
Master Thesis

Automated Penetration Testing for
SAML-based SSO Frameworks

Author:

Benjamin Sanno

Supervisor:

Prof. Dr. Jörg Schwenk

Vladislav Mladenov

Christian Mainka

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Group of XML- and Webservice Security

Department of Network- and Data Security

July 2013

http://www.nds.rub.de
http://www.nds.rub.de

Declaration of Authorship

I, Benjamin Sanno, declare that this thesis titled, ’Automated Penetration Testing for

SAML-based SSO Frameworks’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at the Ruhr-University Bochum.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

� The source code which is included with this work has been written by me, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

RUHR-UNIVERSITY BOCHUM

Abstract

Faculty of Electronics and Information Technology

Department of Network- and Data Security

Master of Science

Automated Penetration Testing for SAML-based SSO Frameworks

by Benjamin Sanno

Single Sign-on (SSO) is a beneficial solution to establish authentication among several

parties. These entities are an Identity Provider (IdP), a Service Provider (SP) and a user.

As well as SOAP, the SAML recommendation is an authentication framework based on

XML Signature and is often used in the context of SSO. Unfortunately, XML Signature

Wrapping (XSW) attacks exist, which pose a threat to those authentication frameworks.

The reason for this is basically, that different SPs have proprietary implementations and

therefore, some may be vulnerable. The approach of this work is to do a detailed security

analysis of proprietary SAML implementations. Instead of doing the analysis manually,

security of an SP can be measured automatically by a program. An automatic tool has

been developed in this thesis and its task is to emulate all parties of the authentication

process but the SP. As a result, a new product exists for developers and penetration

testers. It is universally applicable and automatic, hence easy and quick to use. Its

sophisticated software design is optimized in terms of extensibility and modularity. In

addition, the test tool uses machine learning to deal with unexpected behavior of the

SP. Finally, four service providers were tested. Three of these could not be outwitted

using the test tool. One provider seems to be vulnerable. Despite the XSW attack is

known since 2005, it still represents a serious threat to services.

http://www.rub.de
http://www.rub.de/etits
http://www.nds.rub.de

Contents

Declaration of Authorship i

Abstract ii

List of Figures vi

1 Introduction 1

2 Foundations 3

2.1 XML . 3

2.2 Single Sign-On Scenario . 4

2.2.1 The Relying Entity . 4

2.2.2 The Asserting Entity . 5

2.3 XML Signature . 5

2.3.1 Enveloped Signature . 8

2.4 SAML Standard . 8

2.4.1 SAML Message Format . 9

2.4.2 SAML Protocol Bindings . 12

2.4.2.1 HTTP Redirect Binding 12

2.4.2.2 HTTP POST Binding . 14

2.4.3 Message Exchange Protocol . 15

2.4.3.1 Service Provider Initiated SSO 16

2.4.3.2 Identity Provider Initiated SSO 17

2.4.4 Combinations of Message Exchange and Message Encoding 18

2.4.4.1 Combinations with the SP Initiated Protocol 19

2.4.4.2 Combinations with the IdP Initiated Protocol 20

2.5 XSW on SAML Messages . 21

2.5.1 XSW on ID-based Signatures in SAML Messages 22

2.5.1.1 Type One . 24

2.5.1.2 Type Two . 24

2.5.1.3 Type Three . 24

2.5.2 Countermeasures . 25

2.5.2.1 Fixation of the Structure 25

2.5.2.2 Check SAML Message Format 25

2.5.2.3 Only Process what is Hashed 26

2.5.2.4 Separation of Accounts 27

iii

Contents iv

3 Approach 28

3.1 Problem Statement . 28

3.2 Attacker Profile . 29

3.3 Attack Vectors . 30

3.3.1 Analysis of the Protocol . 30

3.3.2 Hijack the User . 30

3.3.3 Attacks on the Identity Provider 30

3.3.4 Attacks on the Service Provider . 31

3.4 Attack Scenario . 31

3.4.1 XSW Vulnerability . 32

3.4.2 Signature Verification Vulnerability 33

4 Software Design Concepts 35

4.1 Main Manager . 36

4.2 Account Manager . 36

4.3 Identity Manager . 36

4.3.1 Decorator Pattern . 38

4.4 Penetration Manager . 40

4.4.1 Attack Object Factory . 40

4.4.2 Wrap Manager . 41

4.4.3 Strategy Manager . 42

4.4.4 Hypertext Transfer Protocol (HTTP) Manager 42

4.5 Configuration . 43

4.6 Verification Manager . 43

4.6.1 Classification based on Rules . 45

4.6.2 Classification based on Statistical Methods 46

4.6.3 Classification based on Learning Algorithms 48

5 Implementation 49

5.1 Third Party Libraries . 52

6 Penetration Test Results 54

6.1 Experimental Setup . 54

6.2 Measurements . 55

6.2.1 Google Apps . 55

6.2.1.1 Authentication Process 56

6.2.1.2 Configuration . 57

6.2.1.3 Findings . 58

6.2.2 Salesforce . 59

6.2.2.1 Authentication Process 59

6.2.2.2 Configuration . 59

6.2.2.3 Findings . 60

6.2.3 Samanage . 61

6.2.3.1 Authentication Process 61

6.2.3.2 Configuration . 62

6.2.3.3 Findings . 62

6.2.4 Clarizen . 63

Contents v

6.2.4.1 Authentication Process 63

6.2.4.2 Configuration . 63

6.2.4.3 Findings . 63

7 Discussion 65

8 Conclusion 67

A Appendix 69

A.1 XML Signature Creation Process . 69

A.1.1 XML Signature Validation Process 70

A.2 Enveloping Signature . 72

A.3 Detached Signature . 72

A.4 SAML Response Example . 73

Bibliography 75

List of Figures

2.1 Basic SSO Scenario . 4

2.2 Enveloped Signature . 8

2.3 HTTP Redirect Binding . 13

2.4 HTTP POST Binding . 14

2.5 Scenario of SP initiated SSO message exchange 16

2.6 Sequence Diagram of SP initiated SSO . 16

2.7 Scenario of IdP initiated SSO message exchange 17

2.8 Sequence Diagram of IdP initiated SSO 17

2.9 SP initiated SAML message exchange protocol 20

2.10 IdP initiated SAML Message Exchange Protocol 21

2.11 Schematic XML Signature Wrapping - Three Types 23

3.1 SSO Attack Scenario . 32

3.2 Attack Scenario: Type One . 32

3.3 Attack Scenario: Type Two . 33

4.1 Module Hierarchy . 35

4.2 UML Illustration of the Decorator Pattern 39

4.3 Decorator Pattern Linked List Illustration 39

4.4 Penetration manager pipeline . 40

4.5 Wrapping Oracle Integration (based on Figure 28 in [10, page 55]) 41

4.6 Validator: Two Steps of Classification . 44

4.7 Classification Example - Two Characteristics 47

5.1 Dependency Graph - Overview . 50

6.1 Google Apps Attack Scenario . 56

6.2 Google Apps Attack Sequence . 56

6.3 SalesForce.com Attack Scenario . 60

6.4 SalesForce.com Attack Sequence . 60

6.5 SAManage Attack Scenario . 61

6.6 SAManage Attack Sequence . 61

6.7 Clarizen Attack Scenario . 63

6.8 Clarizen Attack Sequence . 63

A.1 Enveloping Signature . 72

A.2 Detached Signature . 73

vi

Abbreviations vii

AaaS Authentication-as-a-Service . 1

ACS Assertion Consumer Service. .15

B2B Business to Business . 59

BCP Business Continuity Planning . 30

CRM Customer Relationship Management . 5

DMS Document Management System . 5

DoS Denial of Service. .30

ERP Enterprise Resource Planning . 5

HTML Hypertext Markup Language

HTTPS Hypertext Transfer Protocol Secure . 59

HTTP Hypertext Transfer Protocol. iv

IDE Integrated Development Environment . 49

IdP Identity Provider . ii

IDS Intrusion Detection System . 54

JDK Java Development Kit . 49

MitM Man-in-the-Middle . 29

OASIS Organization for the Advancement of Structured Information Standards 8

PEM Privacy Enhanced Mail . 53

RFC Request For Comments . 13

SaaS Software as a Service . 59

SAML Security Assertion Markup Language. .1

SOAP SOAP specification . 2

SOA Service-Oriented Architecture . 1

SP Service Provider . ii

SSL Secure Sockets Layer. .12

SSO Single Sign-on . ii

TLS Transport Layer Security . 12

UML Unified Modeling Language . 38

Abbreviations viii

URI Uniform Resource Identifier . 6

URL Uniform Resource Locator . 9

W3C World Wide Web Consortium . 3

XHTML Extensible HyperText Markup Language . 14

XML Extensible Markup Language . 1

XSS Cross-Site Scripting . 2

XSW XML Signature Wrapping . ii

Chapter 1

Introduction

The Internet is a network that allows people and machines to communicate fast and

easy to the world. We share and exchange much data that sometimes contain critical

information. There is a strong trend to provide IT-services over the Internet. A usual

scenario is to sell information-processing services to the customers instead of shipping

stand-alone software, stored on a data medium. In order to offer web applications and

services to their users, an enterprise should establish a Service-Oriented Architecture

(SOA). These services should comply with established security standards, that address

data privacy or non-repudiation. Furthermore, users should be accountable for their

use of the services. Authentication-as-a-Service (AaaS) is one aspect of SOA and Single

Sign-on (SSO) can be seen as a concept to establish AaaS.

Especially in the business environment, the SSO concept is used to simplify the authen-

tication procedure, that employees are faced with. An employee is a user that requires

access to several services, which are hosted by service providers. The idea is to estab-

lish an identity provider, which manages the authentication to several service providers

for the user. As a result, the user needs to log in only once. To authenticate a user,

a Security Assertion Markup Language (SAML) message is sent to a service provider.

SAML is a specification that defines protocols and messages which are compliant to

Extensible Markup Language (XML). The XML Signature standard is used to sign the

messages and to make its statements verifiable. Despite that, a service provider which

accepts signed SAML messages can be vulnerable to XSW, such as Somorovsky et al.

1

1. Introduction 2

have shown. In addition, a large number of possibilities, i.e. maliciously altered mes-

sages, exist which could be a threat for XML-based procedures like SAML [8]. Because

of the large amount of possibilities, an XML-based service cannot be checked manually

without substantial effort.

There are several authentication frameworks, e.g. OpenID, WS-Trust, OAuth, SOAP

specification (SOAP) or SAML. All of these procedures can have security weaknesses,

but a comprehensive security analysis is far beyond this work. A detailed analysis of

the SOAP protocol, for example, is elucidated in [25] and [10]. This thesis is about a

profound SAML security inspection.

The topic of the master thesis is “Automatic Penetration Testing for SAML-based

SSO Frameworks”. It stems from previous work by some researchers around Juraj

Somorovsky [25, 26]. Based on the XML Signature Wrapping (XSW) attack published

by Michael McIntosh and Paula Austel from IBM Research [13], Somorovsky demon-

strated the practicability of the idea on SAML-based SSO frameworks. A couple of

frameworks were tested manually, and some of them were vulnerable. This analysis is

very extensive and unfortunately, in comparison “to prominent attacks such as SQL-

Injection or Cross-Site Scripting (XSS), there is currently no penetration test tool that

is capable of analyzing the security of XML interfaces” [11]. This was before Christian

Mainka developed a framework for web security testing, which is called “WS-Attacker”

and already published as a Sourceforge Project 12. However, it does not provide an

extension to test browser-based SAML authentication yet.

To address this issue, the motivation for this work is to implement a penetration test

tool in Java that can check service providers, which authenticate their users by SAML,

for the XSW vulnerability. In addition, it should be automatic and universal so that as

many service providers as possible can be tested with little effort.

1See ws-attacks.org project at URL: http://www.ws-attacks.org.
2See the Sourceforge project ’WS-Attacker Framework’ at http://sourceforge.net/projects/

ws-attacker/.

http://www.ws-attacks.org
http://sourceforge.net/projects/ws-attacker/
http://sourceforge.net/projects/ws-attacker/

Chapter 2

Foundations

This chapter provides a sufficient explanation of the fundamental knowledge base that

is necessary to understand the subsequent chapters. The next sections elucidate SSO

as a concept and other important technical aspects to understand the test tool and its

design. In preparation for this chapter, the reading of core SAML documents that are

[14, 16] is recommended.

2.1 XML

1 XML is an acronym for Extensible Markup Language. It is a recommendation by

the World Wide Web Consortium (W3C) consortium and published in 1998 [2]. Each

XML document has a strict tree structure, because there are rules how elements must be

placed. An XML element is the fundamental building block and consists of a start-tag,

an end-tag and content. For each start-tag exists an end-tag with the same name in

the document, otherwise it would not be standard compliant. The biggest advantage of

XML is that custom tag names can be defined and there exist only a few rules, which

must be followed. Hence, XML documents are very flexible and extensible.

Each XML document consists of two abstract ranges: a header part and a body part.

Typically, the header specifies general or meta information, e.g. the document’s XML

version type, and the body contains specific information. Listing 2.1 is a simple XML

document and its header is the first line <?xml version=’1.0’?>.

1This section 2.1 is based on my bachelor thesis.

3

2. Foundations 4

1 <?xml version=’1.0’?>
2 <PaymentInfo xmlns=’http://example.org/paymentv2’>
3 <Name>John Smith</Name>
4 <CreditCard Limit=’5,000’ Currency=’USD’>
5 <Number>4019 2445 0277 5567</Number>
6 <Issuer>Example Bank</Issuer>
7 <Expiration>04/02</Expiration>
8 </CreditCard>
9 </PaymentInfo>

Listing 2.1: Simple XML example [4]

2.2 Single Sign-On Scenario

Single Sign-on (SSO) is an authentication concept. Its main benefit is to support users to

manage their digital identities and credentials. It is one possibility to solve the problem

a typical user is faced with who is using many services over the Internet. Without the

assistance of an SSO system, the user has to manage all authentication processes by

himself. In contrast, an SSO infrastructure can help to reduce the effort for each user to

authenticate himself to multiple services during one session. Figure 2.1 illustrates the

participating parties: the user, one asserting entity as well as multiple relying entities.

Asserting Entity

User

Relying Entities

Figure 2.1: Basic SSO Scenario

2.2.1 The Relying Entity

The SAML glossary defines a relying entity as a “system entity that decides to take an

action based on information from another system entity. For example, a SAML rely-

ing party depends on receiving assertions from an asserting party (a SAML authority)

2. Foundations 5

about a subject.” [18, page 8] In other words, a relying entity provides an information-

processing service, which is typically an Enterprise Resource Planning (ERP) system

or just a significant part of it. This can be basic Customer Relationship Manage-

ment (CRM) functionality or a Document Management System (DMS). Therefore, each

relying party provides a service that is claimed by users. Because of that, a relying party

is called a Service Provider (SP) 2. Obviously, a SSO architecture is only useful, if a

subject has to authenticate against multiple service providers.

2.2.2 The Asserting Entity

On the right side of Figure 2.1, the asserting entity is shown. The tasks of this entity are

to “create, maintain, and manage identity information for principals [users] and provide

principal authentication to other service providers” [12, page 22]. Because of that, this

entity is called the Identity Provider (IdP) in the literature. The asserting party

implements the most significant functionality in the SSO architecture. It represents an

authority who, in particular, must be trustworthy and should only use secure algorithms

and protocols. Its task is to manage multiple digital identities and credentials of users.

At the beginning of a new session, a user has to authenticate himself once to the asserting

entity. This initial authentication facilitates the entity to create security tokens. Then,

the user can access protected resources on relying entities.

2.3 XML Signature

XML signature is a recommendation published by the W3C. The motivation is to

standardize an extension for the XML recommendation, so that XML documents can

provide “integrity, message authentication, and/or signer authentication services for data

of any type” [27]. Consequently, XML signature is a specification about a specialized

XML element called <Signature>. The recommendation defines the element structure,

specifies a collection of methods and algorithms, and gives security advice.

