.

3.3 Attacker’s Capabilities in Detail

The previous section showed on which messages the attacker may have influence
from a very abstract view. This section will now go into detail and point out which
exact parts of the message are manipulatable under the given attack model. This
will be explained by going through the four different OpenID phases. (1) Dis-
covery, (2) Association, (3) Token Generation and (4) Token Verification.

3.3.1 Discovery

The discovery phase is invoked after the client has submitted its identity to the SP.
Afterwards, according to the OpenID specification (36, Section 7.3), the SP has
to do a discovery on this identity. The identity itself may point to an XRDS file
or to an HTML file. In the latter case, the HTML can contain information, which
can be resolved to an XRDS document. Therefore, there are two possibilities:

21/ 62



3.3 Attacker’s Capabilities in Detail Attack Model

1. The HTTP response contains an X-XRDS-Location parameter which holds
the concrete location of the XRDS document.

2. The HTML Header of the HTTP response contains a <link/> element hold-
ing the necessary information of the IdP endpoint URL within its attributes
rel and href.

3. Optionally the local identity value.

The resulting XRDS contains the following information:

. The supported OpenID version, mainly OpenID Verion 1.0, 1.1 and 2.0.

. The endpoint URL of the IdP, which is responsible for creating tokens.

. Optionally the local identity value.

Note that the description above is just a simplification. An XRDS document can
hold more than one endpoint URL and also support for multiple OpenID versions,
which can be ordered by priority values. However, for a concrete penetration test,
it is better to test one version after another and thus, the implemented tool will
only support the use of a single endpoint.

All the parameters above are manipulatable by the attacker, and thus the devel-
oped OpenID Attacker will offer a flexible way to create XRDS documents as well
as HTML documents used for the discovery.

3.3.2 Association

After the discovery phase, the SP will establish a common secret with the at-
tacker’s IdP (36, Section 8). As this is basically realized using DHKE, it is not
valuable to manipulate the exchanged DHKE parameters.

Besides the established secret, the IdP can freely choose the value of the parameter
assoc_handle. This value will be used by both parties (the SP and the IdP)
to identify the key material. Therefore, it might be possible for an attacker to
overwrite key material stored on the SP.

Suppose that the SP has stored the shared secret kV with IdP V and it is saved un-
der the value assoc_handle=yyy, i.e. assoc_handle(yyy)=kV . In the next step,
the SP starts to establish a new shared secret kA with IdPA. If IdPA also uses
assoc_handle=yyy, it might be possible that the SP overwrites kV with kA, but
still thinks that this key should be used for IdPV , i.e. assoc_handle(yyy)=kA.

22/ 62



3.3 Attacker’s Capabilities in Detail Attack Model

The association response also contains an expiration time, which is valuable to
manipulate. E.g. by setting this to a very low value, the association may be expired
very fast, forcing the SP to send the token to the IdP for direct verification instead
of doing this by itself.

3.3.3 Token Generation

The token generation takes place after the client has sent a token request to the
IdP (36, Section 9 and 10). For an attacker, this phase contains the greatest
number of possibilities for manipulation. The attacker must be able to send arbi-
trary data to the SP. The data can be valid or invalid according to the OpenID
specification, e.g. the signature can be removed, other parts than expected can be
signed, or custom data can be added, . . . . The attacker is also able to change the
HTTP transmission method, e.g. Get to Post and vice versa, or to send values via
both methods at the same time, trying to confuse the SP logic.

More on this part will be described in Sections 4.2.4 and 4.3.1.

3.3.4 Token Direct Verification

In some cases, the SP is not able to verify the signature contained in the OpenID
token itself. A reason for this might be that the SP is not able to store an
association, or that the association is expired. In such cases, the token can be
sent directly to the IdP, which verifies it (36, Section 11.4.2). If an attacker can
trick out an SP to use the direct verification, a malicious IdP can just answer that
the token is valid in every case. As a result of this, the SP will login the user with
the requested identity.

23/ 62



Implementation

4 Implementation

This Section will give an overview on the developed OpenID Attacker tool. It will
start with a general overview in Section 4.1. Section 4.2 describes the tool’s data
model, Section 4.3 its logic and Section 4.4 the Graphical User Interface (GUI).
This section concludes with a short overview on code testing for quality assurance
and stability of the tool in Section 4.5.

4.1 Abstract Architecture Overview

The implemented OpenID Attacker consists in general of the three parts shown
in Figure 7:

1. A Data Model for storing and accessing the used configurations.
2. The Logic or Controller which holds the business logic of the tool.
3. The GUI component which will be seen by the end-user.

OpenID Attacker

Data Model Logic / Controller

Server Logic Additional Features

GUI / View

Server Config

Discovery Config

HTML Config

XRDS Config

Attack Parameter

Discovery Logic

HTML Discovery

XRDS Discovery

Token Logic

Token Generation

Token Manipulation

Token Verification

Persistance

Logging

Server Controller

Discovery View

Token Generation View

Logger View

Figure 7: Abstract overview on the OpenID Attacker tool.

Each of these parts can be divided into different sub-components. The Data
Model, which consists of the Server Config (e.g. the used port), the Discovery
Config for HTML and XRDS and the Attack Parameter used by the Server
Logic are described in Section 4.2. The Logic component can be divided into two
main subcomponents: The Server Logic is responsible for all HTTP requests,
e.g. the OpenID discovery and the token request/verfication part. Additional
Features like Logging of all requests and a Persistence layer also belong to
this component. They are described in Section 4.3. The last main component of

24/ 62



4.2 Model Description Implementation

the OpenID Attacker is the GUI. It is responsible for the interaction between the
user and the program. The GUI is described in detail in Section 4.4.

4.2 Model Description

4.2.1 Java Beans

For the implementation of the model, the OpenID Attacker tool heavily uses the
concept of Java Beans. A Java Bean is basically a Java Class with the following
properties:

1. The class is serializable. Therefore, the class itself or one of its ancestor
classes must implement the Java interface serializable.

2. The class has a default constructor. This means that the class must offer
at least a constructor without any arguments. Further constructors are also
allowed.

3. The class attributes must be private and are accessible by getter and setter
methods.

This concept can be realized in most cases pretty easy. However, its advantage is
enormous: Most libraries, especially GUI Libraries like Java Swing offer a great
support for Java Beans. In the case of OpenID Attacker, the GUI is developed
using the Netbeans IDE (28) and the model components can simply be dropped
into the form view. Afterwards, their attributes are easily accessible via dropdown
boxes.

4.2.2 Property Change Support

A further heavily used concept in OpenID Attacker is the property change support.
The concept is not directly related to Java Beans, but often combined with it.
The idea of property change support is very simple: Each class attribute can be
seen as a property and its value can by observed by other classes. The benefit of
this is, that GUI components can attach to those classes and monitor its values
easily.

Behind the scenes, the concept is very old. It is basically the Observer Pattern (14,
Section 2). Property change support just reduced the code that is needed for its
implementation. Instead of writing code to collect the observers and additionally

25/ 62



4.2 Model Description Implementation

writing the code to notify them in each class, the property change class offers this
to the developer.

Using the property change support is therefore very simple:
1 import java . beans . PropertyChangeListener ;
2 import java . beans . PropertyChangeSupport ;
3
4 public class PropertyChangeExample {
5
6 private int p r i c e = 0 ;
7 public stat ic f ina l St r ing PROP_PRICE = " p r i c e " ;
8 private transient f ina l PropertyChangeSupport y

propertyChangeSupport = new PropertyChangeSupport ( this ) ;
9
10 public int ge tPr i c e ( ) {
11 return p r i c e ;
12 }
13
14 public void s e tP r i c e ( int newPrice ) {
15 int o ldPr i c e = this . p r i c e ;
16 this . p r i c e = newPrice ;
17 propertyChangeSupport . f i rePropertyChange (PROP_PRICE, y

o ldPr ice , newPrice ) ;
18 }
19
20 public void addPropertyChangeListener ( PropertyChangeListener y

l i s t e n e r ) {
21 propertyChangeSupport . addPropertyChangeListener ( l i s t e n e r ) ;
22 }
23
24 public void removePropertyChangeListener ( PropertyChangeListener y

l i s t e n e r ) {
25 propertyChangeSupport . removePropertyChangeListener ( l i s t e n e r y

) ;
26 }
27 }

Listing 6: Example class which uses the Java property change support.

Listing 6 gives a simple example for using the property change support. It shows
an example Java Class which holds a private int price = 0; property (line 6).
The property is accessible by the corresponding getter getPrice() (line 10) and
can be modified by the method setPrice(int price) (line 14).

