
Single Sign-On – OpenID
Connect(ing) people

Security Analysis of the OpenID Connect
Standard and its real-life Implementations

Master Thesis

Chair for Network and Data Security

Submitted by: Julian Krautwald

Master degree course: IT-Security

First examiner: Prof. Dr. Jörg Schwenk

Second examiner: Vladislav Mladenov, Christian Mainka

© 2014

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Abstract

OpenID Connect, as a combination of a Single Sign-On (SSO) and a delegated
Authorization protocol, provides a highly security-critical service to be implemented
by application developers. As, on the one hand, the open and decentralized structure
of OpenID Connect brings flexibility and interoperability, it also makes verification of
exchanged authentication and authorization tokens a non-trivial task. In this thesis
we introduce five novel attacks on the protocol all resulting in unauthorized access
of protected resources. All attacks described in this thesis target implementation
flaws on either the Relying Party (RP) or the OpenID Provider (OP) side and are
almost all applicable to other SSO systems. To demonstrate the real-life applicability
of such attacks we also summarize the evaluation results of our security analysis of
nine RP libraries, nine OP libraries as well as three OP implementations (running in
open accessible productive systems) of the protocol. Associated to that, we introduce
two self-developed proof-of-concept Java pentest applications for auditing OpenID
Connect implementations.

© Julian Krautwald

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Contents

Contents

List of Figures IV

List of Tables V

List of Listings VI

1. Introduction 1

2. Foundations 3
2.1. The Concept of Single Sign-On . 3
2.2. Original and Browser-Based Kerberos 4
2.3. OpenID 2.0 . 6
2.4. OAuth 2.0 . 8

2.4.1. Roles . 9
2.4.2. Access Token . 10
2.4.3. Protocol Endpoints . 10

2.4.3.1. Authorization Endpoint 11
2.4.3.2. Redirection Endpoint 11
2.4.3.3. Token Endpoint . 11

2.4.4. Abstract Protocol Flow . 11
2.4.5. Authorization Grant Types 12

2.4.5.1. Authorization Code Grant Type 13

3. OpenID Connect 16
3.1. Preliminaries . 16
3.2. Use Cases and Objectives . 17
3.3. Roles . 17
3.4. Protocol Endpoints . 19

3.4.1. Authorization Endpoint . 19
3.4.2. Redirection Endpoint . 19
3.4.3. Token Endpoint . 19
3.4.4. JSON Web Key Set Endpoint 20
3.4.5. UserInfo Endpoint . 20
3.4.6. Dynamic Registration Endpoint 20

© Julian Krautwald I

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Contents

3.4.7. Discovery Endpoint(s) . 20
3.5. OpenID Connect Core Specification 21

3.5.1. ID Token . 21
3.5.2. Authentication using the Authorization Code Flow 22
3.5.3. Authentication using the Implicit Flow 26
3.5.4. Authentication using the Hybrid Flow 28

3.6. OpenID Connect Discovery Specification 29
3.7. OpenID Connect Dynamic Client Registration Specification 32
3.8. Validation Steps . 33

3.8.1. Authentication Request Validation 34
3.8.2. Authentication Response Validation 34
3.8.3. Token Request Validation . 35
3.8.4. Token Response Validation 35

4. Security Analysis 37
4.1. Security Model . 37

4.1.1. Objectives of the Attacker . 37
4.1.2. Assumptions . 37
4.1.3. Capabilities of the Attacker 38
4.1.4. Behavior of the Victim . 38

4.2. Related Work . 39
4.3. OpenID Connect Pentest Applications 41

4.3.1. The Relying Party . 42
4.3.2. The OpenID Provider . 45

4.4. Attacks / Attack-Scenarios . 48
4.4.1. ID Spoofing . 48
4.4.2. Issuer Confusion . 48
4.4.3. Signature Manipulation . 49
4.4.4. Sub Claim Spoofing . 49
4.4.5. Redirect URI Manipulation 50