The basic schema definition of this specialized element is shown in Listing 2.2. According

to that XML Schema definition, a <Signature> node consists of at least two child nodes:

<SignedInfo> and <SignatureValue>, but beyond that it is possible to extend this

2For a more precise definition of terms see [18] and [12].

2. Foundations 6

1 <element name="Signature" type="ds:SignatureType"/>
2 <complexType name="SignatureType">
3 <sequence>
4 <element ref="ds:SignedInfo"/>
5 <element ref="ds:SignatureValue"/>
6 <element ref="ds:KeyInfo" minOccurs="0"/>
7 <element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>
8 </sequence>
9 <attribute name="Id" type="ID" use="optional"/>

10 </complexType>

Listing 2.2: Complex Type Definition of SignatureType [27]

1 <element name="SignedInfo" type="ds:SignedInfoType"/>
2 <complexType name="SignedInfoType">
3 <sequence>
4 <element ref="ds:CanonicalizationMethod"/>
5 <element ref="ds:SignatureMethod"/>
6 <element ref="ds:Reference" maxOccurs="unbounded"/>
7 </sequence>
8 <attribute name="Id" type="ID" use="optional"/>
9 </complexType>

Listing 2.3: Complex Type Definition of SignedInfoType [27]

fragment almost unlimited. A concrete example message that is signed in compliance

to the XML signature specification is depicted on page 74.

The <SignedInfo> element specifies which transformation, hash, and sign algorithms

and methods are used during the signature value compilation process. As a result,

“XML-signatures are generated from a hash over the canonical form of a signature

manifest” [23]. <SignedInfo> is an element of complex type. Listing 2.3 is the XML

Schema definition of the <SignedInfo> node. It defines each algorithm that is used for

canonicalization and signature creation.

<SignedInfo> includes a <Reference> element. The reference can be a unique attribute

value, e.g. a character sequence of numbers and word characters. In this case, the

<Reference> element has a Uniform Resource Identifier (URI) attribute, which is an

ID. It is the label of the signed element. Another and more sophisticated referencing

method can be an XPath expression. A <Transforms> node is appended as a child to

the <Reference> node and the URI attribute value is usually set to URI=“” (but other

values are allowed too).

The <DigestMethod> “identifies the digest algorithm to be applied to the signed object”

[27]. In other words, it specifies how the referenced data is hashed. The resulting

2. Foundations 7

1 <element name="Reference" type="ds:ReferenceType"/>
2 <complexType name="ReferenceType">
3 <sequence>
4 <element ref="ds:Transforms" minOccurs="0"/>
5 <element ref="ds:DigestMethod"/>
6 <element ref="ds:DigestValue"/>
7 </sequence>
8 <attribute name="Id" type="ID" use="optional"/>
9 <attribute name="URI" type="anyURI" use="optional"/>

10 <attribute name="Type" type="anyURI" use="optional"/>
11 </complexType>

Listing 2.4: Complex Type Definition of ReferenceType [27]

binary value is then base64 encoded. Finally, the character sequence is put into the

<DigestValue> element.

The latter element encloses the signature value which is a base64 encoded character

string. This value represents the result of a hash and sign procedure applied to a

referenced element within the XML document.

The last two elements in the sequence are <KeyInfo> and <Object>. <KeyInfo> is

optional and usually contains the public credentials, e.g. X509 certificate or an public

key. Whereas, “Object” can be any XML fragment with any tag name. Even the

number of occurrences is unbounded. This characteristic of the <Signature> definition

is exploited by the XSW attack introduced in section 2.5.1.

Finally, a <Signature> node can have an identifier attribute of type ID. It is typically a

random and unique sequence of numbers and word characters. Furthermore, the element

can be referenced using an XPath expression. In this case, the URI attribute value is set

to an empty string, and a <Transform> element is appended as a child to <Transforms>.

The creation af a signature is an important procedure the IdP has to be capable of,

so that it can create security tokens. The signature creation process has two steps:

creation of the digest value and calculation of the signature value. Both procedures

are characterized as pseudo-code in Appendix A.1 (Algorithm 2 and Algorithm 3). In

addition, the verification of a signed security token is done by the SP. The signature

verification process also has two steps: see Algorithm 4 and Algorithm 5 in the Appendix

for details.

In general, different types of signatures exist that are detached, enveloped, and envelop-

ing signature. One variant of these is important for this work: that is the enveloped

2. Foundations 8

signature. The other two types are described in the Appendix A, for the sake of com-

pleteness.

2.3.1 Enveloped Signature

“The signature is over the XML content that contains the signature as an element. The

content provides the root XML document element. Obviously, enveloped signatures must

take care not to include their own value in the calculation of the SignatureValue” [27,

section 10]. Figure 2.2 is an illustration of an enveloped structure. The grey area is the

character value that is signed, whereas the white rectangle encloses the <Signature>

element which, of course, is not signed, although it is a child node of the referenced

<Document> element. To be precise, the referenced XML fragment must be an ancestor

of the <Signature> element (in this case it is the parent node), otherwise it would be

a detached structure as illustrated in Figure A.2. Referencing can be done ID-based or

with an XPath expression.

<Document Id=„uniqueID”>
<Object>...</Object>

</Document>

<Signature>
 <SignedInfo>
 <Reference URI=„#uniqueID“>
 <DigestValue>...</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>...</SignatureValue>
 <KeyInfo>...</KeyInfo>
</Signature>

Figure 2.2: Enveloped Signature

2.4 SAML Standard

The SAML standard is published by the Organization for the Advancement of Structured

Information Standards (OASIS) 3. In essence, the standard can be described as an

“XML-based framework for marshaling security and identity information” [12]. There

are three SAML versions: V1.0, V1.1, and V2.0, but this work puts the focus on version

2.0. The full standard V2.0 consists of seven documents [14–17, 19–21].

3For more information see the website of OASIS Advancing Open Standards for the Information
Society at https://www.oasisopen.org/org.

https://www.oasisopen.org/org

2. Foundations 9

SAML is not a language. It is a specification that defines messages and its format,

message encoding methods, message exchange protocols, and other recommendations.

Important aspects of SAML are:

Message Format: A SAML message is an XML message with a particular format and

special elements. The format and the naming conventions are strictly defined by

ComplexType definitions in the SAML documents.

Message Exchange Protocols: How SAML request-response messages should be ex-

changed among the participating parties. For example, the IdP initiated or SP

initiated message exchange protocols are introduced in this thesis.

Message Encodings: Message encoding recommendations describe how SAML mes-

sages should be encoded. For example, a SAML message can be encoded with

Base64 and put into an HTTP POST message or an HTTP form control. A mes-

sage can also be DEFLATE encoded. An <AuthnRequest> message can be base64

encoded, Uniform Resource Locator (URL)-encoded, and send via HTTP GET.

Bindings: Bindings recommend, how SAML messages should be mapped onto stan-

dard communication protocols like the HTTP methods POST and redirect, or

also SOAP [16, page 5 section 1.1]. Therefore, a binding definition comprehends

recommendations about: the message exchange, message encodings, message in-

tegrity and confidentiality, as well as metadata processing, caching, transport layer

security levels, and error reporting.

2.4.1 SAML Message Format

There exist two types of SAML messages: a request type and a response type. List-

ing 2.5 is the abstract type definition for each SAML response message without an

<Assertion> element. Based on the type definition, a SAML response can have an

<Issuer>, <Signature>, or <Status> element. The order of these nodes is strict (as

signalized by <sequence>), and all elements but the <Status> element are optional. In

addition, some attributes can be set within the root element, which is the <Response>.

Some of these attributes are optional, and some are required as shown in the Listing.

A message example that shows a minimalistic SAML response is depicted in Listing 2.6.

The example includes only required elements. This can help to find superfluous elements

2. Foundations 10

1 <complexType name="StatusResponseType">
2 <sequence>
3 <element ref="saml:Issuer" minOccurs="0"/>
4 <element ref="ds:Signature" minOccurs="0"/>
5 ...removed for simplicity...
6 <element ref="samlp:Status"/>
7 </sequence>
8 <attribute name="ID" type="ID" use="required"/>
9 <attribute name="InResponseTo" type="NCName" use="optional"/>

10 <attribute name="Version" type="string" use="required"/>
11 <attribute name="IssueInstant" type="dateTime" use="required"/>
12 <attribute name="Destination" type="anyURI" use="optional"/>
13 <attribute name="Consent" type="anyURI" use="optional"/>
14 </complexType>

Listing 2.5: Complex Type Definition of StatusResponseType [14, page 39]

1 <?xml version=’1.0’?>
2 <samlp:Response xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
3 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
4 ID="ResponseID"
5 Version="2.0"
6 IssueInstant="TimeStamp">
7 <samlp:Status>
8 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />
9 </samlp:Status>

10 <saml:Assertion>
11 ...removed for simplicity...
12 </saml:Assertion>
13 </samlp:Response>

Listing 2.6: Minimalistic SAML Response Example

to avoid checks on the side of the SP. In combination with another ComplexType

definition which is not shown here, there can be one or more <Assertion> elements in

a <Response> tree. To address confidentiality, the assertion can also be encrypted and

in this case the XML tag is labeled <EncryptedAssertion>. The <Assertion> element

is typically an essential child node of the <Response> element. As part of the SAML

response, it is sent from the responder (IdP) to the requester (SP).

An assertion is a security token used for access control. In general, there are different

types of tokens: a token can be a physical device, e.g. a key, or a information, e.g.

a password or a signed statement. In case of the SAML authentication protocol, an

assertion is a security token which represents a certified statement. The statement

describes the right to get authorization to a protected resource.

Listing 2.7 is the ComplexType definition of the <Assertion> element. Based on

the definition an <Assertion> can have the following childs: <Issuer>, <Signature>,

<Subject>, and others which has been removed for the sake of simplicity. The <Issuer>

is the only element which is required. So, in contrast to the type definition of the

2. Foundations 11

1 <element name="Assertion" type="saml:AssertionType"/>
2 <complexType name="AssertionType">
3 <sequence>
4 <element ref="saml:Issuer"/>
5 <element ref="ds:Signature" minOccurs="0"/>
6 <element ref="saml:Subject" minOccurs="0"/>
7 ...removed for simplicity...
8 </sequence>
9 <attribute name="Version" type="string" use="required"/>

10 <attribute name="ID" type="ID" use="required"/>
11 <attribute name="IssueInstant" type="dateTime" use="required"/>
12 </complexType>

Listing 2.7: Complex Type Definition of AssertionType [14, page 17]

<Response>, the <Issuer> element is not optional. The three required attributes are

Version, ID, and IssueInstant.

The <Subject> element is an important optional node, which is used generally for access

control. For example, the “bearer” method, which can be specified in the <Subject>

element, is used to assert that the <Subject> is the owner of a URL and thus its content.

Hence, the requesting user should be authorized by the SP to access it. Of course, if

there is no signature, the statements within the assertion remain a claim, that can be

wrong or malicious. Therefore, the statements must be certified very well. The XML

Signature recommendation was previously introduced in section 2.3, and is applied in

this context to certify SAML messages. Three variants exist to sign a SAML message:

Response Only The XML document is signed completely. The signature is added

as a child node of the root element, which is the <Response> itself. Because

the <Response> element is a parent of the <Signature> node, this type of XML

Signature is enveloped. The <Signature> element must be the second child after

the sibling <Issuer>. A strict type definition shows Listing 2.5 which is the official

complex type recommendation for a <Response> element.

Assertions Only In this case, the only element which is signed is the <Assertion>

node. The <Signature> element should be a child node of the <Assertion> as

defined by Listing 2.7. This structure is called an enveloped XML signature. As a

result, a valid signature over the <Assertion> element assures that the statements

within it are published by the claimed identity. However, only the assertion and its

child nodes are signed and hence, the integrity of other nodes cannot be assured.

Response and Assertion Finally, the <Response> and the <Assertion> element can

be signed. If we assume that the user and the IdP have own certificates, then the

2. Foundations 12

<Assertion> can be signed by the private key which corresponds to the user and,

additionally, the <Response> can be signed by the private key of the IdP. In this

scenario, the response is certified by the IdP and the assertion itself is certified by

the user certificate.

Putting all together, the result is a full security token. A realistic SAML response is

depicted in the Appendix A in Section A.4.

2.4.2 SAML Protocol Bindings

A SAML protocol binding is a mapping of SAML messages to a representation that can

be transmitted by an HTTP client over the network interface. A binding specification

also contains recommendations for the message exchange flow. The message exchange

is described later in 2.4.3 on page 15.

All bindings must use HTTP with Secure Sockets Layer (SSL) or Transport Layer Se-

curity (TLS). Because the standard defines several different bindings, any provider has

the choice of which types are offered. For this work, two out of six default bindings are

introduced and implemented in the test tool. In subsequent section, the HTTP POST

and the HTTP Redirect bindings are explained.

HTTP POST Binding Maps SAML messages to HTTP POST messages. The trans-

mission method should be HTTP POST.

HTTP Redirect Binding “The HTTP Redirect binding defines a mechanism by which

SAML protocol messages can be transmitted within URL parameters” using a URL

encoding technique. The transmission method should be HTTP GET [16, page

15].

2.4.2.1 HTTP Redirect Binding

The HTTP Redirect binding specifies a SAML conversation and it is defined on pages

15-21 in [16]. In this context, redirection means that SAML message parameters are

transmitted by HTTP redirect messages. Figure 2.3 depicts the most important part of

this binding specification. It represents graphically the various message encoding steps

2. Foundations 13

and the final HTTP transmission method, which are defined by the HTTP Redirect

binding.

Redirect Binding

DEFLATE Base64 URL-encoded

optional required legend:

URL query string
SAML

SAML message encoding steps

network HTTP GET

transmission

Figure 2.3: HTTP Redirect Binding

Base64 encoding (see Request For Comments (RFC) 2045), URL-encoding and the re-

sulting character sequence MUST be placed “entirely within the URL query string”

[16, page 17]. Therefore, these message encoding steps are required and marked as red.

Whereas, the DEFLATE encoding (RFC 1951) in advance is optional and marked by

color green. Finally, the transport protocol method is specified as HTTP GET and

marked as red.

To be more precise, the base64 representation of the SAML message is URL encoded and

the resulting character sequence is appended to the location URL. The location URL is

part of the HTTP header, and parameters can only be appended as a query string. The

subsequent table exemplifies how SAML messages should be encoded, so that they can

be appended to URIs as a parameter value. Generally, the compliant location URL is a

character sequence whose pattern is always conform to this syntax definition:

syntax <scheme name> : <hierarchical part> [?<query>] [#<fragment>]

examples https://identityprovider.edu?SAMLRequest=...

https://identityprovider.edu?SAMLResponse=...

https://identityprovider.edu?SAMLRequest=...&RelayState=...

https://idp.edu?SAMLResponse=...&SigAlg=...&Signature=...

The table lists some examples for parameter names and their combination. The length

of the query part is theoretically infinite with respect to the standard, but limited practi-

cally due to HTTP client implementations. Of course, no whitespaces and no word-wrap

is allowed. Finally, the location URL must be integrated into an HTTP redirect message,

which is typically an HTTP GET request. A specific example is depicted in Listing 2.8.

2. Foundations 14

1 HTTP/1.1 302 Moved Temporarily
2 Content-Type: text/html; charset=UTF-8
3 Cache-control: no-cache, no-store
4 Location: https://www.malloryidp.org?SAMLRequest=...&RelayState=...
5 Date: Fri, 17 May 2013 20:01:26 GMT

Listing 2.8: SAML Redirect Binding Example

Another binding is the HTTP POST binding, which is explained next.