For using the property change support, the property name is declared in line 7.
The property name must always be the name of the attribute it belongs to7. In

7Of course, arbitrary names can be used. In fact, when refactoring with Netbeans using
the encapsulate field method, the value of the propertyname is automatically the uppercase
propertyname prefixed by the string PROP_. This leads to significant problems when trying to
bind this property to a Swing component, because swing only expects the explained naming
convention.

26/ 62



4.2 Model Description Implementation

line 8, one can see the declaration of the propertyChangeSupport variable. The
constructor just needs the observable object as an argument. Whenever the value
of the variable price has changed, this variable can notify all observers. For
adding and removing such observers, respective methods are added in lines 20-26.
Lines 15-17 are showing an example of how to notify all observers. All the magic
is done by the firePropertyChange method, which just needs the name of the
property (PROP_PRICE plus the old and the new value of the price).

1 import java . beans . PropertyChangeEvent ;
2 import java . beans . PropertyChangeListener ;
3
4 public class PropertyChangeObserverExample implements y

PropertyChangeListener {
5
6 @Override
7 public void propertyChange ( PropertyChangeEvent pce ) {
8 f ina l St r ing propertyName = pce . getPropertyName ( ) ;
9 f ina l Object newValue = pce . getNewValue ( ) ;
10 f ina l Object oldValue = pce . getOldValue ( ) ;
11 f ina l St r ing message = St r ing . format ( "%s␣changed␣ from␣%d␣ to y

␣%d" , propertyName , oldValue , newValue ) ;
12 System . out . p r i n t l n ( message ) ;
13 }
14
15 public stat ic void main ( St r ing [ ] a rgs ) {
16 PropertyChangeObserverExample obse rve r ;
17 obse rve r = new PropertyChangeObserverExample ( ) ;
18
19 PropertyChangeExample obse rvab l e ;
20 obse rvab l e = new PropertyChangeExample ( ) ;
21 obse rvab l e . addPropertyChangeListener ( obse rve r ) ;
22 obse rvab l e . s e tP r i c e (10) ;
23 }
24 }

Listing 7: Example class which can observer a property.

Listing 7 gives an example how to observe the price value from Listing 6. The
observer class needs to implement the PropertyChangeListener interface (line 4)
and therefore add the method propertyChange(PropertyChangeEvent pce) y
(line 7). For observing a property, the observer class just adds itself using the
provided method (line 21). If the property value is changed on the observable
(line 22), the observer gets notified and the propertyChange(..) method (line 7)
is called. In this case, the programs output will be

price changed from 0 to 10

Two additional notes:

27/ 62



4.2 Model Description Implementation

1. Unfortunately, there does not exist any Java interface which indicates that
a class is observable. This especially means that the name of the methods
for adding and removing observers is not fixed. Anyway, the names defined
in Listing 6 follow the common naming convention.

2. Besides observing property values, it is also possible to add VetoableChange-
Support. This can be used in the case, that one observer does not want the
observable to change the value of a property, e.g. because it is working on
it.

4.2.3 Server Config Model

The class OpenIdServerConfiguration.class holds the necessary properties for
the basic OpenID HTTP Server, that means, it controls the server listening port
and the data within the HTTP responses based an the incoming request. The
class is realized as a Java Bean with property change support. It contains the
following properties:

PROP_SERVERLISTENPORT: The port on which the server shall listen when started.
PROP_ASSOCIATIONEXPIRATIONINSECONDS: The value of this property defines the

number of seconds, after which the association becomes expired.
PROP_ASSOCIATIONPREFIX: The value of the assoc_handle parameter set by the

OpenID IdP is prefixed with this value. If it is the first assoc_handle using
this prefix, the value of assoc_handle is set to the prefix itself. Otherwise,
a dash followed by an ascending integer is appended.

PROP_HTMLCONFIGURATION: This property holds the HTML configuration of the
server and is described below.

PROP_XRDSCONFIGURATION: This property holds the XRDS configuration of the
server and is described below.

PROP_VALIDUSER: This property holds the configuration of the valid user. It
can be basically seen as a table with key/value pairs. E.g. it holds the
openid.identity, openid.claimed_id or openid.sreg.email data. This
data will be used by the OpenID IdP when generating valid user tokens.

PROP_ATTACKDATA: Similar to the valid user configuration, this property holds
the data used when creating malicious tokens. Although the attacking data
can be defined individually in the attack parameter model, this data will be
used initially to fill the attack parameters. Thus, this data is just kept for
usability.

28/ 62



4.2 Model Description Implementation

PROP_PERFORMATTACK: If this value is true, the OpenID IdP will generate mali-
cious tokens instead of using the valid user configuration.

PROP_INTERCEPTIDPRESPONSE: The OpenID IdP redirects the client by using HTTP
Post redirect. If this value is set to false, the <form/> will not be auto-
matically submitted to the SP. Thus, the penetration tester can see what is
exactly going to be sent to the SP without the need of any further tools like
Tamper Data (1).

The model for the HTML discovery (HtmlDiscoveryConfiguration.class) and
XRDS discovery (XrdsDiscoveryConfiguration.class) holds the following con-
figuration properties:

. The PROP_BASEURL holds the URL under which the OpenID IdP is reachable.

. It is possible to configure the OpenID Version which the server is capable
of.

. Optionally, the HTML/XRDS Document may include a local identifier URL.

4.2.4 Attack Parameter Model

One of the main capabilities of the OpenID Attacker tool is the feature of generat-
ing arbitrary OpenID tokens. To go deeper into detail, the OpenID Attacker IdP
behaves exactly like any other valid IdP up to the point, where the penetration
tester decides to start his attack. Then, the OpenID Attacker can generate mali-
cious tokens. In this context, it is important to understand, that the token itself
can contain a valid signature. However, malicious token in this context means,
that OpenID Attacker is able to generate a token, which e.g. contains an identity
of Yahoo or Google. A benign IdP is only allowed to generate a token for its
own users, a malicious IdP is not bound to that. Of course, the token can also
break any OpenID schema, like not containing a signature, signing other values
as expected or simply adding arbitrary data. An additional requirement for the
attacker is, that he should be able to decide, whether the parameter is trasmitted
via HTTP Get or Post method.

To summarize this, an OpenID attack parameters model looks like the following:

Parameter Name
Attack value used for signature computation?
Valid Value Valid HTTP Method
Attack Value Attack HTTP Method

29/ 62



4.3 Logic Description Implementation

The valid values correspond to the identity controlled by IdPA. So valid in this
context means, that the IdP is allowed to generate tokens for this identity. On
the other hand, the attack value corresponds to the victim’s identity controlled
by IdP V .

The HTTP Method can be either Get (Default), Post or simply Don’t send.

The boolean value attack value used for signature computation indicates, whether
the attack value or the valid value shall be used, when computing the attack
signature value. To clarify this, suppose the following:

Parameter Name Valid Value Attack Value
openid.identity IV IA
openid.claimed_id CV CA
openid.signed identity,claimed_id identity,claimed_id

openid.sig To be computed. . . To be computed. . .

The program will later compute the value of openid.sig. The question is then:
which values will be used for the computation of the attack value?

For the valid value, (IV , CV) are used. However, for the attack value, it might
be possible that an attacker wants to use (IA, CV) instead of (IA, CA). This can
be chosen by the attacker using the property described above. Note that this
could also be realized by setting the attack value to the same value as for the
valid value, but this way, the attacker can distinguish between what is used for
signature computation and what will be sent to the server.

To finish the attack parameter model, a class named AttackParameterKeeper y
.class is created which basically works as a collector for all attack parameters.

4.3 Logic Description

4.3.1 Server Logic

The basic server logic can be seen in Figure 8.

There are mainly two classes which are responsible for the logic. The first one is
CustomOpenIdProviderHandler.class. It implements Jetty’s AbstractHandler y
.class (9). This class’s task is to parse the HTTP request and extract all OpenID
parameters. Depending on the value of the openid.mode parameter, the request

30/ 62



4.3 Logic Description Implementation

CustomOpenIdProviderHandler.class

handle()

CustomOpenIdProcessor.class

handleAssociationRequest()

CustomOpenIdProcessor.class

handleHtmlDiscovery()

CustomOpenIdProcessor.class

handleXrdsDiscovery()

CustomOpenIdProcessor.class

handleTokenRequest()

CustomOpenIdProcessor.class

handleCheckAuthentication()

CustomOpenIdProcessor.class

handleError()

Figure 8: Server logic overview.

is delegated to a specific method of the CustomOpenIdProcessor.class. If an
error occurs, either in the CustomOpenIdProviderHandler.class or in the class
CustomOpenIdProcessor.class, it is delegated to the handleError() method.