4.5. Provider / Library Selection . 53
4.5.1. Relying Party Implementations 53
4.5.2. OpenID Provider Implementations 54

4.6. Security Aspect Catalog . 55
4.7. Practical Analysis . 58

5. Conclusion 70
5.1. Summary . 70
5.2. Further Studies . 71

© Julian Krautwald II

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Contents

Bibliography 73

A. Appendix i

© Julian Krautwald III

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

List of Figures

List of Figures

2.1. Kerberos initial ticket exchange . 5
2.2. Example of the browser-based Kerberos protocol 6
2.3. Abstract OpenID 2.0 Protocol Flow 7
2.4. Role Relationship within the OAuth protocol 9
2.5. OAuth 2.0 Abstract Protocol Flow 12
2.6. OAuth 2.0 Authorization Code Grant 13

3.1. Role Relationship within the OpenID Connect protocol 18
3.2. OpenID Connect Authorization Code Flow 23
3.3. OpenID Connect Implicit Flow . 27
3.4. OpenID Connect Hybrid Flow . 28
3.5. OpenID Connect Discovery Flow . 30
3.6. OpenID Connect Dynamic Client Registration Flow 32

4.1. OpenID Connect Provider TestSuite - Provider EndPoints 43
4.2. OpenID Connect Provider TestSuite - Metadata Discovery 43
4.3. OpenID Connect Provider TestSuite - WebFinger Discovery 43
4.4. OpenID Connect Provider TestSuite - Dynamic Registration Request

Parameters . 44
4.5. OpenID Connect Provider TestSuite - Authorization Request Param-

eters . 44
4.6. OpenID Connect Provider TestSuite - Token Request Parameters . . 45
4.7. OpenID Connect Provider TestSuite - Parsed Token Response 45
4.8. OpenID Connect Client TestSuite - Accessible Endpoints 46
4.9. OpenID Connect Client TestSuite - Metadata Discovery Response Data 46
4.10. OpenID Connect Client TestSuite - Dynamic Client Registration Re-

sponse Data . 46
4.11. OpenID Connect Client TestSuite - Authentication Response Data . 47
4.12. OpenID Connect Client TestSuite - Token Response Data 47
4.13. OpenID Connect Client TestSuite - Token Request-Response Pair . . 47
4.14. RUM using Authorization Code Flow 51
4.15. RUM using Implicit Flow . 52

© Julian Krautwald IV

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

List of Tables

List of Tables

4.1. Relying Party Libraries . 54
4.2. OpenID Provider Libraries . 55
4.3. OpenID Provider Live Implementations 55
4.4. Security Aspect Catalog - General Information 56
4.5. Security Aspect Catalog - Validation 57
4.6. Relying Party Libraries - General Information 59
4.7. Relying Party Libraries - Validation 60
4.8. OpenID Provider Libraries - General Information 63
4.9. OpenID Provider Libraries - Validation 64
4.10. OpenID Provider Live Implementations - General Information 66
4.11. OpenID Provider Live Implementations - Validation 67
4.12. Relying Party Libraries - Applicable Attack-Scenarios 68
4.13. OpenID Provider Libraries - Applicable Attack-Scenarios 69
4.14. OpenID Provider Live Implementations - Applicable Attack-Scenarios 69

© Julian Krautwald V

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

List of Listings

List of Listings

3.1. Non-Normative Example Authentication Request 24
3.2. Non-Normative Example Authentication Response 24
3.3. Non-Normative Example Token Request 25
3.4. Non-Normative Example Token Response 25
3.5. Non-Normative Example Issuer Discovery Request 30
3.6. Non-Normative Example Issuer Discovery Response 30
3.7. Non-Normative Example Configuration Discovery Response 31
3.8. Non-Normative Example Client Registration Request 33
3.9. Non-Normative Example Client Registration Response 33