2.4.2.2 HTTP POST Binding

Pages 21-26 of [16] define how SAML messages can be transmitted over the HTTP POST

method. The binding specifies in which way messages are transmitted and redirected.

Also, it depends on the binding, which message format the SP expects. The XML

representation of the SAML message is base64 encoded and embedded in an HTML

form control (see section 17.2 and 17.13 in [22]).

network

POST Binding

Base64 Hidden HTML Form Control HTTP POST

required legend:

SAML message encoding steps transmission

SAML

Figure 2.4: HTTP POST Binding

Figure 2.4 is a block diagram that illustrates the most important part of the HTTP

POST binding: the SAML message is base64 encoded, embedded into a HTTP form

control and finally posted using HTTP POST. An example HTTP form control message

taken from the standard is shown in Listing 2.9.

The first three lines are the HTTP request header, and the second part is the request

message body. It contains an Extensible HyperText Markup Language (XHTML) doc-

ument: the root element is an <html> tag and it has one child: the <body> node. The

<body> consists of a JavaScript node and a <form> element. The browser of the user

processes the onload event handler and its containing JavaScript command. As a result,

the browser submits the form on load.

2. Foundations 15

1 HTTP/1.1 200 OK
2 Date: 21 Jan 2004 07:00:49 GMT
3 Content-Type: text/html; charset=iso-8859-1
4
5 <?xml version="1.0" encoding="UTF-8"?>
6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/

xhtml11.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
8 <body onload="document.forms[0].submit()">
9 <noscript>...</noscript>

10 <form action="https://IdentityProvider.com/SAML/SLO/Response" method="post">
11 <div>
12 <input type="hidden" name="RelayState" value="..."/>
13 <input type="hidden" name="SAMLResponse" value="..."/>
14 </div>
15 <noscript> <div> <input type="submit" value="Continue"/> </div> </noscript>
16 </form>
17 </body>
18 </html>

Listing 2.9: SAML response embedded into HTML form control [16, page 25]

The content of the form has two attributes set: an action and a method. The value

of the action attribute specifies the Assertion Consumer Service (ACS) of the SP.

Additionally, the SAML message and other parameters are embedded in the form.

Based on the method command within the form control, the browser sends an HTTP

POST message to the ACS URL stated by the action attribute value. The parameters

which are defined in the hidden input tags represent the encoded SAML message and

the RelayState. Both are transmitted within the body of the HTTP POST message.

It is recommended to use HTTP POST binding instead of HTTP Redirect binding.

Word-wrapping is allowed, and processing of the POST parameter value is considered

much more robust compared to parsing of the location header. The content length is set

as a header value and therefore, the data size is known before it is transmitted. Data that

is transmitted as a POST parameter can even be chunked. This is called chunked transfer

encoding and has a few advantages over using the location header for transmission. In

practice, the HTTP POST Binding should be used to avoid unpredictable behavior due

to long URL parameters.

2.4.3 Message Exchange Protocol

A protocol is a collection of rules, which defines how messages should be exchanged

between communicating parties. Derived from the SSO concept in section 2.2 on page 4,

SAML defines three parties: the SAML requester, the SAML responder, and the user.

2. Foundations 16

Each of them might initiate a conversation. However, the user is usually the initiating

entity, because it chooses the resource to be accessed. To do so, the user utilizes a

browser to initiate the SSO authentication process. Because a browser is an essential

part of the procedure, this scenario can be called “browser-based SSO”.

Once the user has signalized his request for access, the subsequent procedure can be of

two types: initiated by the Service Provider (SP) or initiated by the Identity Provider

(IdP) depending on which party is involved after the user has utilized his browser. Both

procedures are introduced in the following two sections.

2.4.3.1 Service Provider Initiated SSO

Asserting Entity /
SAML Responder

user

Relying Entity /
SAML Requester

1
2

2
3

44

5

Resources

Figure 2.5: Scenario of SP initiated
SSO message exchange

Identity Provider User Service Provider

access resource

authentication requestauthentication request

signed response signed response

challenge for credentials

response to challenge

resource

Figure 2.6: Sequence Diagram of SP
initiated SSO

On the left side, Figure 2.5 is depicted, and it shows the well-known SSO scenario

(see Figure 2.1), which is now covered with an illustration of the SP initiated message

exchange flow. On the right side, Figure 2.6 is a sequence diagram, which is a more

formal representation of the same exchange. Both illustrations are based on Figure 1

of [26, page 2] and also [12, page 42]. Red arrows represent the message transmission

that initiates the authentication process. Green arrows represent the transmission of the

security token, i.e. the SAML response which is sent, in response to the authentication

request. The blue arrow indicates the user request for a particular resource.

1. Access Resource First of all, the user signalizes his intention to access a protected

resource stored on the SP system.

2. Request Authentication Because the user has not been authenticated to the SP

yet, the provider does the following: the system creates an initial authentication

request and sends it to the user who redirects the request message immediately to

2. Foundations 17

the IdP. The request contains a relocation URL to specify that it should be redi-

rected to the IdP. Then, the forwarding of the request is performed by the user.

At this point, it becomes clear why this protocol type is called that way: the SP

is initiating the authentication process. More precise: the user receives an HTTP

message from the service provider, which contains an encoded <AuthnRequest>

message. This message may contain some meta information like the expected

binding choice. Then, the browser of the user redirects this message to the con-

sumer service of the IdP. This process is usually completely hidden from the user

and requires no user interaction.

3. Authenticate In case the user is not authenticated against the IdP beforehand, a

challenge response procedure is executed at this step in the protocol. The user is

usually challenged to type in a password for the requested account. If the password

is accepted, the protocol is continued by the IdP. This step is omitted, if the user

is previously authenticated to the IdP.

4. Send Response Derived from the authentication request, a security token, i.e. a

SAML response, is created and send to the user. Then, the response is forwarded

to the SP by the user.

5. Transmit Resource The service provider verifies the validity of the security token

and if this check succeeds the resource is transmitted back to the user.

2.4.3.2 Identity Provider Initiated SSO

In contrast to the SP initiated SSO scenario, the Service Provider (SP) is passive and

just reacts to incoming messages. Both Figures 2.7 and 2.8 are quite similar to the

Asserting Entity /
SAML Responder

user

Relying Entity /
SAML Requester2

3
1

44

5

Resources

Figure 2.7: Scenario of IdP initiated
SSO message exchange

Identity Provider User Service Provider

access resource

signed response signed response

response to challenge

resource

Request

challenge for credentials

Figure 2.8: Sequence Diagram of
IdP initiated SSO

2. Foundations 18

previous two. On the left side, there is a more realistic view, and on the other side a

formal sequence diagram. The illustrations are based on [12, page 45]. The markings

with colors (blue, red, and green) mean the same as previously defined.

1. Authenticate First of all, the user is authenticated against the IdP. A challenge re-

sponse procedure is executed. The user is usually challenged to type in a password

for the requested account. If the password is accepted, the user ets an overview to

all resources that now can be accessed.

2. Access Resource The user signalizes his intention to access a protected resource.

In comparison of both protocols, this step is significantly different from the equiv-

alent protocol message in the SP initiated procedure, which is step 1: On the one

hand, the user sends a request message to the SP directly, to get access to the

resource. On the other hand, he initializes the protocol by signalizing it to the IdP

(e.g. a mouse click on a button).

3. Request Authentication The request for authentication is equivalent to step 2 of

the SP initiated protocol sequence. The difference is, that such a message doesn’t

really exist in the IdP initiated protocol. This is because it is implicit with respect

to the access message of step 2. Therefore, this request and the corresponding

check is handled internally by the IdP.

4. Send Response A security token, i.e. a SAML response, is created and send to the

user. Then, the response is forwarded to the SP by the user.

5. Transmit Resource The service provider is always listening to incoming responses.

It has a dedicated component for that, namely the Assertion Consumer Service. It

verifies the validity of the security token and if this check succeeds the requested

resource is transmitted back to the user.

2.4.4 Combinations of Message Exchange and Message Encoding

This part is about possible combinations of message exchange protocols (e.g. SP init

or IdP init) with bindings (see Table 2.1). In addition, the SAML binding specification

gives a recommendation which combinations should be used in practice. The SAML

binding document [16] is a list of best practices which define a realistic and complete

2. Foundations 19

scenario for each binding type. For example, the HTTP POST binding section in the

specification describes a best practice scenario in which HTTP POST binding and HTTP

Redirect binding are used in the context of the SP initiated message exchange flow.

PPPPPPPPPPPPPPPPP

Message

Exchange

Message

Encoding

HTTP HTTP HTTP
POST Redirect POST and Redirect

Binding Binding Bindings

SP init Yes Yes Yes

IdP init Yes Yes No

Table 2.1: Protocol flow and encoding combinations ([12, page 42, 45])

For example, the HTTP Redirect, the HTTP POST binding, and the HTTP Artifact

binding4 can be composed with the SP initiated message exchange. So there can be three

different types of bindings coupled with one message exchange protocol. In case of IdP

initiated message exchange, there can only be one binding combined with the protocol.

The SAML standard typically recommends the combination of bindings with the SP

initiated protocol [16, page 18, 23, 26]. In addition, an editor of the SAML specification

document introduces more combinations (see Eve Maler about SAML Bindings in [12,

page 42, 45]).

2.4.4.1 Combinations with the SP Initiated Protocol

Figure 2.9 shows which message encoding method is used for each transmission. Two

messages, one in step two and another in step four, are labeled with “BINDING” in

the illustration. The transmission method of these SAML messages can be any suitable

binding. The immediately following messages are transmitted using message encoding

methods, which depend on those binding choices. For example, if HTTP Redirect bind-

ing is chosen, the subsequent message is sent via the HTTP GET method and encoded

as specified in the standard. The other messages of the protocol are not specified by

the binding’s choice in this scenario. For example, the SAML standard does not define

how step 3 of the protocol sequence is done. Because of that, this arrows of are labeled

“unspecified”.

4The HTTP Artifact binding is not introduced in this work.

2. Foundations 20

Identity Provider User Service Provider

HTTP GET

BINDINGdepending on the BINDING

BINDING depending on the BINDING

UNSPECIFIED

UNSPECIFIED

HTTP Methods

1. request resource

2. authentication request

3. challenge-response

4. authentication response

5. transmit resource

Figure 2.9: SP initiated SAML message exchange protocol

The SP initiated message exchange can be combined with two bindings, because there

are two steps in the protocol flow to do so: step 2 and step 4. This is why the SAML

binding document specifies possible compositions, which are illustrated in the Table 2.2.

Compositions IdP init SP init

HTTP POST Yes possible
HTTP Redirect Yes possible
HTTP Artifact No possible
HTTP Redirect and POST No Yes
HTTP Redirect, POST, Artifact No Yes

Table 2.2: Binding compositions for the SP initiated message exchange [16].

To be precise, Figure 2.9 can be combined with the HTTP POST binding in step four

of the protocol sequence. If the HTTP POST binding is requested by the SP (in step

2), the user receives an HTTP POST message containing an HTTP form control. As a

result the SP receives an HTTP POST message in response (step 4). This HTTP POST

message has a body part and it contains the SAML response as base64 encoded POST

parameter.

2.4.4.2 Combinations with the IdP Initiated Protocol

Of course, the IdP initiated message exchange can also be combined with different

binding methods. Table 2.2 lists possible combinations. In this scenario, the IdP has

2. Foundations 21

full control and the SP is always passive. Because the SP is in a reactive position, it

accepts all messages that fit to any binding it can process.

Identity Provider User Service Provider

HTTP GET

BINDING depending on the BINDING

UNSPECIFIED

HTTP Methods

UNSPECIFIED

2. request resource

3. authentication request

1. challenge-response

4. authentication response

5. transmit resource

Figure 2.10: IdP initiated SAML Message Exchange Protocol

The HTTP POST binding as well as the Redirect binding can be used in combination

with the IdP initiated protocol. The user requests a resource from the IdP, which sends

an HTTP POST binding message to the user’s browser (containing an HTTP form

control). It creates an HTTP POST message with respect to the commands embedded

in the binding message and then, the SAML message is sent within the HTTP POST

body to the SP.

In case of Redirect binding, the SAML message is encoded into the URL query string

as previously explained in section 2.4.2.1.

The remaining part of this chapter deals exclusively with attack techniques on the SAML

framework and the XML Signature specification. At the end, countermeasures against

these attacks are discussed.

2.5 XSW on SAML Messages

The XML Signature Wrapping (XSW) attack was primarily published by Michael McIn-

tosh and Paula Austel in year 2005 [13]. Assuming that there is a separation of security-

and application logic, this can lead to serious security problems. Under that circum-

stance, the security logic verifies the signature and the application logic processes the

statement. This can cause a discrepancy between signed statements and actually exe-

cuted commands. Hence, the core security issue is that, in some cases, the signature

2. Foundations 22

verification and command execution units access different nodes within the XML docu-

ment. The position of the signed element is declared in the <SignedInfo> element and

referenced by an ID attribute value (URI=”uniqueID”). The <SignedInfo> element is

signed too and hence integrated in the signature value.

The problem is that some manipulations to the SAML response cannot be detected.

For example, if only the <Assertion> element is signed and the position within the

tree structure is not verified, it is possible to copy this node to another location within

the <Response>. Unfortunately, the signature remains valid because enveloped XML

signature is used, which is not beware of the position of the verified element.

Some researchers could demonstrate that this attack can be applied on real world systems

and could be exploited successfully [10, 25]. All protocols that use XML messages and

XML Signature to sign data are theoretically threatened. This attack can be applied

to SOAP and SAML based authentication protocols, because both use XML signatures

and the signed payload is usually referenced by an ID or an XPath expression.

From the perspective of an attacker, the motivation is to mimic all values of a genuine

response of the victim, except those which are necessary for signature validation and

those which he wants to manipulate. To be precise, the XSW attack does not exploit a

weakness in the XML Signature verification process A.1.1 on page 70. The intention is

to create a SAML response that is almost equal to a genuine message of the victim but

extended by a valid signature of the attacker. There are three known types to mimic

a victim’s response and using the attacker’s signature. As a precondition, each variant

should be conform to the SAML recommendation. In the following, all three types are

exemplified.

2.5.1 XSW on ID-based Signatures in SAML Messages

Figure 2.11 illustrates all different types by an abstract node representation. On the

right side, three possibilities for a manipulated SAML message are shown. The left part

of Figure 2.11 is a schematic node representation of a SAML response as shown in Listing

A.1, but without some less important nodes. XML element nodes are represented by

rectangles with a continuous line and attributes are connected to those blocks but have a

2. Foundations 23

dashed line. The blue arrow represents the virtual link which is set by the URI attribute.

The <Assertion> node is the payload of the message and framed by a green line.

samlp:Response

saml:Issuer

samlp:Status

saml:Assertion

saml:Issuer

ds:Signature

saml:Subject

saml:Conditions

ID=„assertionID“

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Reference URI=„#assertionID“

copy

manipulate

samlp:Response

saml:Issuer

samlp:Status

saml:Assertion

saml:Issuer

ds:Signature

saml:Subject

saml:Conditions

ID=„maliciousID“

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Reference URI=„#assertionID“

wsatk:wrapper

saml:Assertion ID=„assertionID“

ds:Signature remove optionally

ds:X509Data

saml:Issuer

saml:Subject

saml:Conditions

deleted

ID=„assertionID“ original

malicious

ID=„assertionID“

Figure 2.11: Schematic XML Signature Wrapping - Three Types

The wrapping procedure is as follows: First, the genuine <Assertion> element is copied

to another location within the same document. With respect to the ComplexType defini-

tion, a standard conform position is within the <KeyInfo> node. A <wsatk:wrapper> el-

ement is created, and the <Assertion> is set as a child. Consequently, two <Assertion>

elements exist in the tree. In general, there are many different positions to place the

wrapper element.