The responsible methods within the CustomOpenIdProcessor.class are decou-
pled from any HTTP characteristics. They mainly need an OpenID4Java Object
(ParameterList.class) as an argument, which holds all parsed openid.* pa-
rameters.

Most of the server logic uses OpenID4Java classes for simplicity (21). E.g. there is
a method named handleAssociationRequest() which only calls the OpenID4Java
method
ServerManager.associateResponse(). The only customization on this method
is implemented deeply within the OpenID4Java structure. To set arbitrary values
for the assoc_handle and the association’s expiration time, a CustomInMemoryServer y
AssociationStore.class was designed and can be configured to the needs. An

object instantiation of this class is then assigned to the ServerManager.class in
order to fulfill its job.

In contrast to that, the discovery method handleHtmlDiscovery() as well as
the method handleXrdsDiscovery() are self-made, because there is only very
limited support shipped with OpenID4Java and OpenID Attacker needs a lot of
flexibility for creating the discovery documents to fit the requirements mentioned
in Section 3.

The handleCheckAuthentication() method also uses an internal OpenID4Java
method. However, as the tool is meant to be an attacker, the method will always
return a positive response. This is due to the fact that whenever the attacker can

31/ 62



4.3 Logic Description Implementation

convince any SP to send a token to a malicious IdP (the OpenID Attacker), the
SP can be convinced that the token containing the victim’s identity is valid.

The biggest custom logic is implemented within the handleTokenRequest() y
method. The method works as follows:

1. It parses the requested parameters and takes them from the valid user con-
figuration.

2. It additionally looks for requested SReg or Ax extension parameters and
also takes them from the valid user configuration.

3. It generates the valid signature using the assoc_handle contained within
the request.

4. It generetes the attack signature. For this propose, the following steps are
performed:
. For each value which has set the flag attack value used for signature
computation (see Section 4.2.4), it replaces the valid value with the
attacker value.
→ If this flag is not set, the attack value is replaced with the valid

value. This is e.g. useful, because it updates the nonce value for
the attack parameter to the correct one.

. Finally, it computes the signature again.
5. It then decides which values will be sent to the SP. If no attack is performed,

only the valid values are used. In the case of an attack, the values are sent
according to their specified HTTP Methods (Get/Post/Don’t Send).

Note that the signature value is always computed for both, the valid values and
the attack values. This is just reasoned in usability. The user of the OpenID
Attacker can see that there are two different signature values.

4.3.2 Persistence

An important feature for almost every tool, which requires a configuration, is,
that it must be able to store and load its configuration. In the case of OpenID
Attacker, there are lots of configuration data, e.g. the server’s base URL, the
configured port, the valid user data, the attack user data,. . . For this to work,
there must be a so-called persistence layer. In Java, this could be realized using
the Serializable interface8. However, there are a lot of reasons why this might not

8http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

32/ 62

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html


4.3 Logic Description Implementation

be the best solution:

. The serialized object does not only contain the object’s properties. It con-
tains the whole object. This means, the serialized object could also include
different functionality if it is a subclass of the expected object.

. The resulted output is not human readable. It is just a byte stream.

Thus, OpenID Attacker uses a different approach to serialize its configuration:
Java Architecture for XML Binding (JAXB). JAXB offers a way to serialize spec-
ified properties of an object into an XML file. The XML file has the advantage,
that it can be easily read and if necessary, it can also be modified manually by
using an external editor. Using JAXB is quite simple. Listing 8 shows an example
for storing an object configuration into a File:

1 public stat ic void saveConf igToFi le ( F i l e saveF i l e , f ina l y
OpenIdServerConf igurat ion conf igToSave ) throws y
XmlPers i s tenceError {

2 try {
3 JAXBContext jaxbContext = JAXBContext . newInstance ( y

OpenIdServerConf igurat ion . class ) ;
4 Marsha l l e r jaxbMarsha l l e r = jaxbContext . c r ea t eMar sha l l e r ( ) ;
5 jaxbMarsha l l e r . s e tProper ty ( Marsha l l e r .JAXB_FORMATTED_OUTPUT, y

true ) ;
6 jaxbMarsha l l e r . marshal ( configToSave , s av eF i l e ) ;
7 LOG. i n f o ( S t r ing . format ( "Saved␣ s u c c e s s f u l l y ␣ c on f i g ␣ to ␣’%s ’ " , y

s av eF i l e . g e tAbso lu t eF i l e ( ) ) ) ;
8 } catch ( JAXBException ex ) {
9 throw new XmlPers i s tenceError ( S t r ing . format ( "Could␣not␣ save ␣ y

c on f i g ␣ to ␣ F i l e ␣’%s ’ " , s av eF i l e . g e tAbso lu t eF i l e ( ) ) , ex ) ;
10 }
11 }

Listing 8: Saving XML properties using JAXB.

The example will store an OpenIdConfigurationObject.class object to a spec-
ified file. Therefore, a new JAXBContext.class object must be created (line 3).
As the object should be serialized, one has to create a Marshaller.class object
(line 4). Using its defined marshal() method (line 7), the XML representation
will be stored.

The class to be serialized using JAXB (in this case, the OpenIdServerConfiguration y
.class) has just to be annotated with @XmlRootElement(). JAXB will automat-
ically see all getters and store its value within an XML element named to the
property name. E.g. if there is a method getName() which returns John, then
JAXB will create the XML Element <name>John</name>.

An example snippet for restoring the configuration can be seen in Listing 9.

33/ 62



4.3 Logic Description Implementation

1 public stat ic void mergeConf igFi leToConf igObject ( f ina l F i l e y
l oadF i l e , OpenIdServerConf igurat ion cur r en tCon f i gu ra t i on ) y
throws XmlPers i s tenceError {

2 try {
3 JAXBContext jaxbContext = JAXBContext . newInstance ( y

OpenIdServerConf igurat ion . class ) ;
4 Unmarshal ler jaxbUnmarshal ler = jaxbContext . c reateUnmarsha l l e r y

( ) ;
5 OpenIdServerConf igurat ion loadedConf ig = ( y

OpenIdServerConf igurat ion ) jaxbUnmarshal ler . unmarshal ( y
l o adF i l e ) ;

6 BeanUti l s . copyProper t i e s ( cur rentConf igurat ion , loadedConf ig ) ;
7 LOG. i n f o ( S t r ing . format ( "Loaded␣ s u c c e s s f u l l y ␣ c on f i g ␣ from␣’%s ’ " , y

l o adF i l e . g e tAbso lu t eF i l e ( ) ) ) ;
8 } catch ( Invocat ionTargetExcept ion | I l l e g a lAc c e s sExc ep t i on | y

JAXBException ex ) {
9 throw new XmlPers i s tenceError ( S t r ing . format ( "Could␣not␣ load ␣ y

c on f i g ␣ from␣ F i l e ␣’%s ’ " , l o adF i l e . g e tAbso lu t eF i l e ( ) ) , ex ) ;
10 }
11 }

Listing 9: Merging XML properties using JAXB.

This works similar to the storing method, except for creating an unmarshaller
instead of a marshaller. Note that line 6 uses the BeanUtils.copyProperties y
()method. It is used to copy the loaded configuration parameters over the current
ones. In general, it would also be possible to change the current configuration
object with the loaded one. However, this would cause lead to trouble because
of the way the Netbeans IDE creates the GUI. It is simply not possible to rebind
a data object to a GUI component (more on that in Section 4.4.2). Thus, if the
object is just replaced, the GUI would not notice this and still show the content
of the old object. This is prevented by merging both configuration files.

4.3.3 Logging

A very important component of the OpenID Attacker is the logging functionality.
It offers a smart overview on what is going on in the tool. The idea is quite
simple: Whenever the IdP gets a request, it creates one log entry which indicates
the current process of the tool.

Figure 9 shows the GUI of the log viewer component. Each log entry has a specific
type, e.g. XRDS or Association, the time it was created and a short summarized
description. It also contains the exact HTTP request and the response generated
by the OpenID Attacker.

34/ 62



4.4 GUI Description Implementation

Figure 9: The OpenID Attacker log viewer.

The advantage of this log viewer is, that the penetration tester can see what is
happening. E.g. he can easily find out, that the XRDS document is cached by the
SP, because the SP did not request it again, or he could see that the SP does only
support direct verification if it does not associate with the OpenID Attacker.

4.4 GUI Description

4.4.1 GUI Overview

The goal of this thesis is to develop a penetration test tool which allows the
security analysis of OpenID. The model and the logic of the OpenID Attacker
were described in the previous sections. For the usability of the OpenID Attacker,
an easy-to-use GUI has been designed. The design idea is mainly taken from WS-
Attacker (20): The tab-based graphical interface will guide the user from the left
most tab to the right ones.