4.1. Non-Normative Example Claims Request 49
4.2. Sub Claim Request . 50

© Julian Krautwald VI

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

1. Introduction

1. Introduction

Web-based client authentication, in the classical sense, serves the purpose for an
End-User to prove her identity to a Service Provider (SP), for example, a social net-
working platform. To achieve this goal, username / password -based authentication
processes are commonly utilized. To ensure that the user does not have to complete
this procedure (with individual username and password submitting) for each and
every service she is registered for, Single Sign-On (SSO) procedures have been es-
tablished. SSO gives a user the opportunity to log in to a single system, the Identity
Provider (IdP), that then provides access to various other SPs1: The IdP takes over
the authentication of the user to her RP. This relocation of the authentication pro-
cess to a trusted third party together with partly complex used protocols (trying to
provide confidentiality, authenticity as well as integrity of the exchanged informa-
tion) are making SSO a security-critical topic. Despite of known security flaws and
attack-scenarios [1, 2], due to partly poorly implemented protocols, a huge propa-
gation and usage of SSO protocols like OpenID or SAML can be observed [3, 4].
OpenID Connect, developed by the OpenID Foundation, is a SSO protocol strictly
based on the protocol principles of the authorization framework OAuth 2.0 [5] but
extending these with several aspects and ideas of the SSO protocol OpenID 2.0 [6].
The OpenID Foundation calls it a ”simple identity layer on top of the OAuth 2.0
protocol” [7]. The just recently (by the end of February 2014) published final spec-
ification of the protocol promises a raised interoperability compared to other SSO
protocols like OpenID. In addition to this, the ease of deployment for developers,
one the of defined goals for the protocol by the OpenID Foundation, apparently dis-
embogues in a high willingness of huge companies like Google, Gakunin, Microsoft,
Ping Identity, Nikkei Newspaper, Tokyu Corporation, mixi, Yahoo! Japan and Soft-
bank to implement OpenID Connect within their production systems [8]. Despite
the fact that there is an official feature test initiative of individual deployed OpenID
Connect implementations [9], it lacks of security-based examinations of these.

Through an extensive literature research, this thesis will give a detailed overview
of the topic Single Sign-On using OpenID Connect. For this purpose, we will at first
outline technical and historical background information of SSO systems together

1also named as Relying Parties (RPs)

© Julian Krautwald 1

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

1. Introduction

with a detailed description of the most important aspects of the protocols OpenID
2.0 and OAuth 2.0, as those two build the base on which OpenID Connect is con-
structed. Subsequently, we will give a detailed description of the ”Core” protocol
of OpenID Connect [10] plus its extensions ”Discovery” [11] and ”Dynamic Client
Registration” [12]. When describing the Core protocol we will, among others, in-
troduce its various fields of application together with its dedicated ”Authentication
Flows”. With the help of abstract protocol flows we will then elaborate its underly-
ing concepts. In addition to that, this thesis will be used to give a comprehensive
practical security analysis of the protocol. Therefore, we define possible attack tar-
gets alongside conceivable attack scenarios and in the following apply the latter to
several protocol frameworks / libraries as well as live implementations2 of both,
the Identity- and the Service Provider side. Associated to that, we will introduce
two self-developed proof-of-concept Java pentest applications for auditing OpenID
Connect implementations. We will then conclude with an overview of the carried
out tests and thus make a statement about the application-security of each tested
library / framework.

2meaning running in an open accessible productive system

© Julian Krautwald 2

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

2. Foundations

This chapter is intended to outline the general concept of Single Sign-On (SSO) as
well as its applicability within a web-based environment. We therefore take a close
look at the Kerberos protocol which can be utilized when realizing such a scheme.
Furthermore, we will provide a detailed description of the most important aspects
of the protocols OpenID 2.0 and OAuth 2.0 as these two protocols are building the
groundwork for OpenID Connect.