Because the <Signature> element is omitted during the XML Signature validation pro-

cess, it can be optionally deleted. However, if the signature logic checks the presence of

this node, it should not be deleted to get a stronger attack vector. The purpose to copy

the original <Assertion> is that the signature verification logic needs this data as input

for the validation.

At this point, all other nodes are the same as in the original SAML message. If this

response is sent, it would be accepted. Nevertheless, we want to access the victim not

the attacker and therefore, some nodes have to be manipulated. These are marked with

color red. In case of type one, the <Assertion> gets a new attribute value (malicious

ID). This node becomes the payload of the attack.

2. Foundations 24

Assuming that the service provider does not check the plausibility of the content, the

attacker can manipulate the <Issuer>, <Subject>, and <Conditions> element in any

way. Only the <Signature> element colored in blue (and the wrapper element) should

not be manipulated, because it influences the validation process. The most obvious

change is to replace the user name in the <Subject> node. If this manipulation is not

detected, the service provider grants access to the victim’s resources.

2.5.1.1 Type One

All three types including type one are shown in Figure 2.11. Each type is a direct result

of the wrapping procedure but with different manipulations. In case of type one, the

<Assertion>’s ID attribute is set to a new value. Additionally, some child nodes

which are labeled red are altered with malicious values.

2.5.1.2 Type Two

For type two, the attribute ID is removed from the payload element, so that there are

two <Assertion> elements but only the valid and wrapped instance has an ID attribute

set. The malicious <Assertion> node has no ID attribute (see Figure 2.11 type 2).

2.5.1.3 Type Three

This type is a direct result of the wrapping procedure and no other manipulations are

made except to the child elements of the malicious <Assertion> (red nodes). As a

result, two <Assertion> elements exist in the tree with the same ID attribute. The

schematic node tree that demonstrates this type of permutation is exemplified in 2.11

type 3.

The third attack type might work, if the application logic as well as the signature logic

care about the ID attribute value: only if both IDs are equal, the authentication process

continues. Nevertheless, another threat remains: the signature logic does not check the

position of the <Signature> element within the XML document. The signature logic

and the application logic process two elements with the same ID attribute value but

at different positions! Therefore, the elements seem to be the same, but they are not

2. Foundations 25

necessarily the same. For example, Amazon’s Cloud service was vulnerable to this attack

type until the year 2011 [25].

2.5.2 Countermeasures

As an introduction to the topic, Gajek at al. provide a detailed overview of countermea-

sures against wrapping attacks in [6]. Several countermeasures against XSW on SOAP

as well as SAML have been worked out [7][3, pp. 8][26, pp. 11]. The following part is

an overview of some countermeasures against XSW on SAML based on those papers.

2.5.2.1 Fixation of the Structure

“Most signature wrapping attacks base on modifying the structure of the original mes-

sage from the legitimate sender” [7]. The fixation of the structure can be a solution

against the XSW attack. However, this contrasts with the SAML recommendation,

which has the advantage to provide high flexibility.

2.5.2.2 Check SAML Message Format

The idea is to implement a list of sophisticated checks, that are applied to the incoming

SAML messages. These checks can be permanently implemented on receiver side. As

a result, the verification logic acts as a filter component. The following checks can be

applied:

Element Presence All nodes and attributes that are set as required in the SAML

recommendation are present in the received message. And, a signature element

must be present in the authentication message. In addition, an <Assertion>

element exists and has an ID attribute set.

Element Position The <Assertion> element referenced by the <Signature> must

be located at the position that is specified in the SAML standard. First, the

<Reference> element must be a child of the <Signature> element and second, re-

fer to an <Assertion> element, which itself must be a child node of the <Response>

root element.

2. Foundations 26

Quantity of Elements If there is more than one <Assertion> element with the same

ID attribute in the SAML response, the application logic should reject the message.

Check Timestamps The application logic should check all timestamps and strictly

reject old or expired responses.

Check IDs The application logic should check all IDs and reject the message if it

contains an ID which has already been used.

2.5.2.3 Only Process what is Hashed

Another countermeasure can be the paradigm that only those parts of a SAML response

are processed by the application logic which are hashed and signed (and thus its integrity

is verified). Two concepts can be implemented:

Return Location Hint The signature verification logic returns a boolean value which

represents the validation result and additionally, a location hint (e.g. a strict

XPath expression) where the signed data is located in the XML document. The

application logic evaluates the location hint and only executes commands within

the signed part or rejects the message completely.

Filter Elements A similar idea is to filter out (i.e. omit) all elements except the XML

element that has been verified by the signature logic. Afterwards, the logic passes

the verified node as well as the signature verification result to the application logic.

This countermeasure is great, because there is no possibility that the application

logic processes an unsigned node of the XML document. This is exactly what the

XSW attack exploits and therefore, this solution seems to be a very good counter-

measure against it. However, some problems remain: for example, elements that

are filtered out may contain relevant information. And if there are multiple signa-

tures within the SAML response message, how to handle it? Third, what about

data that is referenced by the signature and located outside the XML document?

This data may also be stored in a non-XML compliant format.

2. Foundations 27

2.5.2.4 Separation of Accounts

The service provider can use separation as a concept: Each account has a unique ACS

endpoint, and the signature logic restricts the scope of resources, that can be accessed.

Depending on the signature, which is included in the SAML message, the system grants

access only to those resources that are semantically connected to the signature. As a

result, even if an adversary is able to create a SAML message that passes all tests,

access to a protected resource of another account is technically prevented. This security

concept is implemented by Google to protect its SAML services, for example.

Chapter 3

Approach

This chapter is about my approach to test SAML-based SSO frameworks. The detailed

elaboration of the approach is an important aspect of every security audit. The findings

from this analysis form the basis for the design of the test tool and the experimental

setup for the penetration tests.

First, the security threat is described in the problem statement section. Second, an

attacker profile is defined for this work to be clear which preconditions are required.

Third, it is given a list of potential targets and vulnerabilities which can be derived

from SAML-based SSO scenarios. The section about attack vectors deals with those

aspects. Finally, the attack scenario is derived from the preceding analysis and explained

in detail. All aspects taken together, form the framework for the practical penetration

tests.

3.1 Problem Statement

The authentication process of a web application can be vulnerable. Therefore, it is

desirable to actually measure if the service is secure to known attacks. This is called

penetration testing. It is extensive, because there are many possible attack vectors. The

SAML message exchange can be a suitable and secure authentication protocol, if the

implementation of the relying party is secure. For this work, a test tool is implemented to

detect XSW vulnerability of a particular SP. XSW attacks are diverse, which means that

there are different SAML message formats and several ways to execute an XSW attack.

28

3. Approach 29

Moreover, there are several applications for SAML, each with different procedures. The

SAML bindings describe how to map SAML to those procedures. For all these aspects,

it is time consuming and complex to test the authentication process.

3.2 Attacker Profile

The attacker profile is a list of characteristics, skills and possibilities which describe the

realistic capabilities of an adversary. Based on SSO frameworks as a target, the following

assumptions are defined about the attacker:

Network Access The attacker has continuous access to the SP for penetration testing,

but he does not require any control over the network itself [26, page 2]. Realtime

eavesdropping capabilities are not needed and a Man-in-the-Middle (MitM) is not

necessary. The attacker has the same access options like a valid user.

Accounts It is easy for an adversary to create a new group, new users and other

accounts on the same SP. The victim has an active and valid account at the

target SP.

SAML This authentication method must be set up for the victim’s account. The SAML

endpoints of the SP are accessible via a network which the attacker has access to.

The adversary knows a valid but expired SAML response of the victim or the

expected message format. Therefore, he knows the register information without

private credentials, in some cases. This can be a user name, eMail address, issuer

value, ID format, and the ACS URL.

Black Box The attacker does not know the structure or any implementation details of

the authentication and validation process of the service provider. In particular,

the source code is unknown and no information about the security checks is public.

However, if the SP responds with detailed error messages, it may be possible to

deduce what parts are verified and how.

3. Approach 30

3.3 Attack Vectors

Whenever data is transmitted via a network, a MitM attack might be possible. An

attacker could eavesdrop or tamper data, which poses a threat to confidentiality and

integrity of that information. However, this is not what this work is about. No entity

that has access to the message exchange is necessary.

3.3.1 Analysis of the Protocol

Additionally, there exist targeted attacks on SAML-based SSO frameworks: The analysis

of the SAML specification can be successful to find a weakness (e.g. a replay attack

or information leakage through message malleability), but the protocol can be usually

considered safe. A formal analysis of SAML has been published by Armando et al. [1].

3.3.2 Hijack the User

Furthermore, a malicious or hijacked user can cause serious damage during the SSO

authentication process. As described in the previous sections, the user is in control over

all messages, and thus his behavior is critical for the protocol. If the user’s behavior

differs from the protocol, this violation may be exploited by an adversary. Although,

the user is the least trustworthy of all entities participating in the protocol, he has most

control. An adversary could also try to hijack one of the user’s software processes and

manipulate data on that system. If the user system is hijacked, which tends to be the

easiest target, we can go phishing of assertions.

3.3.3 Attacks on the Identity Provider

An IdP is a single point of failure. This is especially attractive to attackers. Identity

theft and Denial of Service (DoS) are typical attacks aimed at a centralized system

architecture. Moreover, the potential is high to obtain many authentication credentials

at once. If the IdP is not secure, reliable and available most of the time for both, i.e. the

user and the SP, this represents a significant threat to the overall SSO architecture and

must be addressed by the Business Continuity Planning (BCP) of involved companies.

3. Approach 31

Even if there is no adversary that is threatening the IdP, the failure of it still has an

influence on the operational process of the customers.

3.3.4 Attacks on the Service Provider

The adversary can obtain the source code of the relying party in some cases (e.g. if

Shibboleth is used 1) to analyze the code. The review of the code, which is responsible

for executing signature verification, authentication and authorization to resources, can

be useful to find vulnerabilities.

Finally, another promising attack vector exists: Each SP has to decide whether the

incoming SAML responses are valid and genuine or not. The decision process is based

on XML Signature verification and additional format and plausibility checks. For this

work, we exploit that the decision-making process is not always correct. Derived from

this attack vector, the following section is about the attack scenario, which has been

designed to test this attack idea in practice.

3.4 Attack Scenario

The idea is to emulate all involved parties by the test tool, except the service provider

itself. In contrast to the standard-compliant SSO scenario on page 4, only two parties

are involved in this attack scenario, which is shown in Figure 3.1. The third party which

is the IdP is emulated by the test tool. This is possible, because an adversary can create

his own asserting party with a self-signed certificate. There is no Chain-Of-Trust that

certifies the asserting entity (the IdP). The test tool can be installed and executed on

any computer system that has network access to a service provider.

1Shibboleth is a free and open-source software that provides Single Sign-On capabilities. An IdP as
well as an SP implementation is available. http://shibboleth.net/

http://shibboleth.net/

3. Approach 32

Malicious User Service Provider

Emulation

Identity Provider

WS-Attacker

Figure 3.1: SSO Attack Scenario

Two types of vulnerabilities can be distinguished and tested with the test tool: the XSW

vulnerability and a signature verification vulnerability of the service provider.

3.4.1 XSW Vulnerability

Figure 3.2 illustrates the XSW vulnerability. The service provider has a database which

stores users and certificates. In this scenario, two groups with two users exist. In this

case, only the first group is attacked.

Malicious User Service Provider

Emulation

Identity Provider

WS-Attacker

DB

Cert

Figure 3.2: Attack Scenario: Type One

In the following, some definitions are made:

Account An account is the basic instance, which can be created on SP side. It has

at least one user (the account owner itself) and has control over the certificate as

well as security configurations.

User A user is one of many identities that have access to the account. Each user can

have particular rules and possibilities within the account.

Group A group is a collection of users that share the same certificate for authentication.

A group is associated with only one account. An account can have multiple groups.

3. Approach 33

For example, a company has several users in a work group and all have access to their ac-

count for collaboration. The administrator has set one certificate for the authentication

of these employees of the work group.

The attacking user is represented by the green person and the hijacked user is colored in

red. The attacker is an internal adversary, which means he is a member of the company.

In this scenario, one of the colleagues is the malicious user. He wants to access the

same account, but with another user name. Thus, the attack is directed against the own

group, which is protected by the same certificate.

To execute the attack, the malicious user creates a valid SAML response, that is signed

by the genuine certificate. Then, this message is wrapped, so that the victim’s user role

is requested. As a result, the malicious user is authenticated as the victim’s user. Now

he can access and manipulate the account data in the victim’s name.

3.4.2 Signature Verification Vulnerability

The second kind of vulnerability can be characterized as a serious implementation and

configuration error on SP side. A service provider that is threatened this vulnerabil-

ity has no secure separation between accounts with different certificates. Figure 3.3

illustrates the scenario.

Malicious User Service Provider

Emulation

Identity Provider

WS-Attacker

DB

Cert

Cert

Figure 3.3: Attack Scenario: Type Two

Usually, account data and certificates are stored in one single database. The application

and signature logic of the SP has access to all of these entries. The attacker is an external

adversary, which means he is not a member of the victim’s company. He has no access

to the certificate and no valid user within the target group.

However, the adversary can create a valid account at the service provider with its own

certificate. In this case, the red group is controlled by the adversary on the same service

3. Approach 34

provider as the victim. This is easily possible, because the attacker can create a new

account with the public provider for himself. A particular user of the green group is the

victim. The green group is an arbitrary work group of another company to be spied.

Then, the SAML message which is signed by the certificate of the attacker is wrapped,

so that the victim’s user name is requested. The SAML request is manipulated, so that

almost all values are same as in a genuine victim response. However, the signature is

from the attacker not from the victim. As a result, the malicious user is authenticated as

the green user, which is member of the other group (certificate verification vulnerability)

and not the own group (XSW vulnerability).

The trick is as follows: the signature logic verifies the validity of the signature and the

application logic receives the success signal. The application logic is confident that the

SAML response to be processed is correct (valid signature) and executes the malicious

payload (inserted based on XSW). The payload contains the command to provide access

to the victim’s account, which is protected by the victims certificate and not that one of

the attacker. If the attack is successful, the application logic does respond with data of

the victim, although the certificates don’t match (because the signature logic has verified

successfully the attacker’s signature)

Chapter 4

Software Design Concepts

This chapter is about important design concepts which have been utilized or developed

for this work. To meet the requirements with respect to scalability and flexibility, the

software architecture of the test tool should be clever. In the following, the design

concepts are described in detail.

On an abstract level, the test tool is composed of a couple of modules that interact with

each other. The main goal of this concept is to manage the complexity of the software.

Procedures that are related are composed in its own module.

MainManager

Account Manager

Penetration Manager

HTTP Manager

Identity Manager

Verification Manager

Attack Objects

Strategy Manager

Message
Exchange

Message
Encoding

Wrap Manager

Wrapping Oracle

Signature Manager

TRManager

Attack Object
Factory

Decorator
Manager

Response
Builder

Classifier Module Classifier Module Classifier Module

Classifier Factory
Attack History Manager

classify
Attack Object Attack Object Attack Object Attack Object Attack Object

Credential
Provider

Policy
Manager

Figure 4.1: Module Hierarchy

Figure 4.1 is a high level illustration of the most important modules. All modules have

hierarchical relationships and implement useful design concepts. The following sections

35

4. Software Design Concepts 36

describe the functionality of each module and its internal design principles. All sections

refer to the module hierarchy which is shown above.

4.1 Main Manager

This is the highest level class in the module hierarchy. Its task is to automize and

create the other modules. Each module has its own automatisms, but in some cases a

more abstract command and control unit is necessary. No special design concepts are

implemented.

4.2 Account Manager

The account management is handled by the account manager, which is directly subordi-

nate to the main manager and at the same hierarchy level as the verification manager.

It stores the current status information of the account: e.g. the account name and the

error states of components.