Figure 10 shows the different tabs:

Server Config: This tab gives an overview on the basic server configuration. The
penetration tester can configure the server listen port, the association prefix
and its expiration time. This summarizes basically the attack model for
the IdP association mentioned in Section 3.3.2. Additionally, this tab offers
buttons for starting and stopping the sever as well as a tabular overview on
established associations and a shortened log viewer.

35/ 62



4.4 GUI Description Implementation

Figure 10: The tab-based GUI of OpenID Attacker.

HTML Discovery and XRDS Discovery: These tabs can be used to configure
which data is sent during the discovery phase. The configuration options
can be taken from Section 3.3.1.

Attack Overview: This tab holds the main attack configuration. It represents
the attack parameter model, see Section 4.2.4. The penetration tester can
configure, which parameters will be replaced with the victim values, which
values are used for the signature computation and which values are send
over Get/Post HTTP method to the SP.

Valid User and Attack Data: In these tabs, the user can setup the data used
by the IdP. E.g. which identity, claimed_id or email is used when cre-
ating tokens. The values from the attack data represent the information
corresponding to the victim’s account while the valid user data belongs to
the attacker’s valid account.

Profiles: The profiles tab can be used to save attack configurations and restore
them. It is an additional way to access the persistence layer, see Sec-
tion 4.3.2. The common way is to use the File menu to load a configuration
file. Using this tab, specific attack profiles can be saved, e.g. which values
are sent using a specified method to the server. The idea of this tab is, that
if the penetration tester can find a successful attack vector, he can save this
specific vector and reuse it later.

36/ 62



4.4 GUI Description Implementation

Log Viewer: The logging functionality was already explained in Section 4.3.3.
This tab displays the entries.

4.4.2 Beansbinding

For the creation of the GUI as described in the previous section, one concept is
heavily used. It is the concept of data binding using the Java implementation
named Beansbinding (39).

To understand this concept, one has to understand how GUIs are created with
Java. Suppose there is an Object o which has a property named text. Now,
a graphical input method, GraphicalInput g, should be created to modify this
value. What the developer wants, is a graphical text field which represents o. y
text. He expected that o.text and g.text refer to the same instance of the same
object. Thus, when one changes g.text, the model’s value, o.text also changes.
However, this is simply not possible, e.g. because String objects are immutable.
Thus, what the developer really wants, is that the value of g.text and o.text

are always synchronized. If the o.text changes, then g.text also changes and
vice versa. This is called a data binding.

The only requirement for this is, that the objects must implement the property
change support, see Section 4.2.2. A minimal usage example for Java Beansbinding
can be seen in Listing 10:

1 import javax . swing . JTextFie ld ;
2 import org . jdesktop . beansbinding ;
3 import org . jdesktop . beansbinding . Bindings ;
4 import org . jdesktop . beansbinding . AutoBinding . UpdateStrategy ;
5 import org . jdesktop . beansbinding . ELProperty ;
6 import org . jdesktop . beansbinding . BeanProperty ;
7 import wsattacker . s so . openid . a t ta cke r . c o n t r o l l e r . S e rv e rCon t r o l l e r ;
8
9 . . .
10
11 // Con t ro l l e r o f f e r s method :
12 // c o n t r o l l e r . ge tCon f i g ( ) . g e tSe r ve rL i s t enPor t ( )
13 // t h i s i s the source o b j e c t
14 Se rv e rCon t r o l l e r c o n t r o l l e r = . . . ;
15
16 // d e s t i n a t i o n o b j e c t / GUI o b j e c t
17 JTextFie ld portText = new JTextFie ld ( ) ;
18
19 bindingGroup = new BindingGroup ( ) ;
20
21 binding = Bindings . createAutoBinding (
22 // Synchroni za t ion s t r a t e g y
23 UpdateStrategy .READ_WRITE,

37/ 62



4.4 GUI Description Implementation

24 // Source o b j e c t
25 c on t r o l l e r ,
26 // Source o b j e c t ’ s proper ty
27 ELProperty . c r e a t e ( "${ c on f i g . s e rv e rL i s t enPor t }" ) ,
28 // Des t ina t ion o b j e c t
29 portText ,
30 // Des t ina t ion o b j e c t proper ty
31 BeanProperty . c r e a t e ( " t ext " )
32 ) ;
33
34 // Add to b ind ing group
35 bindingGroup . addBinding ( binding ) ;
36 // Ac t i va t e a l l b ind ing s
37 bindingGroup . bind ( ) ;

Listing 10: Usage example of Java Beansbinding.

Note that this behavior could also be achieved by manually adding the GUI object
as an observer of the model object and vice versa. Then, whenever a value is
changed, the property change support can be used to adjust the other object’s
value. The advantage of using Beansbinding is, that it is just less code to write.
No adding to the observer list is needed, no method for adjusting the value must
be implemented. However, the biggest advantage is, that Beansbinding keeps
track of the object. Line 25 and 27 of Listing 10 show, which object value is
bound. It is controller.getConfig().getServerListenPort(). Now suppose
the developer wants to keep track of this value without using Beansbinding. He
must first keep track of the config object. If it is changed, the old property change
listener must be removed and a new one must be added. The same is for the port
property. This is just a lot of code to write and Beansbinding offers an elegant
way to counter this problem.

To conclude, it is even smarter to use Beansbinding when using the Netbeans
IDE (and maybe similar IDEs as well), because it offers a well integrated click
and bind feature. Just right-click on a GUI element, and choose bind. Afterwards,
the developer can simply select the property to which the GUI element should be
bound, and the code is generated by the IDE.

Two additional sidemarks on Beansbinding:

1. Beansbinding already converts simple data types, e.g. int to String. It is
also possible to create custom converters by extending the Converter. y
class9. This offers a lot of flexibility. E.g. in OpenID Attacker, a converter

9org.jdesktop.beansbinding.Converter.class

38/ 62



4.5 Code Testing Implementation

is used to convert the enum server status to a color, which indicates that the
server is stopped by a red button.

2. There exists a further library named BetterBeansbinding (10). The project
has started because the original Beansbinding has stopped being developed
since March 2009. During the implementation of OpenID Attacker, it comes
out, that BetterBeansbinding is much faster when binding and unbinding a
lot of GUI elements on the fly. As BetterBeansbinding supports the same
API as Beansbinding, it can be simply replaced by adding the BetterBeans-
binding JAR to the classpath.

4.5 Code Testing

4.5.1 Unit Testing

Unit testing is a method for assuring the correctness of individual parts of source
code. In contrast to integration testing, a unit test covers only a very small part
of source code. In most cases, it covers only one specific method of a class. The
idea of such a unit test is, that this method behaves as expected under specified
circumstances, i.e. for a given input.

Suppose there is a method divide(int a, int b) which should divide an integer
a by an integer b, so that the result is ba

b
c. A unit test can be created by calling

the method with fixed input values, e.g. a = 7 and b = 2. The test will compute
r = divide(7,2) and check, if r is equal to the fixed value r ?

== 3. If this is not
true, the developer will be notified. Additionally, besides tests of common method
behavior, it is essential to write tests for special cases. For the given example, there
should be a test for b = 0. The expected behavior should be, that the message
should throw an exception, indicating that a divide-by-zero error occurs.

The advantage of creating unit tests is, that whenever the code changes, the tests
can be run to verify that at least the old functionality is given and nothing is
broken. According to (22), tests are really important for the growth of a software
product, because every refactoring, code cleanup or feature merge requires that
at least the old functionality is not broken.

Note that creating tests is not comparable to code debugging. Whenever a soft-
ware behaves strange, unwanted, or crashes occur, the developer should try to
write a test for this issue. It is a bad idea to just start the debugger, understand

39/ 62



4.5 Code Testing Implementation

why the issue occurs, and then fix it. This is because the code can evolve, and
maybe the issue will occur another time. Without a test that verifies the absence
of a specific issue, the developer must always manually search for it.

In Java, there are two main frameworks for writing unit tests.

1. JUnit (3)
2. TestNG (4)

For JUnit, there are two commonly used versions. JUnit 3 is the legacy framework
and has a lot of downsides. E.g. tests must always extend TestCase.class, names
of test methods must have the prefix test, . . . To counter these problems, JUnit 4
heavily uses the Java concept of Annotations10, which was introduced with Java
5.

TestNG was developed in between JUnit 3 and JUnit 4 by a different group and
uses the same Annotation concept as JUnit 4. In recent versions of JUnit 4 and
TestNG, there are only very few differences11.