2.1. The Concept of Single Sign-On

Since the term Web 2.0 [13] was initially used in April 1999, the World Wide Web
has changed in many different ways. The Web is by no means only about retrieving
information and accessing static websites. It is rather about the possibility to col-
laborate, interoperate and add value to existing content. With the advent of huge
web-applications and the invention of the delivery of computing as a service (Cloud
computing), users got the chance to use such services, looking and feeling like they
are installed and executed on a local PC, only through their web browser. One of the
many advantages of these concepts is the user’s ability to store data and information
in a centralized place instead of on a local hard drive. This is advantageous as the
user can access this information and even applications from every web-enabled device
in the world. All she needs to remember are her login credentials for the requested
service. This is in fact the part where problems may arise. As most of the users do
not only want to access a single, login protected application but often various, they
have to remember a lot of authentication information. To identify the user, most
application providers use password-based authentication schemes. Therefore, users
may get their credentials, which commonly means a unique user ID, for example an
Email-Address, plus a corresponding password. They can then use their credentials
to authenticate themselves against the provider. When managing their credentials
for various applications, users tend to get lazy and therefore choose weak but easy
to remember passwords (In October 2013 a security breach at Adobe, with about
130 million stolen user accounts, revealed that the most used account password is

© Julian Krautwald 3

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

123456). They are also driven to use one and the same username and password com-
bination for various providers. By brute-forcing such poorly chosen passwords, an
adversary may be able to impersonate a user of a certain application. The impact
of such an attack can be enormous. Single Sign-On schemes can be one solution to
the above described problem. SSO provides the ability for users to log in once and
gain access to various independent software systems without being prompted to log
in at each of them separately. Thus it reduces the user’s effort to remember multi-
ple credentials. The authentication is generally handled via a central authentication
system and is cross domain resistant. Reducing the amount of login credentials also
has several security benefits. Strict password policies can be enforced because users
only have to remember one password. Phishing success can be reduced because a
single point of authentication is easier to remember and thus recognize. Furthermore,
authentication information has to be transmitted only once and user change man-
agement can be centralized. However, the single point of failure architecture which
SSO inherits brings a lot of risks, too. If the central authentication system can be
compromised or if it is the target of a Denial-of-Service attack it could have severe
implications for all users of the system. Furthermore, especially for small providers
or in the early stages of an offered service it might often be much more complicated
and thus expensive to deploy a SSO authentication system than an old fashioned
password-based.

2.2. Original and Browser-Based Kerberos

Kerberos is a computer network authentication protocol [14] which can be used in
SSO schemes. It was initially developed by the Massachusetts Institute of Technology
within Project Athena and it was designed to mutually authenticate the involved
parties in a client / server application over an unprotected network. It is based
on the symmetric Needham-Schroeder protocol [15] and thus uses a trusted third
party, named the Key-Distribution Center (KDC). The KDC can be seen as an
Authentication Server and a Ticket Granting Server at the same time. Therefore, it
builds the essential part for the authentication of clients and servers. For the sake
of simplicity, the SSO implementation introduced in this thesis uses a simplified
version of the original Kerberos protocol [16]. Kerberos authentication is ticket-
based and consists in general of three distinct parties, called client, server, and Key-
Distribution Center. The ticket is a time-limited token, issued by the KDC, which
is used to prove the identity of the client to the server. The KDC also establishes
a temporary encryption key (session key) which is used to securely communicate
with each other. In addition to this session key, each party has to own a pre-shared