Its task includes the creation of the identity manager (4.3), the penetration manager

(4.4) and the service manager. The service manager is not shown in the Figure 4.1,

but its hierarchy level is the same as of the identity and the penetration manager. The

service management provides information to the other managers about the SP like the

service URI, the ACS URI, and the relay state.

Furthermore, the account manager is responsible to mediate the communication between

the penetration manager and the identity manager. For example, if the penetration

manager has an update for the identity manager, the account manager can allow or

deny this changes.

4.3 Identity Manager

As shown in Figure 4.1, the identity manager is a sub-manager of the account manager.

All processes of the IdP are implemented in this module, so that the purpose of this

module is to manage the creation of SAML responses.

4. Software Design Concepts 37

The most important classes are the decorator manager, the credential provider, and

the response builder (several other classes of the identity manager are not depicted in

the Figure). The following list describes the functionality of important subordinate

managers in short.

Response Builder The response builder implements the management of two func-

tions: First, it manages the build, marshal, and sign procedure.1 And second, the

component can parse a text file containing a SAML response into an OpenSAML

Response object. The OpenSAML library 2 provides a message parser for that.

The resulting OpenSAML Response object can be passed to the decorator manager

on the left side in the Figure. The other way around is also possible: the response

builder can create an OpenSAML Response object based on the configuration of

the decorator manager. The concept of decoration is explained in detail in Section

4.3.1.

Decorator Manager A SAML message has a tree structure and is based on the XML

specification. Both standards are flexible and hence the messages can be manifold.

The IdP module should be capable to create any SAML message. To address this,

we chose a suitable design pattern for its inner logical structure: the decorator

pattern (Section 4.3.1). The decorator manager is a sophisticated implementation

of this pattern. The builder can create decorator objects and extensions. Both

represent a particular structure, i.e. a template or scheme, for SAML messages.

These messages can then be generated multiple times based on this template. They

have the same structure, but different values (timestamps, digest value, etc.). The

decorator concept is flexible and hence the scheme can be altered. Consequently,

a user of the test tool can create almost all kinds of SAML messages.

The credential provider provides cryptographic functionality to the decorator man-

ager. It is at the lowest level of the hierarchy. At some point of the creation process,

the message contains all necessary elements, but without cryptographic security.

The signature is missing: there is no digest value, no signature value and no key

info set in the message. The responsibility of the credential provider is to create

1Marshalling is the process of transforming an OpenSAML object to a data format (DOM, Doc,
XML).

2https://wiki.shibboleth.net/confluence/display/OpenSAML/Home

https://wiki.shibboleth.net/confluence/display/OpenSAML/Home

4. Software Design Concepts 38

(or load) RSA key pairs and X.509 certificates. It is bundled with the decorator

manager and hence, even lower in the module hierarchy.

The policy manager stores many restrictions and SAML recommendations that

influence the creation process of the decorator manager. It is at the lowest level

of the hierarchy similar to the credential provider. Its responsibility is to provide

official tag names and attribute values to the Decorator Builder. To create an

XML message, which is conform to a SAML response message, the software must

know how to name the elements; which attributes are allowed for each element;

and what values can be set, if it is restricted.

4.3.1 Decorator Pattern

In the context of software architecture, there exist several patterns to simplify develop-

ment [5, pp. 79]. The decorator pattern is one of these design patterns. It is similar to

subclassing. Figure 4.2 depicts an abstract illustration of the decorator design pattern

in Unified Modeling Language (UML) notation.

This pattern is used to create dynamically a composition of basic objects and multiple

extensions to these. The fundamental idea is to alter the functionality of an object at

run-time by addition and recombination of extensions. Each extension is independent

and flexible to use. They are independent, because a modification of one extension

does not affect the others. And their usage is flexible, because a general interface is

implemented by all instances and therefore, the order in which extensions are added or

processed is variable. Moreover, a nested tree structure is possible by implementing a

decorator pattern within an extension.

These characteristics of the decorator pattern make this software design a suitable rep-

resentation of SAML responses.

4. Software Design Concepts 39

+build()()

BasicObject

+build()()

SpecificObject

+build()

Decorator

-basicobject

+build()

ExtensionObject1

+build()

ExtensionObject2

+build()

ExtensionObjectN

Figure 4.2: UML Illustration of the Decorator Pattern

The decorator pattern is some kind of linked list. It is apparent from the illustration in

Figure 4.3. The Figure shows the same decorator pattern but in a different view, which

emphasises the pointers of each object.

Concrete
Object

Extension Object
1

Extension Object
2

Extension Object
N …

Figure 4.3: Decorator Pattern Linked List Illustration

Depending on how the extensions are implemented, the order of execution can change.

However, the inherent execution sequence of the decorator pattern is as follows: First,

the basic object is created, and then extension objects 1 to N are created. Second, the

build method of extension object N is called. Object N itself points to extension object

N-1, and that build() method is called. In the following, the execution process continues

through all extensions up until extension object 1. In other words, the object creation is

carried out in forward direction, whereas method call is propagated backwards through

the list.

4. Software Design Concepts 40

4.4 Penetration Manager

This manager is responsible for the communication procedure that is conducted with the

service provider during a SAML-based authentication process. In addition, attacking

this process is a complex task and therefore, an attack management system is also

implemented by the penetration manager.

SAML response messages must pass through a series of processing steps before they can

be transmitted to a service provider. Each step can be varied and thus might be differ-

ent in comparison of service providers. Therefore, a pipeline structure is implemented

to prepare the messages for transmission as illustrated in Figure 4.4. A pipeline is a

collection of software components that communicate with each other only in sequence.

The components can be arranged side by side in a single row to illustrate which entities

communicate with each other predominantly. This software design is chosen because of

its advantages: It allows to represent a process sequence that has multiple stages. Its

characteristics are modularity, flexibility and expandability.

To address a more robust execution and to facilitate dynamic interaction with the test

tool, the penetration manager runs in its own thread 3.

Penetration Manager

HTTP Manager

Attack Objects

Strategy Manager

Message
Exchange

Message
Encoding

Wrap Manager

Wrapping Oracle

Signature Manager

TRManager

Attack Object
Factory

build
network

Service Provider

pipeline

Figure 4.4: Penetration manager pipeline

The following list describes each of these pipeline components in short:

4.4.1 Attack Object Factory

This is the origin of each Attack Object instance. This factory creates an empty object

each time the penetration manager executes a new run. Then, the identity manager is

3If the background of a rectangle is yellow in any Figure of this thesis, this indicates that this part
of the software is executed in its own thread.

4. Software Design Concepts 41

called to build a fresh SAML Response object. The reference to this instance is set in

the new Attack Object.

4.4.2 Wrap Manager

Second column in the row is the wrapping module. The new Attack Object is passed to

the wrap manager for process. Its task is to generate a wrapped SAML response message

based on the XSW attack. Figure 4.5 represents the internal structure of the module

and it illustrates, how the XSW wrapping library of Christian Mainka is integrated into

the test tool (for details about the library see [10, pp. 51]).

Penetration Manager

Wrap Manager

Signature
Manager

Wrapping
Oracle

Signed SAML
Message

possibility i

i-th XSW Message

Attack
Object

update

Target
Replacement

Manager

index
1. choose

2. push

payloads

Figure 4.5: Wrapping Oracle Integration (based on Figure 28 in [10, page 55])

The penetration manager is in control over the wrap manager and for each run of

the pipeline, a possibility is chosen by the penetration management. Once the XSW

possibility is set, the attack object is pushed through the wrap manager. This starts the

internal molding process:

First, the signature manager is used to identify signed parts of the SAML response.

Signed parts are declared as payload elements, so that they can be manipulated. The

TR manager (target-replacement manager) is responsible to do malicious manipulations

to those payloads. Furthermore, the tool provides an automatism to set up the right

values for the malicious manipulations.

Second, the original SAML message as well as the malicious payloads are passed to

the wrapping oracle. Based on these inputs, the wrapping algorithm creates a list of

4. Software Design Concepts 42

possibilities. Each possibility is a different XSW attack message, i.e. a wrapped SAML

message, as described in Section 2.5.1 about XML signature wrapping.

Finally, the Attack Object is updated with the resulting XSW possibility (the i-th XSW

attack message) and passed down to the next step in the pipeline.

4.4.3 Strategy Manager

The next module is the strategy manager. It is responsible for the message exchange flow

as defined in the sections about IdP initiated and SP initiated protocol flows (see 2.4.3.2

and 2.4.3.1 respectively). Both protocols require sophisticated message handling, that is

realized by the message exchange component. Unfortunately, each service provider can

have a different message exchange flow due to multiple redirects and session manage-

ment. To address this circumstance, the strategy component performs extensive redirect

management, which is performed by an included redirect manager module (not shown

in the Figure). Moreover, the subsequent components may throw errors. For example,

if the host is not responding or the SSL connection failed, the HTTP manager module

throws exceptions upwards in the pieline to the strategy manager. To address this, the

strategy manager is also responsible for comprehensive exception handling.

The message encoding module is next in the pipeline and resides within the strategy

manager. Usually, HTTP POST binding is used, but HTTP Redirect binding is also

implemented. Each binding specifies a particular message encoding. The encoding

is a transformation of a SAML message in XML representation (and some protocol

states like the relay state) into a list of encoded parameters. The implementation of

this functionality is within the message encoding module. Further bindings as well as

protocol flows can be added easily to the strategy manager.

4.4.4 HTTP Manager

Finally, the HTTP manager column is an illustration for the HTTP client implemen-

tation. This module accepts encoded parameters from the message encoding module.

It is responsible for message transmission via HTTP and handles the HTTP GET and

HTTP POST transmission to the service provider endpoints. Its key tasks are to prepare

those parameters for HTTP transmission and manage the HTTP client configuration.

4. Software Design Concepts 43

Additionally, it is responsible for headers and cookies. The Apache HTTP client imple-

mentation is used as default. In addition, the manager provides a history of all HTTP

requests and responses which have been sent during the penetration process, so that an

analysis of the HTTP message exchange can be done manually.

4.5 Configuration

The configuration management consists of multiple levels, whereas the main manager

processes the highest level in this hierarchy. The creation of a configuration file can be

an extensive task. To reduce the effort, a hierarchical concept is implemented in the

test tool. It is flexible and dynamic. The design idea is as follows: The modules which

have settings to be saved provide an interface to get and set a setting object. The main

manager makes use of these methods to obtain the settings of those modules. Each

module collocates the settings objects of its components.

The final setting is a collection of configuration objects. The task of the each module is

to compound all individual settings into one settings object. Finally, the main manager

stores the collection of settings into a text file. As a result, the properties and attribute

values are represented in an XML structure.

4.6 Verification Manager

The verification module is intended to fulfill the evaluation task. The evaluation includes

the assessment of whether an attack has been successful or not. This decision must be

made just on the basis of incoming response messages from the service provider. From a

theoretical perspective, this is of course only possible if the response messages are signif-

icantly different depending on the authentication status of the provider. For example, a

standardized HTTP response that contains a random URL pointing to a resource which

represents a successful or rejected state is not distinguishable. Fortunately, following

the redirect should solve the problem.

Again, the validator is a complex algorithm for classification. Its goal is to distinguish

text messages which are HTTP responses incoming from the SP as a result to SAML

requests. This decision process is divided into two classification steps. Figure 4.6 is a

4. Software Design Concepts 44

state diagram which illustrates the fundamental decision tree of the validator. Step one

is marked red and step two is colored blue.

StartStart

[message received]

StopStop

Step Oneaccepted [accepted] [refused]

secureStep Twovulnerable [user: victim] [user: attacker]

Figure 4.6: Validator: Two Steps of Classification

First, the start state is left if an HTTP message (or a sequence of messages because of

redirects) is received. This message is passed to a classifier which can distinguish HTTP

messages that represent the rejection of the service provider (e.g. an error message)

from messages that represent a successful authentication state (e.g. redirect URL to

protected resource).

Step two is entered only when state “accepted” was achieved. If this is the case, the

distinction is made which account is accepted by the service provider. So, the second step

of the decision process can be challenging for the classification algorithm. In essence, the

distinguisher of step two must be able to recognize characteristics in a successful HTTP

response that identifies a particular user. In some cases, this might only be possible if

multiple redirects were followed. Finally, an attack vector, i.e. a manipulated SAML

response, is labeled successful if state “vulnerable” is achieved.

4. Software Design Concepts 45

Thus two decisions must be made: one in the first step, and another one in the second

step. Both decision problems should be decidable using existing methods for natural

language processing as explained in chapter 22 of [24]. There are different candidates

that exist in theory for a solution of such a decision problem. To identify a sufficient

candidate, an overview is created of several methods and practical concepts to solve a

classification problem are explained and evaluated in the following subsections. Each

of those concepts can be used to implement a distinguisher module that could enable

the validator component to classify incoming HTTP responses and therefore “walk”

through the decision tree. It is important to note that accuracy and correctness of

artificial learning systems is perhaps not as high as necessary.

4.6.1 Classification based on Rules

In most cases, the first approach to design a distinguisher is the definition of rules that

are implemented one by one by the programmer. Most programmers nowadays solve

decision tasks using rules because it is very simple and each programming language has

commands for it. A formal introduction to rule based decision making and information

processing is written in German language by Prof. Lunze [9, pp. 91-129].

Algorithm 1 Representation of Knowledge Which is Based on Rules

Require: state
1: if state is A then
2: actions in response to state A
3: end if
4: if state is B then
5: actions in response to state B
6: end if
7: . . .

The “state” variable in the pseudo-code of Algorithm 1 can be a simple fact, a condition,

or a symbol that represents a complex situation. In case of text classification, indicators

might be several key words that identify a class definitely. Other indicators can be text

length, number of words, number of characters, language type, or other language specific

characteristics.

The following evaluation approach is not adequate for the validation task. On the one

hand, rule based classification has relevant advantages: it is fast, simple to implement,

4. Software Design Concepts 46

sufficient and quite effective for static scenarios, changes can be applied easily, it is

scalable to some extend because new rules can be added, and accuracy is typically high.

On the other hand, a rule based classifier has drawbacks: the user or the developer has

to create rules, therefore, intensive user interaction is required and even less complex

scenarios could require thousands of rules. Even if the number of rules is no problem,

the user still remains very important: the user has to formulate the knowledge into a

set of rules (knowledge formalization problem [9, pp. 445-463]). In addition, a further

disadvantage is that the tolerance is less, i.e. if there exist small unpredictable variances

within each class, a rule based approach comes to its limits.

4.6.2 Classification based on Statistical Methods

In general, a vast amount of statistical methods exist to measure numerous effects.

A subset of them might be useful for classification (statistical classification) based on

indicators like word and character count, frequency analysis, N-gram character models,

et cetera. In addition, a probabilistic classifier exists and it is called “Naive Bayes

Classifier”. It is based on the Bayes’ theorem and can do classification tasks.

With focus on our demands, there is one method that is easy to deploy and meets the

requirements imposed by the penetration tool: similarity analysis of simple character

strings. In essence, this design is deduced from the K-nearest neighbors algorithm (see

[24, page 738]). It is simple and works well if there is no observation error, which is the

case in the validator scenario. Its advantage is, that the classes need not to be linear

separable in the input space [24, page 723]. Assuming that the response messages can

be manifold, the choice of such an algorithm is quite promising. On the basis of the

kNN learning concept, a custom module to classify response messages was designed.

The simmetrics library implements a type of algorithms that can evaluate the similarity

of two character sequences. It is published under GNU General Public License by the The

University of Sheffield, UK, and hosted by Sourceforge.com 4. Among other algorithms,

four statistical methods can be used: Cosine Similarity, Euclidean Distance, Levenshtein,

and MongeElkan. Each of these methods compare two character sequences and return

a similarity value in the range of 0.0-1.0.