4.5.2 JUnit

OpenID Attacker uses JUnit 4 tests, because the author is more familiar with this
framework than with TestNG. In OpenID Attacker, every model and every logic
has its own JUnit tests. To describe all these tests in detail is out of scope of this
thesis. This thesis will just describe the general idea of how to write tests.

1 as s e r tEqua l s ( "a" , "b" ) ;

Listing 11: Example JUnit test using an equals assertion.

JUnit provides a set of assert methods. One of the most frequently used ones is
assertEquals(Object o1, Object o2). It compares o1 and o2 using its defined
equals(Object o) method. If the method returns false, an error occurs. The
error gives information about which value is expected and which value is the actual
computed value. This leads to the first problem of the assertEquals() method.
Which parameter refers to the expected value and which one to the actual value?
The JUnit API uses the first parameter as the expected value, and the second
as the actual value. For TestNG, it is vice versa, which will confuse developers

10http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
11See http://www.mkyong.com/unittest/junit-4-vs-testng-comparison/

40/ 62

http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://www.mkyong.com/unittest/junit-4-vs-testng-comparison/


4.5 Code Testing Implementation

switching from one testing framework to the other. The syntax itself allows to
change both values, thus the resulting error message will confuse a developer.

Additionally, JUnit provides the possibility to add a message String that will
be used when a test fails. It can contain additional information why a test fails.
The syntax is assertEquals(String message, Object expected, Object y
actual). The problem of this method is, when comparing two String param-

eters, the syntax of the method accepts three String parameters. Again, this is
confusing for people switching from TestNG to JUnit. In TestNG, the message
parameter is always the last one – in JUnit it is the first one!

A further example why JUnit assert methods are not sufficient is shown in List-
ing 12:

1 asse r tTrue ( myColorList . conta in s ( "RED" ) ;

Listing 12: Example for a JUnit test using a true assertion.

The test wants to verify that a given list contains an item String "RED". What
the developer really wants, is that the test assures, that the list contains the item.
If this is not true, the fail message should show what is contained in the list
instead – the developer is looking for an assertListContainsItem(..) method.
This method does not exist in JUnit itself, it would be only possible by adding a
message, which contains all list items. Thus, the developer must write this method
by himself. The result will be, that there is more code to read and understand
the test, and the complexity is increased.

4.5.3 Hamcrest

Hamcrest (31) is a framework for creating matchers that can be used to simplify
complex unit tests and improve the test’s readability. Matchers are a concept
that allows to define more precisely what a test should verify. Using Hamcrest,
Listing 11 can be written as follows:

1 assertThat ( "a" , i s ( equalTo ( "b" ) ) ) ;
2 // or in shor t
3 assertThat ( "a" , i s ( "b" ) ) ;

Listing 13: A simple example of using Hamcrest matchers.

The basic method for using matchers is the assertThat(T actual, Matcher y
<? super T> matcher) method. The advantage of this method is, that it uses

41/ 62



4.5 Code Testing Implementation

asymmetric parameter types. The first parameter defines the actual object of
type T . The second parameter expects a Matcher object. In line 3 of Listing 13,
the matcher is the method is(..). In line 1, there is the combination of two
matchers: is(equalTo(..)). The concept of combining matchers allows to create
very complex assertions while not loosing its readability. Listing 14 gives an
example for a more complex combination of hamcrest matchers:

1 assertThat ( "OpenID" , i s ( a l lO f ( notNul lValue ( ) , ins tanceOf ( S t r ing . y
class ) , equalTo ( "OpenID" ) ) ) ) ;

Listing 14: An example for the combination of multiple matchers using hamcrest.

Hamcrest itself is shipped in a very reduced manner with JUnit 4. To get the full
hamcrest support, one can use the following setting in the Maven (2) pom.xml :

1 <dependenc ies>
2 <dependency>
3 <groupId>org . hamcrest</groupId>
4 <a r t i f a c t I d>hamcrest−a l l</ a r t i f a c t I d>
5 <version>1.3</version>
6 <scope>t e s t</ scope>
7 </dependency>
8 <dependency>
9 <groupId>jun i t</groupId>
10 <a r t i f a c t I d>jun i t</ a r t i f a c t I d>
11 <version>4.11</version>
12 <scope>t e s t</ scope>
13 </dependency>
14 </dependenc ies>

Listing 15: Including full hamcrest in a Maven project.

Note that it is very important to define the hamcrest dependency before defining
the JUnit dependency, because Maven will only then exclude the hamcrest classes
shipped with JUnit. If the dependency order is changed, one has to exclude all
hamcrest classes from the JUnit JAR.

After this inclusion, hamcrest offers a large set of matchers for Beans, Collections,
XML, and much more12.

12http://code.google.com/p/hamcrest/wiki/Tutorial

42/ 62

http://code.google.com/p/hamcrest/wiki/Tutorial


Evaluation

5 Evaluation

This section will show the applicability of the OpenID Attacker tool. It will neither
give an overview on existing attack vectors nor describe how to find new ones. It
will be shown that the tool is able to login into different SPs by the example of
WordPress (13) and ownCloud (30). Additionally, a step-by-step guide will show
the manipulation possibilities of a penetration tester.

5.1 WordPress

WordPress is a free and open source content-management system (CMS) (13).
It is based on PHP plus MySQL and according to (38), it is used by more than
20% of the top 10 million websites in September 2013. It supports OpenID login
via an official plugin (40), which itself is based on the JainRain PHP OpenID
library (18). The plugin supports OpenID in versions 1.0, 1.1 and 2.0. However,
this section will only have a look at version 2.0 – version 1.0 will be shown in the
next section.

The first step of the penetration test is to start the OpenID Attacker tool.

Figure 11: Server basic configuration of the OpenID Attacker.

Figure 11 shows the programm’s start screen. First, one has to set up the server
listen port, which is 8080 by default. Additionally, the penetration tester can
choose a value for the association prefix. This value will be used when the SP
will associate with the OpenID Attacker IdP. Note that this is only a prefix. If

43/ 62



5.1 WordPress Evaluation

further associations are established, the prefix is suffixed by a dash followed by a
sequential integer. The penetration tester can also choose the expiration time for
each established association. In this case, it is set to 10 seconds. Furthermore,
the tool is configured to intercept the IdP response and – for the moment – to not
perform any attack. Thus, the OpenID Attacker IdP behaves as a valid IdP.

Figure 12: XRDS discovery configuration window.

The configuration for HTML discovery is skipped because it will not be used in
this scenario, but in the following section. Figure 12 shows the XRDS discovery
configuration. The tab can be used to configure the base URL of the IdP. This
is the URL which will be used as an endpoint by the SP, e.g. for establishing the
association. It is also possible to choose which OpenID version should be used,
if an identity value should be contained and the specific value of this identity. In
this scenario, OpenID version 2.0 with claimed identifier element13 set to http:

//xml.nds.rub.de:8080/simpleid/www/index.php?q=xrds/remote14 is config-
ured. The final XML content of the XRDS document is always shown in the lower
part of the tab.

13According to (36, Section 7.3.2.1.2)
14The reader should not be confused by this URL. The author of this thesis has first started to

setup a SimpleID PHP OpenID IdP, and to keep compatibility, the same URL is used within
the OpenID Attacker IdP. http://simpleid.koinic.net/

44/ 62

http://xml.nds.rub.de:8080/simpleid/www/index.php?q=xrds/remote
http://xml.nds.rub.de:8080/simpleid/www/index.php?q=xrds/remote
http://simpleid.koinic.net/


5.1 WordPress Evaluation

Figure 13: Valid user data configuration window.

Figure 13 shows the next step: The configuration of the valid user data, i.e.
the data that will be used by the OpenID Attacker IdP if no attack is performed.
Therefore, the penetration tester needs to configure at least the value for identity
and claimed_id. Additionally, he can set up further information, like an email

or a fullname. This data will be used if the SP uses Ax or SReg extensions. Note
that the identity information in this tab can be different to the one in the XRDS
configuration tab. The OpenID Attacker IdP will not use the information of the
XRDS configuration15.

Figure 14: OpenID login form for WordPress.

Hereafter, the OpenID Attacker is configured and ready to work as a valid OpenID
IdP. The server can be launched by using the start button, see Figure 11.

15This can be useful if the penetration tester wants the SP to discover different information by
an XRDS discovery, than it receives within the actual token.

45/ 62



5.1 WordPress Evaluation

Using an arbitrary browser, the WordPress login page can be opened. In this
scenario, a local WordPress installation is configured to use the OpenID plugin.
A custom account was created and linked to the OpenID URL http://xml.nds.

rub.de:8080/simpleid/www/index.php?q=xrds/remote. This URL is now en-
tered into the according field, and the login button is pressed.