4http://sourceforge.net/projects/simmetrics/

http://sourceforge.net/projects/simmetrics/

4. Software Design Concepts 47

To use a similarity value for classification, a concept using this values must be created,

that is able to learn from examples. However, there is a problem: A similarity analysis

has no ’memory’ (a memory is a storage for examples, or the ’experience’ in human

sense) and, of course, without any ’memory’ learning is impossible. To address this, a

simple ’memory’ was designed: an extensible list of training examples for each category.

This storage task can be a List object which stores String objects in Java. On the basis

of this design, the classification process may be carried out in different ways:

Maximum Group Similarity An unclassified message is compared to each training

message in the memory regardless of in which list the training message is stored.

As a result, a list of similarity values is created and then sorted in ascending

order. The last entry of the list is the most similar training message with regard

to the unclassified message. Finally, the unclassified message is assigned the same

category as the training message.

Average Group Similarity An unclassified message is compared to each training

message out of one category. As a result, a list of similarity values is created.

In contrast to Maximum Group Similarity, the average of all values in the list

is calculated. As a result, we get the average similarity of the unclassified mes-

sage with respect to all messages of one particular category. This procedure is

repeated for all lists in the memory. Finally, the highest average similarity value is

determined and the corresponding category is returned as the classification result.

Similarity to Rejected
HTTP Responses

decision boundary

margin

1.0 0.0

Similarity to Accepted
HTTP Responses 1.0 0.0

average

average

Figure 4.7: Classification Example - Two Characteristics

4. Software Design Concepts 48

Figure 4.7 is an abstract illustration of the classification process using similarity analysis.

Imagine the validator receives a new HTTP message. It is unclassified, so the category is

unknown. The classification module of step one must now make a decision whether this

HTTP text message represents an “Accepted” or a “Rejected” state. From a previous

training phase, some training messages are stored in a list representing “Rejected” and

other training messages are stored in a list representing “Accepted” responses from

the SP. The similarity of the response message with each training message stored in

memory is calculated. Each dot in Figure 4.7 represents a similarity value. To calculate

the decision, either Maximum Group Similarity or Average Group Similarity can be

used.

However, a similarity based distinguisher has its limits. If the differences between ex-

amples that are in the same list of training examples is too high, classification can be

wrong. In other words, a high variance within a group results in wrong decisions and

hence accuracy is reduced. Also, the similarity of examples within one category must

be significantly higher than the similarity to any example of another class.

4.6.3 Classification based on Learning Algorithms

The verification module can be referred to as an agent, as it is used in artificial in-

telligence. “An agent is learning if it improves its performance on future tasks after

making observations about the world” [24, page 693]. Chapter 18 of this book is about

“Learning from Examples” and several learning algorithms are explained that could be

a solution for the verification task of the penetration test tool.

Several learning algorithms exist for the classification task. For example, artificial neural

networks, Bayes networks, or Support Vector Machines [24, pp. 744]. These may be

utilized by the verification module. For this reason, the verification manager is imple-

mented modular to facilitate future extensions.

Chapter 5

Implementation

This Chapter deals with the implementation and documentation of the source code and

provides a brief insight into it.

For development, the Netbeans Integrated Development Environment (IDE) in version

7.3 has been used together with the Java Development Kit (JDK) version 1.7.0 21. The

source code and all other files on the data medium, which is submitted with this thesis,

are an integral part of my work.

On the next page, Figure 5.1 shows the dependency graph of the most important pack-

ages and classes 1. To improve the clarity of the Figure, a few elements and their de-

pendencies have been hidden. The overall structure is deduced from the module design,

which is illustrated in Figure 4.1 on page 35. In the following, the explanation remains

very general, because a detailed description exists as Javadoc and inline comments in

the source code itself.

Figures 4.1 (module hierarchy) and 5.1 (dependencies, packages and classes) should be

used as a map for the interested Java developer who wants to study the code.

1The graph is created with “ispace” http://ispace.stribor.de/.

49

http://ispace.stribor.de/

5
.

Im
p
lem

en
ta

tio
n

50

Figure 5.1: Dependency Graph - Overview

5. Implementation 51

As expected, the code has much in common with the module hierarchy introduced in

Chapter 4. On the left, the main manager is shown and colored in blue. It has depen-

dencies to the account and verification packages, because it starts the construction

process of both. However, is is mostly in contact with the account package. Inside the

package, there a four classes which implement the model-view-controller concept (MVC

compound pattern) with a dedicated settings class. Most of the managers in this Java

program are structured in such way. In contrast to the traditional MVC pattern (see

[5, pp. 529]), this program implements the MVC pattern differently. In this case, the

controller is a mediator and controls all information exchange between the model and

the view 2.

Right above the main package, there is the account package, which contains the ac-

count manager classes. The MVC compound pattern is represented in the follow-

ing classes: AccountManagerModel (model), AccountManager (mediating controller),

and two view panels (AccountUpdatePanel, AccountManagerPanel). Furthermore, the

account package has two sub-packages: identityprovider and serviceprovider.

The identityprovider package includes many classes and packages, because the iden-

tity manager and all subordinate components are located in it. These are the decorator

manager, credential provider, policy manager and several others, which all are hidden

in the overview for clarity.

The serviceprovider package is right to the AccountManager class and represents the

service manager. Its inner structure is less complex in comparison to the identitymanager

package because it is not a service provider at all. It only handles several values about

the service.

On the right, the penetration package is depicted. It contains a pipeline package

which is a composition of some constitutive classes which implement the pipeline man-

agement of the penetration manager. There is a slight difference between the pipeline de-

sign and the actual implementation: due to strong coupling of the PenetrationManager

class on the one side, and the packages wrapping, strategy, and http on the other side,

the dependencies between these components of the pipeline are indirect. In other words,

based on the pipeline concept, there should be many dependencies between wrapping

2see mediator based MVC pattern: http://developer.apple.com/library/mac/#documentation/

General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

http://developer.apple.com/library/mac/#documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

5. Implementation 52

and strategy as well as strategy and http. However, there is a strict hierarchy within

the penetration package and therefore, the PenetrationManager class is always in

control over the pipeline process. In addition, all managers in the penetration package

implement the MVC compound pattern and the strict module hierarchy is maintained.

At the bottom, the verification package is depicted. The constructor of its classes is

called by the main manager, which shows the red arrow pointing from the left to the

package. Another arrow is directed from the penetration package. It illustrates the

flow of AttackObject events (property change events). The VerificationManager class

is listening for these events from the PenetrationManager class and utilizes a model

class (VerificationManagerModel) and a view frame (VerificationManagerFrame).

The verification management handles the attack history and the classification process.

These functions are grouped together in two other packages: A attackhistory package

is responsible to store the history of incoming AttackObject instances. It contains a his-

tory manager and the AttackObject implementation itself. These attack objects contain

pairs of request and response messages. These pairs are the input for the classification

process, which is implemented in several classes within the classifier package.

5.1 Third Party Libraries

The following list is a selection of important libraries that are used by the test tool.

The libraries are sorted in ascending order by their importance. Most important are

OpenSAML and the XSW library:

OpenSAML “OpenSAML is a set of open source C++ & Java libraries meant to sup-

port developers working with the Security Assertion Markup Language (SAML).”

In addition, “the OpenSAML libraries do not provide a complete SAML identity

or service provider.” 3. Therefore, we decided to utilize this library to develop the

rudimentary identity provider (within the identityprovider package). Classes

of internal decorator manager are strongly coupled with methods of this library.

3https://wiki.shibboleth.net/confluence/display/OpenSAML/Home

https://wiki.shibboleth.net/confluence/display/OpenSAML/Home

5. Implementation 53

WS-Attacker Signature Wrapping Library This library has been developed by

Christian Mainka. For this work, the signature manager and the wrapping or-

acle implementation is used. For more details see [10], Section 2.5.1 on page 22,

and Section 4.4.2 on page 41.

Simmetrics “SimMetrics is a Similarity Metric Library, e.g. from edit distance’s (Lev-

enshtein, Gotoh, Jaro etc) to other metrics, (e.g Soundex, Chapman). Work pro-

vided by UK Sheffield University funded by (AKT) an IRC sponsored by EPSRC,

grant number GR/N15764/01” 4. This project is used to build the message clas-

sifier, which can learn and distinguish HTTP responses.

XStream XML Library “XStream is a simple library to serialize [Java] objects to

XML and back again.” 5. It is used to create XML-based configuration files. The

advantage is that it does not require any user interaction to load and store Java

instances of almost any kind. Hence, it is quite automatic, that’s what we want.

But it also meets the requirements with regard to flexibility, which we need for

the IdP implementation, especially for the decorator pattern. As a result, if the

decorator is extended, no additional work is necessary to adapt the implementation

of the configuration.

Apache HTTP Client This HTTP client implementation is used to send and receive

HTTP messages over TLS. It can manage TLS as well as cookies (using the

CookieStore class) and it has an easy interface. The corresponding class name is

org.apache.http.impl.client.DefaultHttpClient.

Bouncy Castle Crypto Provider It is utilized by the X509CredentialProvider class,

which is responsible for certificate and key pair creation. The credentials can

be created, stored or loaded to Privacy Enhanced Mail (PEM) files. To load

and store these files, the PEMReader and PEMWriter classes, both classified in

org.bouncycastle.openssl, are used. The PEM format is defined in RFC’s

1421 through 1424.

4http://sourceforge.net/projects/simmetrics/
5http://xstream.codehaus.org/

http://sourceforge.net/projects/simmetrics/
http://xstream.codehaus.org/

Chapter 6

Penetration Test Results

Chapter four deals with the test results. The penetration program has been applied to

several service providers to test their security. The next section introduces the experi-

mental setup.

6.1 Experimental Setup

It is a real world scenario, and because of that, no laboratory limitations exist, which

could distort the results. Penetration testing is performed using official URLs and end-

points.

Two Firefox plugins were used to gather information about the services. They are the

SAML tracer plugin 1 and the HTTP fox plugin for Firefox 2.

Of course, the principles of ethical hacking were applied only: all tested accounts belong

to me, I never tried to access any foreign accounts. If any weakness is detected, all

relevant people and companies are informed at first and without publishing critical

information to the public.

Because hundreds of erroneous messages are sent to the SP and this looks like a DoS

attack, it is possible that the IPs are blocked by the Intrusion Detection System (IDS)

1The SAML Tracer plugin version 0.2 by Olav Morken was used. See https://addons.mozilla.org/

de/firefox/addon/saml-tracer/.
2The HttpFox plugin version 0.8.11 by Martin Theimer was used. See https://addons.mozilla.

org/de/firefox/addon/httpfox/.

54

https://addons.mozilla.org/de/firefox/addon/saml-tracer/
https://addons.mozilla.org/de/firefox/addon/saml-tracer/
https://addons.mozilla.org/de/firefox/addon/httpfox/
https://addons.mozilla.org/de/firefox/addon/httpfox/

6. Penetration Test Results 55

of the service provider. If this provider is Google.com for example, this would result in

serious problems for the IPs that are blocked. To address this risk, a consumer DSL

line instead of the University’s gateway was used to protect the official IPs. In addition,

all attacks were executed with adequate rest period (mostly 5 seconds) between each

request. If the request frequency is to high, this could trigger mechanisms to prevent

DoS attacks and this would distort the results. The service would refuse any request

and thus no analysis of the authentication procedure is possible.

To test a service provider, two valid accounts are created. Then, the test tool is con-

figured to log in to the first account. Next, the malicious payload must be set up and,

therefore, the issuer value and the user value, i.e. eMail address or user ID, are replaced.

Finally, wrapping is enabled and the software is sending all attack vectors to the ACS

URL.

In general, the test tool is very flexible and is able to create numerous SAML responses.

Only a fraction of those have been tested, but for each provider I chose the best config-

uration based on my knowledge. Hence, for those classes of attack vectors I chose, the

service provider can be declared as secure.

6.2 Measurements

The penetration test tool was applied to several providers to check if the tool meets

the requirements for this work, and to verify the security of those services. The de-

scription for each experiment is always the same: First, a company and its service is

described shortly. Second, the authentication process which is specific for this provider

is explained. Third, a detailed analysis is written down to describe the results and to

give a threat assessment.3

6.2.1 Google Apps

Google Apps is a service owned by the American company “Google Inc.”. It is a platform

that provides a collection of several web applications from the portfolio which is offered

by Google. The focus of Google Apps is on small business needs. In essence, it is

3First, the tests are described in detail and in subsequent Sections these descriptions are kept short.

6. Penetration Test Results 56

a collaboration platform for companies with a few employees who predominantly use

Google applications like Gmail, Calendar, Drive, Docs, Sites, DoubleClick, Ad Sense,

Analytics and others. Therefore, companies with high data privacy needs should check

thoroughly if they can trust Google to process their business information. A requirement

for registration is to specify a domain the administrator has access to. In contrast to

most of Google web applications, this service is not free. But there is a validation period

of 30 days.

6.2.1.1 Authentication Process

The authentication process is based on the SP initiated message exchange protocol (see

Section 2.4.3.1 on page 16). It uses HTTP Redirect binding to send the authentication

request and HTTP POST binding for the response. Therefore, the SAML response con-

sumer service (i.e. the Assertion Consumer Service (ACS)) expects the SAML response

and the RelayState parameter encoded in the body of an HTTP POST message. The

test scenario and the protocol flow is illustrated in Figures 6.1 and 6.2. In the following,

each step of the sequence diagram is described.

SaaS: DMS, Mail,
Calendar

Malicious User

Emulation

Identity Provider

WS-Attacker

google.com

Figure 6.1: Google Apps At-
tack Scenario

Test Tool https://mail.google.com

GET mail resource

HTTP Redirect: SAML requester URL

GET: SAML requester URL

HTTP Redirect: Authentication Request

HTTP POST: RelayState, SAML response

1. Update IdP
2. Create SAML response

HTTP Redirect: Login URL

Figure 6.2: Google Apps Attack Sequence

1. Access Message Google Mail is one of the apps that can be accessed via SAML

authentication. Therefore, the URL https://mail.google.com/a/company/ is

chosen. A simple GET message is send to this URL to request access to the mail

resource. Because the test tool is not logged in to the service, it is redirected to a

SAML requester endpoint, which differs from the service URL.

https://mail.google.com/a/company/

6. Penetration Test Results 57

2. Authentication Request The SAML requester endpoint responds by sending an

HTTP Redirect. The redirect URL contains the actual SAML request, which is

URL encoded into the location header (HTTP Redirect binding).

3. IdP The <AuthRequest> message is processed by the test tool. First, the IdP con-

figuration is updated by the information given in the request message. The deco-

rator object of the IdP is updated with attributes of the <AuthnRequest> message.

These values are an InResponseTo ID and a URL that is the assertion consumer

service endpoint. Also, the requested HTTP method is read and the penetration

manager configuration is adapted automatically. Then, a fresh SAML response

message is build and signed.

4. Send SAML response Finally, the SAML response message is accompanied with

the RelayState parameter, that has been received with the authentication request.

Both messages are sent to the SP using simple HTTP POST. The XML message

representing the SAML response is base64 encoded. The RelayState URL as well

as the encoded XML representation are URL encoded and transmitted within the

HTTP POST body.

In addition, Google uses session cookies to track a user who is logged in. If the authen-

tication is successful in step 4, the response message contains a redirect URL to merge

the authentication session, so that the user is allowed to access the requested resource.

The test tool is able to process session cookies and follow redirects if the penetration

tester enables this function. For this SP, it was not necessary to follow these redirects

and process the session cookies, because no attack possibility was successful and thus,

step 2 of the decision process (4.6) was never entered.

6.2.1.2 Configuration

Two Google Apps accounts were created: one for the attacker and another for the

victim. For both accounts, SAML authentication was enabled in the web frontend,

which can be accessed via the web URL https://www.google.com/a/COMPANY/. The

SAML authentication is located in “extended tools”→ “authentication”→ “Single Sign-

On configuration”. The certificate (created by the test tool) is uploaded to the service.

Each account, the victim and the attacker, has its own certificate and private keys. Both

https://www.google.com/a/COMPANY/

6. Penetration Test Results 58

accounts could be successfully accessed with the tool and therefore, authentication using

the test tool is valid. Consequently, we can be sure that the configuration is correct for

genuine SAML responses before the attack process is started.

Based on my knowledge about the authentication process and how to create malicious

payloads, the following configuration and manipulations were applied:

The timestamps are always fresh, so that there is no way to declare the SAML message

out of date. A typical Google Apps SAML response has four identifiers: response’s

ID, InResponseTo ID, assertion’s ID, and a SessionIndex attribute. All but the

InResponseTo identifier is created randomly for each SAML message. In addition, the

tool tracks all IDs and thus can avoid all identifiers that are sent to the service previ-

ously. If set to “SPinit”, the test tool uses the ID attribute of the <AuthnRequest> to

update the InResponseTo value.

There are two issuer values in the message: the response issuer and the assertion issuer.

Google does not accept a response from an unknown issuer although the embedded as-

sertion is correct and signed. To address this, the issuer value of the <Response> element

is manipulated, so that it is the same as in the victim’s response. The Destination

attribute is checked because Google uses unique ACS URL’s for each customer based on

this pattern: https://www.google.com/a/COMPANY/acs. For each account, a unique

destination exists and can be attacked. Both, the victim’s ACS URL and the attacker’s

ACS URL were tested.

Finally, the Recipient attribute value located in the <SubjectConfirmationData> el-

ement is manipulated, so that it is the same as in the victim’s response.

6.2.1.3 Findings

Google’s ACS endpoints respond with four different error messages depending on which

kind of message has been sent. Hence, there is some state information the adversary

can get.

• “This account cannot be accessed because the login credentials could not be veri-

fied.”

• “This account cannot be accessed because we could not parse the login request.”

https://www.google.com/a/COMPANY/acs

6. Penetration Test Results 59

• “Moved Temporarily”

• “The required response parameter RelayState was missing.”

The RelayState parameter must be present, but the value itself can be any character

string. The change of the transmission protocol from Hypertext Transfer Protocol Secure

(HTTPS) to HTTP was rejected by the ACS endpoint. The wrapping oracle found 258

different XSW permutations. No attack possibility was successful for any configuration

that was tested. As a result, Google’s SAML authentication process can be declared

secure against the attack possibilities that were checked for this work.

6.2.2 Salesforce

SalesForce.com Inc. is a US-American company. A typical customer of SalesForce is a

small or mid-sized business that can buy access to the services. This scenario is called

Software as a Service (SaaS). The service portfolio has a strong focus on marketing and

sales, therefore it is specialized on CRM and Business to Business (B2B) communication

needs. A business manager can fill leads and opportunities, create reports automatically,

chat with colleagues or manage contacts and customer information.

6.2.2.1 Authentication Process

The authentication process is based on the IdP initiated message exchange protocol

(see section 2.4.3.2 on page 17). No authentication request is transmitted previously.

The ACS URL is equal to the service URL and accepts the SAML response as encoded

character sequence in the body of an HTTP POST message (HTTP POST binding). A

RelayState parameter is not used. The scenario as well as the message exchange are

illustrated in Figures 6.3 and 6.4.

6.2.2.2 Configuration

The target domain is https://login.salesforce.com resolved to IP 204.14.234.101.

The HTTP connection is secured by TLS version 1.0 4.

4The network tool ’Wireshark’ was used to analyze the protocol http://www.wireshark.org/.

https://login.salesforce.com
http://www.wireshark.org/

6. Penetration Test Results 60

Malicious User

Emulation

Identity Provider

WS-Attacker

salesforce.com

Figure 6.3: SalesForce.com
Attack Scenario

Test Tool Salesforce.com

HTTP POST: SAML response

HTTP Redirect: Session Cookie and IDs

create SAML response

HTTP GET: Session Cookie and IDs

HTTP Response: content

Figure 6.4: SalesForce.com Attack Sequence

Salesforce.com provides a SAML response validator (see “Setup” → “Security Config-

uration” → “Single Sign-On Settings” → “SAML Response Validator”). This can be

helpful to understand the verification process (and to find weaknesses).

Several different configurations for the test tool were tested. Timestamps can be set to

old, fresh or future values. Furthermore, the issuer value and destination of the response

can be set to the victim’s value (or deleted). The <Assertion> has several values which

may be altered: these are the issuer value, recipient, session IDs or an email address, for

instance.

6.2.2.3 Findings

The response issuer, the destination attribute, and NotOnOrAfter (<Conditions> el-

ement) can be omitted (standard compliant behaviour) and the service accepts the

same response ID multiple times. However, the IssueInstant attribute cannot be

omitted and it must be fresh. The AuthnStatement tag cannot be omitted, but an

empty <AuthnStatement> element is accepted. An adversary does not need to set

the values for AuthnInstant, SessionIndex, or the <AuthnContext> child node. The

AttributeStatement element can be omitted (standard compliant behaviour). If there

is more than one assertion element, the message is not rejected (the response val-

idator displays a warning). Furthermore, differing IDs in the assertion and signa-

ture reference are not allowed. The <Conditions> element cannot be omitted (not

standard compliant behaviour) and the NotBefore attribute cannot be omitted. The

<AudienceRestriction> element cannot be omitted and it must be https://saml.

salesforce.com. Finally, the Recipient attribute (within <SubjectConfirmation>)

https://saml.salesforce.com
https://saml.salesforce.com

6. Penetration Test Results 61

cannot be omitted. A change to the HTTP protocol was rejected by the http://login.

salesforce.com endpoint, however it was responding with a SAML error.

The wrapping oracle found 258 different XSW permutations. No attack possibility

was successful for any configuration that was tested. As a result, the SAML response

validation procedure could not be tricked.

6.2.3 Samanage

Samanage is a company located at North America, Israel, and the Netherlands 5. It

provides SaaS, which is hosted by their cloud service. The application portfolio contains

asset management, license management, contract management, risk management, and

an enterprise IT service desk, for example. It is mainly funded by Israeli venture capital

funds.

6.2.3.1 Authentication Process

Similar to Google Apps, this service uses SP initiated SSO. To access a resource, the

HTTP GET method is used.

Malicious User

Emulation

Identity Provider

WS-Attacker

samanage.com

Figure 6.5: SAManage At-
tack Scenario

Test Tool
https://app.samanage.

com

GET resource

Redirect Binding: Authentication Request

HTTP POST: SAML response

1. Update IdP
2. Create SAML response

HTTP Redirect: Session Token and IDs

HTTP GET: Session Cookie and IDs

HTTP Response: content

Figure 6.6: SAManage Attack Sequence

The service URL endpoint immediately responds with the <AuthnRequest> and it

does not contain a binding URL (in contrast to Google Apps). If the authentication

is successful, an HTTP Redirect message is send to the user. The location is set

to https://app.samanage.com/ and the security token is a cookie that contains an

5http://www.samanage.com/

http://login.salesforce.com
http://login.salesforce.com
https://app.samanage.com/
http://www.samanage.com/

6. Penetration Test Results 62

“auth token” identifier and a session ID. The “auth token” is a unique and persistent

character sequence identifying the user account. The session ID is always different and

the final secret to get access.

6.2.3.2 Configuration

The configuration for the test tool is almost the same as described in 6.2.1.2. The pattern

for the ACS URL is https://app.samanage.com/saml/ACCOUNTNAME. Because Saman-

age as well as Google Apps use a unique ACS URL for each account, both endpoints

were tested. Again, multiple configuration sets for the test tool were applied: manipula-

tion of just the user name (i.e. the email address of the account) or the adoption of the

Destination, Recipient, and Issuer fields of the <Assertion> element were tested.

6.2.3.3 Findings

Samanages ACS endpoints respond with four different error messages depending on

which kind of message has been sent. Hence, there is some state information the adver-

sary can get.

• “You are being redirected” redirect to error URL that is specified in the account

settings.

• “You have successfully authenticated with SAML, but your user-id USERNAME

does not exist in Samanage. Please contact your Samanage account administrator

and request to add or modify your user-id.”

• 500 Internal Server Error, “Something went wrong”

• Sometimes an SSL error occurred (“Peer not authenticated”) and no correct HTTP

response were transmitted.

In conclusion, the authentication service can be declared as secure against all attack

possibilities that were tested for this work.

https://app.samanage.com/saml/ACCOUNTNAME

6. Penetration Test Results 63

6.2.4 Clarizen

Clarizen is a service that provides “collaborative project execution software” 6. Their

target group of customers are project managers, sales persons, and financial officers, for

example. A user of their services can plan projects, set milestones, upload reports of

any kind as well as documents, notes or emails. Also, expenses, hours of work and other

resources of the company can be tracked.

6.2.4.1 Authentication Process

This authentication process is based on IdP initiated SSO. The scenario as well as

the message exchange are illustrated in Figures 6.7 and 6.8. The steps of the sequence

diagram are quite similar to those of SalesForce.com.

Malicious User

Emulation

Identity Provider

WS-Attacker

clarizen.com

Figure 6.7: Clarizen Attack
Scenario

Test Tool clarizen.com

HTTP POST: SAML response

HTTP response: HTTP POST Form Control

create SAML response

HTTP POST: Session Cookie and IDs

HTTP response: content

Figure 6.8: Clarizen Attack Sequence

6.2.4.2 Configuration

The configuration settings are quite similar to that in 6.2.2.2 for SalesForce.com.

6.2.4.3 Findings

The only value that is checked within the <Response> element is the IssueInstant

attribute. This time stamp can be 59 minutes in the past and the SAML response

is still accepted as valid. The <Issuer> and the <Status> element can be omitted

and their values are neglected. If the <StatusCode> is set to “Authentication Failed”,

6http://www.clarizen.com/

http://www.clarizen.com/

6. Penetration Test Results 64

the response is still accepted by the service. The <AuthnStatement> element is not

checked for plausibility (any manipulation seems possible). The attribute values of

SessionNotOnOrAfter, AuthnInstant, and SessionIndex can be set to any date or

ID and these elements can be omitted. The service responds with the following error

messages:

• You are not authorized to perform this operation. Please contact your adminis-

trator for further information.

• Failed

• Object reference not set to an instance of an object.

Clarizen is vulnerable against the XSW attack as declared in 3.4.1 and the message is

manipulated as described in Section XSW - type one 2.5.1.1. The service responds with

an HTTP message containing a valid session ID and authentication data of the victim.

This should be analyzed by Clarizen.

Chapter 7

Discussion

The idea was to create a prototype, so that numerous of service providers can be tested

easily. In the scope of this master thesis, only a few service providers could be tested.

However, these can be declared as secure against XSW attacks. A weakness which

was found in the authentication process of Clarizen. However, this seems to be not

critical. Another motivation for this work was to create a tool for developers of SPs and

penetration testers. They can use this tool to analyze their application and measure the

vulnerability against XSW easily.

The design and development of an automatic test tool for SAML based SSO frameworks

is not trivial and creative solutions are required. At this stage of the development pro-

cess, the test tool has some limitations with regard to its automatism and classification

functionality.

The test tool is not completely automatic: for instance, the penetration tester has to

create accounts and to do the configuration of SAML as a service on SP side manually.

The automatic configuration management requires some user interaction and inspection.

For example, during the training process, setting just the <StatusCode> to ’failed’ is not

sufficient to get negative responses. The automatic configuration of the wrap manager

only works, if there are two accounts. In case of other scenarios, the wrapper has to be

configured manually.

Furthermore, the verification process can be problematic. In some cases, the accuracy of

the classification may be low, so that the automatic analysis cannot be used. In addition,

65

7. Discussion 66

the prototype has no dynamic process to adjust the parameters of the classifier, because

the decision boundaries and thresholds are fixed.

Another limitation is that the test tool is developed for a particular scenario: The

penetration tester has access to the SP and is able to create new accounts on the target

service. If this scenario changes, which means the attacker cannot create a new account

with an own certificate, the applicability of the program is limited. Another scenario

would be that the attacker has obtained a SAML response message from a valid account

through eavesdropping or interception. He does not have an own account on the target

system. At present stage of development the test tool is not capable to load a SAML

response as it is into the identity manager. The decoration, build, and sign functions of

the identity manager must be disabled and the response builder is extended.

Chapter 8

Conclusion

Today, managing digital identities and credentials is an extensive task for most of the

users. An SSO architecture is a suitable solution to solve this problem and, for example,

SAML-based authentication can be used to establish user authentication. Unfortunately,

the implementation of an effective and robust verification of SAML requests on Service

Provider (SP) side is neither a trivial nor a straightforward task. Each time a new SP is

created which accepts SAML for authentication, the service could be vulnerable to an

XSW attack.

To verify the security of a service provider against XSW attacks, the previous method

was to review the implementation manually. However, this is error-prone and time-

consuming. To solve this issue, the motivation for this thesis was to implement a test

tool in Java, that is able to execute the process of SAML authentication. The test

tool has the ability to create malicious SAML responses and to verify the behavior

of the SP automatically. Typically, an official IdP is responsible for the creation of

SAML responses but in this case, manipulations are restricted. To get rid of these

limitations, the goal was to emulate fundamental IdP functionality so that the test tool

does not require any external IdP. A requirement is that this implementation should be

flexible in a manner that facilitates the program to be used in almost any SAML-based

authentication scenario. Another difficult problem, which should be solved, is that the

response to malicious SAML messages can be different for each service provider. And

additionally, the universal test tool should require as little user interaction as possible.

67

8. Conclusion 68

Therefore, such a universal test tool requires intelligent software design and elegant

solutions.

To achieve this goal, the following steps have been carried out: First, the process of

SAML authentication has been analyzed. This includes the study of the message ex-

change, data encoding, and the format of SAML messages. Also, the XSW attack is

proposed and countermeasures are consolidate. Second, an elegant software architecture

has been designed. Some of the design principles are the decorator pattern, class inheri-

tance and type generalization, concurrency, event propagation, a pipeline structure and

a hierarchical MVC compound pattern. In addition, basic principles of machine learn-

ing are applied in order to increase the degree of automation. The test tool can create

responses and manage the authentication process. An adaptive software component,

which is capable of learning, is used to evaluate whether the behavior of an SP can be

declared as secure.

As a result, an automatic and universal test tool for SAML frameworks exists now,

which can be used to measure the vulnerability of a service provider against XSW.

To demonstrate the functionality of the program, the following providers have been

analyzed as an example: Google Apps, Salesforce, and Samanage which can resist all of

the attacks; and Clarizen which has vulnerabilities.

Future work should focus on software development and security audits. The implemen-

tation of new automatisms is a useful extension of the source code. For example, enable

the tool to automatically process SAML metadata. Moreover, the implementation of

new HTTP bindings could be necessary for particular providers. Another useful step of

development might be the integration of this tool into the “WS-Attacker” framework.

In contrast to software enhancements, it is doubtless that the search for better attack

vectors on SAML, e.g. to enhance the XSW attack if possible, is a bit more interesting

for security research. As a result, this would lead to an even more sophisticated signa-

ture wrapping oracle. Finally, the program should be used to analyze more providers,

so that as many services as possible can be declared as secure.

Appendix A

Appendix

A.1 XML Signature Creation Process

Algorithm 2 Creation: The <Reference> element [27, section 3.1.1]

Require: Access to all referenced resources, digest algorithm, transform algorithm
1: Load resources R to be signed
2: for all resource r ∈ R do . Transformation
3: Apply canonicalization (Canonical XML 1.0 or 1.1)
4: Apply <Transforms> commands
5: end for
6: Calculate hash over transformation results using specified digest method
7: Eencode resulting binary value with the base64 method
8: Create a <Reference> element and collocate these elements as child nodes:
9: Add <Transform> element

10: Add <DigestMethod> element
11: Add <DigestValue> element
12: Insert base64 encoded result in <DigestValue> element

The first algorithm takes over the task to prepare the resources. The access to all

referenced resources as well as the selection which algorithms to use are a precondition.