Figure 15: OpenID Attacker log viewer after sending the valid token to WordPress.

Figure 15 shows the OpenID Attacker log viewer. One can easily see the business
logic of the SP:

1. First, the SP starts the discovery on the XRDS document. This corresponds
to the lowermost entry within the log table.

2. Then, the SP starts the association with the OpenID Attacker IdP. The
URL of the IdP is taken from the XRDS document. As it can be seen in
the table, the association prefix myAssocHandle is used.

3. In a last step, the browser of the penetration tester is redirected to the
OpenID Attacker IdP and requests a token.

The request/response pair of step 3 is shown on the lower part of the log viewer.
Each other step could also be inspected in detail by selecting it from the table.

46/ 62

http://xml.nds.rub.de:8080/simpleid/www/index.php?q=xrds/remote
http://xml.nds.rub.de:8080/simpleid/www/index.php?q=xrds/remote


5.1 WordPress Evaluation

Figure 16: Token interception within the browser of the penetration tester.

Because of enabling the interception of the IdP response (see Figure 11), the token
created by the OpenID Attacker IdP is not automatically forwarded to the SP.
Figure 16 shows the token, and all data which should be sent to the SP, within
the browser. The penetration tester can then use the submit button to submit it
via HTTP Post method. Alternatively, he can click on the action URL link and
send it using the HTTP Get method. Both possibilities are important, because
in some cases, the SP will only accept one specific method. However, WordPress
accepts both. After submitting the token, the penetration tester is successfully
logged in.

Figure 17: Attack data configuration window.

After these steps, the OpenID Attacker is configured for attacking. The penetra-
tion tester now knows that the setup was successful and that the tool can be used
to login with valid tokens. For creating attack vectors, some attack data must
be configured. Figure 17 shows the corresponding tab. Note that in contrast to
the valid user configuration, the key/value pairs must be full parameter names,
including the openid.-prefix16. All these values can be reused for different SPs as
16For the valid user, the tool just needs generic information. E.g. an email can be requested by

Ax or SReg extensions. For comfortability, the penetration tester just needs to configure an
email, without knowing which extension will use it. In contrast to that, for the attacking
mode, the penetration tester must be able to configure this more precisely.

47/ 62



5.1 WordPress Evaluation

they will be saved on exiting the program.

Figure 18: Attack overview and configuration window.

Figure 18 shows the concrete attack manipulation. Each OpenID parameter is
shown and can be configured as described in Section 4.2.4. As an example, in
the scenario, OpenID Attacker modifies the parameters identity, claimed_id
and endpoint, whereat only the first one is shown in Figure 18. Therefore, the
penetration tester has just to enable the modify for attack signature computation
option. Afterwards, the attack value is editable and preset with the value config-
ured in the attack data tab. It is also possible to add custom parameters, change
the parameter order and its submission method (right side). On the left side,
colored boxes indicate, if the values is included in the openid.signed parameter.
A white box means that the parameter is not included, a green one indicates that
it is included in the valid value of openid.signed and a red one correspondingly
for the attack value.

Additionally, for the openid.sig parameter, the attack value method is changed
from Don’t send to Get. Note that for this special parameter, modify for at-
tack signature computation is not enabled, as this would overwrite the computed
signature value with a custom one.

48/ 62



5.2 Owncloud Evaluation

Figure 19: OpenID Attacker log viewer after sending the attack token.

After enabling the attack mode by using the perform attack switch, the OpenID
IdP will create tokens containing the victim’s identity. Figure 19 shows the log
viewer after a re-login. The SP performs again the same steps as before, but the
token does now include a different identity. Although the contained signature
is cryptographically valid, the login attempt failed. WordPress has detected the
attack.

5.2 Owncloud

OwnCloud is a free and open source web application (30). It allows its users
to synchronize their personal data, like a calender or contacts, and offers the
possibility to synchronize and share files between different clients. OwnCloud
supports OpenID by a plugin, which is shipped with the main version and just
needs to be activated. In contrast to WordPress, the ownCloud OpenID plugin
only works with OpenID version 1.0 and therefore has a different working flow.

The basic configuration of this scenario is comparable to the WordPress sce-
nario:

. A custom installation of ownCloud is deployed on the local host machine.

. A sample user account is created.

. The OpenID plugin is activated.

. The user account is linked to the OpenID URL http://xml.nds.rub.de:

8080/simpleid/www/. Note that this is different to the WordPress scenario,
because ownCloud does not support XRDS discovery.

49/ 62

http://xml.nds.rub.de:8080/simpleid/www/
http://xml.nds.rub.de:8080/simpleid/www/


5.2 Owncloud Evaluation

. The OpenID Attacker is configured as shown in Figure 11.

Figure 20: HTML discovery configuration window.

The main configuration difference is, that ownCloud only accepts HTML discovery.
Its configuration can be seen in Figure 20. In this case, the server’s base URL is
the same as the identity URL. This will of course only work for a single-user IdP,
but is fine for a penetration test. Additionally, OpenID version 1.0 (OpenID Server
checkbox) and OpenID Version 2.0 (OpenID2 Provider checkbox) are enabled, but
ownCloud will always use version 1.0.

Figure 21: OpenID login form for ownCloud.

Afterwards, the penetration tester can start the login process. OwnCloud does not
provide a special OpenID login form. The user has to enter its OpenID URL just
as the username. However, he additionally needs to enter an arbitrary password.
This might be confusing, but ownCloud does not allow to submit a form without
a password.

50/ 62



5.2 Owncloud Evaluation

Figure 22: OpenID Attacker log viewer after sending the valid token to ownCloud.

The OpenID login workflow can is shown in Figure 22. It can be easily seen that
it is totally different to Figure 15.

1. The SP starts with an HTML discovery on the given URL. He extracts the
IdP URL and redirects the user’s browser to it.

2. The user’s browser requests a valid token of the OpenID Attacker IdP, be-
cause no attack is performed at this moment.

3. The SP receives the token, and rediscovers the contained identity.
4. As a last step, the SP verifies the token by using the OpenID provider

directly, see (36, Section 11.4.1).

Some remarks about this workflow:

. The SP does not establish a shared association with the IdP. Instead, it uses
the direct verification method.

. After doing the HTML dicovery, the SP does not start an XRDS discovery.

Hereafter, the account of the penetration tester is successfully logged in. The
penetration tester can now start manipulating the parameters and start the pen-
etration test.

51/ 62



Conclusion

6 Conclusion

OpenID is a widely used standard which allows Single Sign-On. However, there
was no flexible tool available allowing to manipulate arbitrary messages of the
OpenID specification. The promising tool of (44) by Wang et al. is only able to
analyze the recorded traffic. It is not possible to do real penetration tests using
the BRM-Analyzer.

This thesis closes the gap by developing OpenID Attacker, an open source OpenID
security analysis tool which acts as an IdP. The idea to simulate a full-featured
OpenID IdP allows penetration testers to analyze the traffic sent between client
and SP as well as the traffic sent between SP and IdP. It is possible to manipulate
any OpenID parameter of arbitrary exchanged messages. The tool is very flexible
and allows to change the IdP behavior in every single OpenID phase, including the
HTML/XRDS discovery, the association phase, and of course the token generation
phase.

However, OpenID Attacker is just the beginning. It allows to create any attack
vectors. In further research, the tool should be used to find and create new
attack vectors. At the moment, the tool does not provide any best practices
attack vectors, e.g. there are no attack vector lists comparable to those for SQL-
Injection.

OpenID is used in many frameworks and libraries, and supposedly in some custom
implementations of SPs out in the web. In future work, those should be examined
and a heuristic for attacking them should be derived. Using OpenID Attacker,
it is now possible to realize such a field study. It is now up to the penetration
tester’s smartness to find vulnerabilities in them.

52/ 62



Appendix

Appendix

References

[1] Adam Judson. Tamper data. URL http://tamperdata.mozdev.org/.

[2] Apache Software Foundation. Apache maven. URL https://maven.apache.

org/.

[3] Kent Beck and Erich Gamma. Junit. URL http://junit.org/.

[4] Cédric Beust and Alexandru Popescu. Testng. URL http://testng.org/.

[5] Tim Bray, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-
McQueen. Extensible markup language (XML) 1.0 (fifth edition). W3C rec-
ommendation, W3C, November 2008. URL http://www.w3.org/TR/2008/

REC-xml-20081126/.

[6] Michael Burrows, Martin Abadi, and Roger M Needham. A logic of authen-
tication. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 426(1871):233–271, 1989.

[7] OAuth Community. Oauth community site. URL http://oauth.net/.

[8] Donald Eastlake, David Solo, and Joseph Reagle. XML-signature syntax and
processing. first edition of a recommendation, W3C, February 2002. URL
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[9] Eclipse Foundation. Jetty. URL http://www.eclipse.org/jetty/.

[10] Fabrizio Giudici. Betterbeansbinding. URL https://kenai.com/projects/

betterbeansbinding/.

[11] Mozilla Foundation. Mozilla persona, . URL https://login.persona.org/.

[12] OpenStreetMap Foundation. Openstreetmap, . URL www.openstreetmap.

org.

[13] WordPress Foundation. Wordpress, . URL http://wordpress.org/.

[14] Eric Freeman, Elisabeth Freeman, Bert Bates, and Kathy Sierra. Head First
Design Patterns. O’Reilly Media, 1 edition, 2004. ISBN 0596007124.

53/ 62

http://tamperdata.mozdev.org/
https://maven.apache.org/
https://maven.apache.org/
http://junit.org/
http://testng.org/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://oauth.net/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.eclipse.org/jetty/
https://kenai.com/projects/betterbeansbinding/
https://kenai.com/projects/betterbeansbinding/
https://login.persona.org/
www.openstreetmap.org
www.openstreetmap.org
http://wordpress.org/


Appendix

[15] Thomas Groß. Security analysis of the saml single sign-on browser/artifact
profile. In Computer Security Applications Conference, 2003. Proceedings.
19th Annual, pages 298–307. IEEE, 2003.

[16] Frederick Hirsch, David Solo, Joseph Reagle, Donald Eastlake, and Thomas
Roessler. XML signature syntax and processing (second edition). W3C
recommendation, W3C, June 2008. URL http://www.w3.org/TR/2008/

REC-xmldsig-core-20080610/.

[17] Google Inc. Google docs, . URL http://docs.google.com/.

[18] JanRain Inc. Openid enabled, . URL http://janrain.com/

openid-enabled/.

[19] Christian Mainka, Meiko Jensen, Juraj Somorovsky, and Jörg Schwenk. Ws-
attacker. URL http://sourceforge.net/projects/ws-attacker/.

[20] Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. Penetration test-
ing tool for web services security. In SERVICES Workshop on Security and
Privacy Engineering, June 2012.

[21] Marius Scurtescu and Johnny Bufu. Openid4java. URL http://code.

google.com/p/openid4java/.

[22] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008. ISBN
0132350882, 9780132350884.

[23] Michael McIntosh and Paula Austel. XML signature element wrapping at-
tacks and countermeasures. In SWS ’05: Proceedings of the 2005 Workshop
on Secure Web Services, pages 20–27, New York, NY, USA, 2005. ACM Press.

[24] Catherine Meadows. Language generation and verification in the nrl protocol
analyzer. In Computer Security Foundations Workshop, 1996. Proceedings.,
9th IEEE, pages 48–61. IEEE, 1996.

[25] Jonathan K Millen. The interrogator model. In Security and Privacy, 1995.
Proceedings., 1995 IEEE Symposium on, pages 251–260. IEEE, 1995.

[26] Ben Newman and Shivaram Lingamneni. Cs259 final project: Openid (session
swapping attack), 2008. URL http://www.stanford.edu/class/cs259/

projects/cs259-final-newmanb-slingamn/report.pdf.

54/ 62

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://docs.google.com/
http://janrain.com/openid-enabled/
http://janrain.com/openid-enabled/
http://sourceforge.net/projects/ws-attacker/
http://code.google.com/p/openid4java/
http://code.google.com/p/openid4java/
http://www.stanford.edu/class/cs259/projects/cs259-final-newmanb-slingamn/report.pdf
http://www.stanford.edu/class/cs259/projects/cs259-final-newmanb-slingamn/report.pdf


Appendix

[27] Organization for the Advancement of Structured Information Standards. Se-
curity assertion markup language (saml) v2.0, 2005.

[28] OWASP. Netbeans IDE 7.3.1, . URL https://netbeans.org/downloads/

7.3.1/.

[29] OWASP. Sql injection, . URL http://www.owasp.org/index.php/SQL_

Injection.

[30] ownCloud Inc. owncloud 5.0. URL http://owncloud.org/.

[31] Jon Reid, Chris Rose, Tom Denley, Steve Freeman, and Andrew Parker.
hamcrest. URL http://code.google.com/p/hamcrest/.

[32] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and
Meiko Jensen. On breaking saml: Be whoever you want to be. In Proceedings
of the 21st USENIX conference on Security symposium, Security, volume 12,
pages 21–21, 2012.

[33] Pavol Sovis, Florian Kohlar, and Jörg Schwenk. Security analysis of openid.
In Felix C. Freiling, editor, Sicherheit, volume 170 of LNI, pages 329–340.
GI, 2010. ISBN 978-3-88579-264-2. URL http://dblp.uni-trier.de/db/

conf/sicherheit/sicherheit2010.html#SovisKS10.

[34] specs@openid.net. Openid simple registration extension 1.0. Techni-
cal report, openid.net, June 2006. URL http://openid.net/specs/

openid-simple-registration-extension-1_0.html.

[35] specs@openid.net. Openid attribute exchange 1.0 - final. Technical
report, openid.net, December 2007. URL http://openid.net/specs/

openid-attribute-exchange-1_0.html.

[36] specs@openid.net. Openid authentication 2.0 – final. Technical re-
port, openid.net, December 2007. URL https://openid.net/specs/

openid-authentication-2_0.html.

[37] San-Tsai Sun and Konstantin Beznosov. The devil is in the (implementation)
details: an empirical analysis of oauth sso systems. In Proceedings of the 2012
ACM conference on Computer and communications security, pages 378–390.
ACM, 2012.

55/ 62

https://netbeans.org/downloads/7.3.1/
https://netbeans.org/downloads/7.3.1/
http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/SQL_Injection
http://owncloud.org/
http://code.google.com/p/hamcrest/
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2010.html#SovisKS10
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2010.html#SovisKS10
http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html


Appendix

[38] W3Techs World Wide Web Technology Surveys. Usage of content man-
agement systems for websites. URL http://w3techs.com/technologies/

overview/content_management/all/.

[39] Swinglabs. Beansbinding. URL https://java.net/projects/

beansbinding/.

[40] DiSo Development Team. Wordpress openid plugin. URL http://

wordpress.org/plugins/openid/.

[41] Eugene Tsyrklevich and Vlad Tsyrklevich. Single sign-on for
the internet: A security story, July and August 2007. URL
https://www.blackhat.com/presentations/bh-usa-07/Tsyrklevich/

Whitepaper/bh-usa-07-tsyrklevich-WP.pdf.

[42] Ubisoft Entertainment S. A. Ubisoft. The settlers online. URL http://www.

thesettlersonline.net/.

[43] Gabe Wachob, Drummond Reed, Les Chasen, William Tan, and Steve
Churchill. Extensible resource identifier (xri) – resolution 2.0. Technical
report, Organization for the Advancement of Structured Information Stan-
dards (OASIS), 2006. URL https://www.oasis-open.org/committees/

download.php/17293.

[44] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts
through facebook and google: A traffic-guided security study of commer-
cially deployed single-sign-on web services. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 365–379, Washington,
DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4681-0. doi:
10.1109/SP.2012.30. URL http://dx.doi.org/10.1109/SP.2012.30.

[45] Zynga. Farmville. URL http://www.farmville.com/.

56/ 62

http://w3techs.com/technologies/overview/content_management/all/
http://w3techs.com/technologies/overview/content_management/all/
https://java.net/projects/beansbinding/
https://java.net/projects/beansbinding/
http://wordpress.org/plugins/openid/
http://wordpress.org/plugins/openid/
https://www.blackhat.com/presentations/bh-usa-07/Tsyrklevich/Whitepaper/bh-usa-07-tsyrklevich-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Tsyrklevich/Whitepaper/bh-usa-07-tsyrklevich-WP.pdf
http://www.thesettlersonline.net/
http://www.thesettlersonline.net/
https://www.oasis-open.org/committees/download.php/17293
https://www.oasis-open.org/committees/download.php/17293
http://dx.doi.org/10.1109/SP.2012.30
http://www.farmville.com/


Appendix

List of Figures

1 Using Single Sign-On to login into a SP. . . . . . . . . . . . . . . 5
2 The login scenario for multiple SPs without Single Sign-On. . . . 7
3 The login scenario for multiple SPs with Single Sign-On. . . . . . 8
4 General overview of an exemplary Single Sign-On authentication.