First, the resources to be signed are loaded and the transformation is applied. The binary

representation of the resulting character sequence is hashed using the digest method that

is defined beforehand. The hash result is base64 encoded and this string is embedded

into a newly created <Reference> XML element.

Thereafter, the second algorithm is processed during the XML signature creation pro-

cedure. It actually signs the referenced element.

69

Appendix A. Appendix Title Here 70

Algorithm 3 Creation: Signature value [27, section 3.1.2]

Require: Algorithm 2 was carried out, <Reference> element, selection of algorithms
1: Create <SignedInfo> element and append these as child nodes:
2: Add <CanonicalizationMethod> element; value is set to the algorithm’s URI.
3: Add <SignatureMethod> element; set to the URI of the selected algorithm.
4: Add <Reference> element that is the result of Algorithm 2.
5: Apply canonicalization method to <SignedInfo> element
6: Calculate hash over canonicalization result as specified in <SignedInfo>

7: Sign the hash using the signature algorithm specified in <SignatureMethod>

8: Base64 encode binary result with the base64 method
9: Create a <Signature> element and collocate these elements as child nodes:

10: Add <SignatureValue> element
11: Insert insert base64-encoded character sequence in <SignatureValue>.
12: Add <KeyInfo> element

First state of Algorithm 3 is the creation and collocation of the <SignedInfo> node.

The signature method is identified by an URI which can be http://www.w3.org/2000/

09/xmldsig#rsa-sha1, for example. An Algorithm attribute, which is set to the URI,

is inserted into the start tag of the <SignatureMethod> element. Next, the canonicaliza-

tion, hash and sign methods are executed. The binary result of the signature method is

base64 encoded. After creation of a <Signature> and <SignatureValue> element, the

character sequence is inserted between the start and end tags of the <SignatureValue>

node. The result of Algorithm 2 is the <Reference> element that is appended at state

four. As a result, the XML document is finally signed.

A.1.1 XML Signature Validation Process

Algorithm 4 Validation: The <Reference> elements [27, section 3.2.1]

Require: Document to validate; Access to all referenced resources
1: Canonicalize the <SignedInfo> element.
2: Load resources R that are referenced by the <SignedInfo> element.
3: for all resource r ∈ R do . Validation
4: Apply canonicalization (Canonical XML 1.0 or 1.1).
5: Apply <Transforms> commands.
6: Calculate hash over the result as specified in <DigestMethod>.
7: Compare hash result with the digest of <DigestValue>.
8: if hash result equals the digest value of <DigestValue>. then
9: continue

10: else
11: return false . Validation Failure
12: end if
13: end for
14: return true . Validation Successful

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1

Appendix A. Appendix Title Here 71

The reference verification algorithm is similar to the creation algorithm with the cru-

cial difference that at the end the resulting digest value is compared with the postulated

value. Each resource is canonicalized, transformed and digested using the specified meth-

ods. If the computed digest value matches the value of the corresponding <DigestValue>

element, this process is repeated for the next resource until all hash results passed the

comparison. Finally, the algorithm returns true, which represents a successful valida-

tion of the <Reference> element. Otherwise, if any computed digest does not match

the expected value, the algorithm immediately returns false and thus the validation has

failed.

Next, the second algorithm is processed during the XML signature validation procedure.

Algorithm 5 Validation: Signature value [27, section 3.2.2]

Require: Signed XML document, genuine certificate, Algorithm 4 successful
1: Load the <KeyInfo> content from the XML document
2: Apply canonicalization method to <SignedInfo> element
3: Calculate hash over the canonical form using <SignatureMethod>

4: Sign the hash using the signature algorithm also specified by the
<SignatureMethod> and the key information obtained with the <KeyInfo>

element.
5: Base64 encode binary result with the base64 method
6: if hash result equals the signature value of <SignatureValue> then
7: return true . Signature Valid
8: else
9: return false . Signature Invalid

10: end if

Algorithm 5 is the last, but it is a very important procedure. It is a precondition that

the previous Algorithm 4 is processed with success and the validity of the certificate

(or that one stated in the <KeyInfo> element) has been verified. Canonicalization

is applied to the <SignedInfo> element as well as hash and sign is processed. The

resulting base64 value is compared to the genuine signature value which is obtained

from the <SignatureValue> element. Finally, if all checks are successful, the signature

verification logic of the SP returns true.

Appendix A. Appendix Title Here 72

A.2 Enveloping Signature

“The signature is over content found within an Object element of the signature itself.

The Object (or its content) is identified via a Reference (via a URI fragment identifier

or transform)” [27, section 10]. In other words, the signed XML fragment is a child

node of the <Signature> element itself. With respect to the XML signature standard,

the signed node should be the last child of <Signature>. The signed XML element can

be referenced by the ID or by position (e.g. with an XPath expression). Figure A.1

depicts the enveloping structure. As it is known, XML content within a grey rectangle

is input for the signature, and the white area is not signed. The <Signature> element

is an imaginary envelope for the signed <Object>.

<Signature>
 <SignedInfo>
 <Reference URI=„#uniqueID“>
 <DigestValue>...</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>...</SignatureValue>
 <KeyInfo>...</KeyInfo>

</Signature>

<Object Id=„uniqueID“>...</Object>

Figure A.1: Enveloping Signature

A.3 Detached Signature

This type of signature is illustrated in Figure A.2. The difference in respect to the

enveloped signature is minimal in case of “type 1”. Again, the signed part is marked

with grey and all other parts are white. <Object> and <Signature> are both child

nodes of <Document> and thus called siblings. None of them is enclosing the other, in

contrast to enveloping and enveloped structures. Referencing the element can be done

by using a unique attribute value or an XPath expression. In case of “type 2” the URI

attribute points to any resource, e.g. a file or web page, that is located outside the

Signature element’s hierarchy.

Appendix A. Appendix Title Here 73

<Document>

</Document>

<Signature>
 <SignedInfo>
 <Reference URI=„#uniqueID“>
 <DigestValue>...</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>...</SignatureValue>
 <KeyInfo>...</KeyInfo>
</Signature>

<Object Id=„uniqueID”>...</Object> resource
type 1 type 2

Figure A.2: Detached Signature

A.4 SAML Response Example

The following Listing (A.1) illustrates a realistic SAML response. It asserts a statement

using an enveloped XML signature which is embedded in the <Assertion> node (see

also 2.3.1). The example message has all algorithms and method information set to

realistic values.

Appendix A. Appendix Title Here 74

1 <?xml version=’1.0’?>
2 <samlp:Response xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
3 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
4 ID="ResponseID"
5 Version="2.0"
6 IssueInstant="TimeStamp"
7 Destination="URL">
8 <saml:Issuer>issuer</saml:Issuer>
9 <samlp:Status>

10 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />
11 </samlp:Status>
12 <saml:Assertion xmlns:xs="http://www.w3.org/2001/XMLSchema"
13 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
14 Version="2.0"
15 ID="AssertionID"
16 IssueInstant="TimeStamp">
17 <saml:Issuer>issuer</saml:Issuer>
18 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
19 <ds:SignedInfo>
20 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
21 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
22 <ds:Reference URI="#AssertionID">
23 <ds:Transforms>
24 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>
25 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
26 </ds:Transforms>
27 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
28 <ds:DigestValue>base64encodedCharacters</ds:DigestValue>
29 </ds:Reference>
30 </ds:SignedInfo>
31 <ds:SignatureValue>base64encodedCharacters</ds:SignatureValue>
32 <ds:KeyInfo>
33 <ds:X509Data><ds:X509Certificate>base64encodedCharacters</ds:X509Certificate></

ds:X509Data>
34 </ds:KeyInfo>
35 </ds:Signature>
36 <saml:Subject>
37 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">

username</saml:NameID>
38 <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
39 <saml:SubjectConfirmationData Recipient="assertionConsumerService"/>
40 </saml:SubjectConfirmation>
41 </saml:Subject>
42 <saml:Conditions>...</saml:Conditions>
43 </saml:Assertion>
44 </samlp:Response>

Listing A.1: Basic SAML response example

Bibliography

[1] Armando, A., Carbone, R., Compagna, L., Cuellar, J., and Abad, L. T.

Formal analysis of SAML 2.0 web browser single sign-on: Breaking the SAML-

based single sign-on for Google Apps. In 6th ACM Workshop on Formal Methods

in Security Engineering (FMSE 2008) (Hilton Alexandria Mark Center, Virginia,

USA, 2008), Association for Computing Machinery.

[2] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau,

F. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation,

2008.

[3] Bundesamt für Sicherheit in der Informationstechnik. XML Spoofing

Resistant Electronic Signature (XSpRES) - Sichere Implementierung für XML Sig-

nature. Bonn, Germany, 2012.

[4] Eastlake, D., and Reagle, J. XML Encryption Syntax and Processing. W3C

Recommendation, 2002.

[5] Freeman, E., Freeman, E., Sierra, K., and Bates, B. Head First Design

Patterns. O’Reilly Media Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472, 2004.

[6] Gajek, S., Jensen, M., Liao, L., and Schwenk, J. Analysis of signature

wrapping attacks and countermeasures. IEEE International Conference on Web

Services (ICWS) (2009).

[7] Gruschka, N., and Iacono, L. L. Vulnerable cloud: SOAP message security val-

idation revisited. IEEE International Conference on Web Services (ICWS) (2009),

625 – 631.

75

Bibliography 76

[8] Jensen, M., Gruschka, N., and Herkenhoener, R. A survey of attacks on

web services. Computer Science - Research and Development (CSRD) 24, 4 (2009),

185–197. The original publication is available at www.springerlink.com (May 2009).

[9] Lunze, J. Künstliche Intelligenz für Ingenieure (Second Edition). Oldenbourg

Wissenschaftsverlag GmbH, Rosenheimer Straße 145, D-81671 München, 2010.

[10] Mainka, C. Automatic Penetration Test Tool for Detection of XML Signa-

ture Wrapping Attacks in Web Services. Master’s thesis, Ruhr-Univerity Bochum,

Bochum, Germany, May 2012.

[11] Mainka, C., Mladenov, V., Somorovsky, J., and Schwenk, J. Penetration

test tool for XML-based web services. In Proceedings of the Doctoral Symposium at

the International Symposium on Engineering Secure Software and Systems (2013),

vol. 965, ESSoS 2013.

[12] Maler, E. SAML V2.0 Basics. Tech. rep., Sun Microsystems, Inc., October 2006.

[13] McIntosh, M., and Austel, P. XML Signature element wrapping attacks

and countermeasures. In SWS ’05: Proceedings of the 2005 Workshop on Secure

Web Services (New York, NY, USA, 2005), Association for Computing Machinery,

pp. 20–27.

[14] OASIS Standard. Assertions and Protocols for the OASIS Security Assertion

Markup Language (SAML) V2.0, March 2005.

[15] OASIS Standard. Authentication Context for the OASIS Security Assertion

Markup Language (SAML) V2.0, March 2005.

[16] OASIS Standard. Bindings for the OASIS Security Assertion Markup Language

(SAML) V2.0, March 2005.

[17] OASIS Standard. Conformance Requirements for the OASIS Security Assertion

Markup Language (SAML) V2.0, March 2005.

[18] OASIS Standard. Glossary for the OASIS Security Assertion Markup Language

(SAML) V2.0, March 2005.

[19] OASIS Standard. Metadata for the OASIS Security Assertion Markup Language

(SAML) V2.0, March 2005.

Bibliography 77

[20] OASIS Standard. Profiles for the OASIS Security Assertion Markup Language

(SAML) V2.0, March 2005.

[21] OASIS Standard. Security and Privacy Considerations for the OASIS Security

Assertion Markup Language (SAML) V2.0, March 2005.

[22] Raggett, D., Hors, A. L., and Jacobs, I. HTML 4.01 Specification - Chapter

17 Forms. W3C Recommendation, 1999.

[23] Reagle, J. XML Signature Requirements. W3C Working Draft, 1999.

[24] Russel, S., and Norvig, P. Artificial Intelligence - A modern approach (Third

edition). Prentice Hall, Upper Saddle River, New Jersey 07458, 2010.

[25] Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N.,

and Iacono, L. L. All your clouds are belong to us - security analysis of cloud

management interfaces. ACM Cloud Computing Security Workshop (CCSW) (Oc-

tober 2011).

[26] Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., and Jensen,

M. On breaking SAML: Be whoever you want to be. In Proceedings of the 21st

USENIX Security Symposium, 2012 (April 2013).

[27] World Wide Web Consortium (W3C). XML Signature Syntax and Processing

(Second Edition), June 2008.

	Declaration of Authorship
	Abstract
	List of Figures
	1 Introduction
	2 Foundations
	2.1 XML
	2.2 Single Sign-On Scenario
	2.2.1 The Relying Entity
	2.2.2 The Asserting Entity

	2.3 XML Signature
	2.3.1 Enveloped Signature

	2.4 SAML Standard
	2.4.1 SAML Message Format
	2.4.2 SAML Protocol Bindings
	2.4.2.1 HTTP Redirect Binding
	2.4.2.2 HTTP POST Binding

	2.4.3 Message Exchange Protocol
	2.4.3.1 Service Provider Initiated SSO
	2.4.3.2 Identity Provider Initiated SSO

	2.4.4 Combinations of Message Exchange and Message Encoding
	2.4.4.1 Combinations with the SP Initiated Protocol
	2.4.4.2 Combinations with the IdP Initiated Protocol

	2.5 XSW on SAML Messages
	2.5.1 XSW on ID-based Signatures in SAML Messages
	2.5.1.1 Type One
	2.5.1.2 Type Two
	2.5.1.3 Type Three

	2.5.2 Countermeasures
	2.5.2.1 Fixation of the Structure
	2.5.2.2 Check SAML Message Format
	2.5.2.3 Only Process what is Hashed
	2.5.2.4 Separation of Accounts

	3 Approach
	3.1 Problem Statement
	3.2 Attacker Profile
	3.3 Attack Vectors
	3.3.1 Analysis of the Protocol
	3.3.2 Hijack the User
	3.3.3 Attacks on the Identity Provider
	3.3.4 Attacks on the Service Provider

	3.4 Attack Scenario
	3.4.1 XSW Vulnerability
	3.4.2 Signature Verification Vulnerability

	4 Software Design Concepts
	4.1 Main Manager
	4.2 Account Manager
	4.3 Identity Manager
	4.3.1 Decorator Pattern

	4.4 Penetration Manager
	4.4.1 Attack Object Factory
	4.4.2 Wrap Manager
	4.4.3 Strategy Manager
	4.4.4 HTTP Manager

	4.5 Configuration
	4.6 Verification Manager
	4.6.1 Classification based on Rules
	4.6.2 Classification based on Statistical Methods
	4.6.3 Classification based on Learning Algorithms

	5 Implementation
	5.1 Third Party Libraries

	6 Penetration Test Results
	6.1 Experimental Setup
	6.2 Measurements
	6.2.1 Google Apps
	6.2.1.1 Authentication Process
	6.2.1.2 Configuration
	6.2.1.3 Findings

	6.2.2 Salesforce
	6.2.2.1 Authentication Process
	6.2.2.2 Configuration
	6.2.2.3 Findings

	6.2.3 Samanage
	6.2.3.1 Authentication Process
	6.2.3.2 Configuration
	6.2.3.3 Findings

	6.2.4 Clarizen
	6.2.4.1 Authentication Process
	6.2.4.2 Configuration
	6.2.4.3 Findings

	7 Discussion
	8 Conclusion
	A Appendix
	A.1 XML Signature Creation Process
	A.1.1 XML Signature Validation Process

	A.2 Enveloping Signature
	A.3 Detached Signature
	A.4 SAML Response Example

	Bibliography