The protocol may also differ depending on the concrete Single Sign-
On framework, but the concept is in most cases very similar. . . . 9

5 Simplified overview of the OpenID protocol. . . . . . . . . . . . . 10
6 Overview of the attacker’s capabilities. . . . . . . . . . . . . . . . 20
7 Abstract overview on the OpenID Attacker tool. . . . . . . . . . . 24
8 Server logic overview. . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 The OpenID Attacker log viewer. . . . . . . . . . . . . . . . . . . 35
10 The tab-based GUI of OpenID Attacker. . . . . . . . . . . . . . . 36
11 Server basic configuration of the OpenID Attacker. . . . . . . . . 43
12 XRDS discovery configuration window. . . . . . . . . . . . . . . . 44
13 Valid user data configuration window. . . . . . . . . . . . . . . . . 45
14 OpenID login form for WordPress. . . . . . . . . . . . . . . . . . . 45
15 OpenID Attacker log viewer after sending the valid token to Word-

Press. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
16 Token interception within the browser of the penetration tester. . 47
17 Attack data configuration window. . . . . . . . . . . . . . . . . . 47
18 Attack overview and configuration window. . . . . . . . . . . . . . 48
19 OpenID Attacker log viewer after sending the attack token. . . . . 49
20 HTML discovery configuration window. . . . . . . . . . . . . . . . 50
21 OpenID login form for ownCloud. . . . . . . . . . . . . . . . . . . 50
22 OpenID Attacker log viewer after sending the valid token to own-

Cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Listings

1 An example XRDS document. . . . . . . . . . . . . . . . . . . . . 12
2 An example HTML discovery document. . . . . . . . . . . . . . . 13
3 Pseudo code for OpenID signature generation. . . . . . . . . . . . 14
4 Example OpenID authentication request. . . . . . . . . . . . . . . 16
5 Example OpenID token. . . . . . . . . . . . . . . . . . . . . . . . 17
6 Example class which uses the Java property change support. . . . 26

57/ 62



Appendix

7 Example class which can observer a property. . . . . . . . . . . . 27
8 Saving XML properties using JAXB. . . . . . . . . . . . . . . . . 33
9 Merging XML properties using JAXB. . . . . . . . . . . . . . . . 34
10 Usage example of Java Beansbinding. . . . . . . . . . . . . . . . . 37
11 Example JUnit test using an equals assertion. . . . . . . . . . . . 40
12 Example for a JUnit test using a true assertion. . . . . . . . . . . 41
13 A simple example of using Hamcrest matchers. . . . . . . . . . . . 41
14 An example for the combination of multiple matchers using hamcrest. 42
15 Including full hamcrest in a Maven project. . . . . . . . . . . . . . 42

58/ 62



Appendix

Glossary

A

AaaS authentication as a service; A SOA concept which provides an authentica-
tion service as a service. 9

Association An association between the SP and the OpenID IdP establishes a
shared secret between them (36, Section 8). 10–17, 19, 22, 24, 29, 32, 36,
37, 46, 48, 53, 54

Ax Attribute Exchange; OpenID extension for exchanging identity information
between endpoints (35). 16, 19, 33, 47

C

CMS content-management system; A software which helps to create an manage
content collaboratory. CMSs are often web applications. 45

CSRF Cross-Site-Request-Forgery; Attack technique which tries to use web ap-
plication APIs by a victim without his knowledge. 19

D

DHKE Diffie-Hellman key-exchange; Specific method for exchanging key mate-
rial. 13, 23

Direct verification OpenID signature verfication performed by the OpenID IdP
itself, enforced by the SP (36, Section 11.4.2). 14–16, 24, 36, 53

DoS Denial-of-Service; The unavailability of a service, which should be available.
19

G

GUI Graphical User Interface; A software component which allows a human to
interact with machine by using symbols. 25, 26, 35, 36, 38–40

I

IdP Identity Provider; An entity which is responsible for creating tokens that will
be used to authenticate a user against an SP. 2, 5, 6, 8–14, 16–24, 29, 30,
33, 36–38, 46–49, 51–54

J

JAXB Java Architecture for XML Binding; An interface for Java allowing to
bind XML Data to Java objects. See https://jaxb.java.net/. 34, 35,
60

JUnit JUnit is framework for testing Java programs. 41, 42, 44, 60

M

MitM Man-in-the-Middle; An attack technique in which the attacker virtually
or physically sits between to users, allowed to listen and manipulate their
exchanged messages. 19, 22

59/ 62

https://jaxb.java.net/


Appendix

MySQL MySQL is a widely used open source relational database management
system. 45

O

OAuthOAuth is an open protocol which standardized API-Authoring for desktop-
, web-, and mobile-applications (7). 6, 10, 19

Open source Work which are enforced by license to have source available for the
public. 2, 45, 51, 54

OpenID OpenID is decentralized authentication system for web-based SPs (36).
2, 6, 7, 10–25, 29, 30, 32, 36, 45–48, 50–54

OpenID Attacker OpenID Attacker is the tool developed in this thesis for at-
tacking the OpenID specification. 2, 6, 20, 23, 25, 26, 30, 33, 34, 36, 40,
41, 45–50, 52–54, 59

OpenID4JavaOpenID4Java is library which easily allows to implement an OpenID
consumber as well as an OpenID IdP (21). 32, 33

OwnCloud OwnCloud is a free and open source, PHP and MySQL based web
application which allows data synchronization and cloud storage (30).. 2,
6, 45, 51–53

P

Penetration test Method for evaluating security on computer systems. 6, 21,
23, 30, 36–38, 45–50, 52–54

PHP PHP is a popular server-side scripting language and widespread in the area
of web development. 45

S

SAML Security Assertion Markup Language (27). 6, 10, 18, 19
Single Sign-On Single Sign-On is a property of access controll, which allows a

user to login once and request access to several systems. 2, 5–10, 18–20,
54, 59

SOA Service Oriented Architecture; Abstract model of software architecture. 9
SP Service Provider; Also known as Relying Party, entity that offers a service

which the user wants to use. 2, 5–19, 21–24, 30, 33, 36, 38, 45–51, 53, 54,
59

SQL-Injection An attack technique which tries to inject and execute SQL state-
ments reasoned in inadequate user input validation (29). 54

SReg Simple Registration; OpenID extension for exchanging identity information
between endpoints (34). 16–19, 33, 47

T

TestNG TestNG is framework for testing Java programs. 41, 42

W

Web application A web application is an application that uses a web browser
as a client.. 5, 7, 51

60/ 62



Appendix

WordPressWordPress is a free and open source, PHP and MySQL based CMS (13)..
2, 6, 45, 48, 49, 51, 52

WS-Attacker Automatic penetration test framework (19). 37

X

XML eXtended Markup Language; textual data format to encode documents,
commonly used for message exchange (5). 12, 18, 34, 35, 44, 46

XML Signature also XML Digital Signature, standard for creating signatures
in XML documents (8, 16). 18, 19

XRDS eXtensible Resource Descriptor Sequence is an XML format for describing
metadata as a web resource. 11–13, 17, 18, 22, 23, 36, 46–48, 52–54

XSS Cross-Site-Scripting is a web application vulnerability which tries to execute
an attacker script within the context of the website owner within the user’s
browser. 19

XSW XML Signature Wrapping; technique for attacking signed XML docu-
ments (23). 19

61/ 62



Appendix

Eigenständigkeitserklärung

Hiermit versichere ich, Christian Mainka (Matrikelnummer: 108007212667), dass
ich die Arbeit selbständig angefertigt, außer den im Quellen- und Literaturver-
zeichnis sowie in den Anmerkungen genannten Hilfsmitteln keine weiteren benutzt
und alle Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach
entnommen sind, unter Angabe der Quellen als Entlehnung kenntlich gemacht ha-
be.

Ort, Datum Christian Mainka

62/ 62


	Introduction
	Foundations
	Single Sign-On
	OpenID
	Protocol Overview
	Discovery Phase
	Association Phase
	Token Processing Phase
	Extensions
	Example OpenID Token

	Related Work

	Attack Model
	Attacker's Goal
	Attacker's Capabilities
	Attacker's Capabilities in Detail
	Discovery
	Association
	Token Generation
	Token Direct Verification


	Implementation
	Abstract Architecture Overview
	Model Description
	Java Beans
	Property Change Support
	Server Config Model
	Attack Parameter Model

	Logic Description
	Server Logic
	Persistence
	Logging

	GUI Description
	GUI Overview
	Beansbinding

	Code Testing
	Unit Testing
	JUnit
	Hamcrest


	Evaluation
	WordPress
	Owncloud

	Conclusion
	Appendix
	References
	List of Figures
	List of Listings
	Glossary
	Eigenständigkeitserklärung