© Julian Krautwald 4

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

key with the KDC to trust the authenticity of the tickets it receives. Added to the
ticket, the client has to send an authenticator to the server in order to proof that she
possesses the session key issued by the KDC. This is done to prevent session replay
attacks. The flow of the initial ticket exchange between the three parties can be
described as follows: The first message is sent by the client to the KDC and contains
a unique identifier c, an identifier of the targeted server s, and a nonce n. The second
message is sent by the KDC to the client and consists of a randomly chosen session
key KC,S, the received nonce and the newly generated ticket TC,S. To protect the
confidentiality of the transmitted information, KC,S and n are encrypted using the
long-term key Kc of the client. For the same reason the ticket is encrypted using
the long-term key KS of the server. The final message is sent by the client to the
server. This message contains the authenticator mentioned above, encrypted with
the new session key KC,S, and the encrypted ticket from (2). After receiving and
validating (3), the server and the client are mutually authenticated. From now on
they are able to communicate securely by using the session key KC,S for encryption.
The described message flow is depicted in Figure 2.1.

Figure 2.1.: Kerberos initial ticket exchange [16]

As Kerberos can easily be adapted to browser-based authentication schemes, we
are using it to demonstrate the general concept of browser-based SSO schemes.
To produce comprehensibility, we like to rename the participating entities of the
authentication mechanism: From now on we refer to the client party as User Agent
(UA), client or simply user; to the server as Service Provider (SP); to the KDC
as Identity Provider (IdP). IdP and SP are commonly represented through web
servers, whereas the UA is represented through the browser of the client. An example
authentication flow, initiated by the UA, can be seen in Figure 2.2.

© Julian Krautwald 5

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

Figure 2.2.: Example of the browser-based Kerberos protocol [17]

Step (1.) shows the request of a protected resource from the SP, initiated by the
user. Steps (2.) and (3.): As the user is not yet authenticated to the SP, she gets
redirected to the IdP to request a ticket for authentication. Step (4.): After verifying
the required credentials of the user, the IdP issues a ticket c and redirects the browser
to the SP. Step (5.): By transmitting the provided ticket c, the user authenticates
herself to the SP. Step (6.): After validating the received ticket, the SP serves the
initially requested resource to the user. The browser-based Kerberos depicted above
slightly differs from the original one. Because of the zero-footprint requirements of a
browser, some concessions regarding the security of the scheme had to be done. As
in the original Kerberos symmetric encryption keys are used to acquire the required
trust between the different parties, in the browser-based variant this is usually done
via Transport Layer Security (TLS) and server certificates.

2.3. OpenID 2.0

OpenID 2.0 is a decentralized, web-based SSO protocol. It is defined in an open
standard which was finally specified in December 2007 by the OpenID Foundation.
Its main goal is it to log in an End-User, represented by an Identifier, at a SP (in
this context called the Relying Party (RP)) via an IdP called the OpenID Provider
(OP). It thus provides a way to prove that an End-User controls an Identifier [6]
without the RP having to store or verify any credentials of the End-User. Contrary
to other SSO schemes, where a central authority is responsible for registering RPs
or OPs, OpenID 2.0 is decentralized, meaning that literally everybody can become
an OP and provide authentication services (Authentication-as-a-Service) for RPs.
An OpenID Identifier, also simply called OpenID, of an End-User is an Uniform

© Julian Krautwald 6

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

Resource Identifier (URI) usually containing the username of the End-User and the
domain-name of the corresponding OP, for example:

• username.myOpenIDProvider.com or

• myOpenIDProvider.com/username

To get an OpenID, an End-User has to register with an OP (e.g. Google or Yahoo).
Within the OpenID 2.0 protocol four different parties implying four different roles
can be found:

1. End-User: A user, utilizing an User Agent (UA) to authenticate to a Relying
Party.

2. Relying Party: A web-application providing a specific service where authenti-
cation of its users is mandatory.

3. OpenID Provider: An Authentication-as-a-Service web-application.

4. Identifier Host: A host, given an OpenID Identifier, responsible for resolving
the identity of the corresponding OP.

Figure 2.3 depicts an abstract OpenID 2.0 protocol flow to demonstrate the inter-
action between the above described roles.

Identifier HostOpenID Provider

Relying PartyEnd User

1. End User visits Relying Party website

2. Relying Party prompts user login

3. End User submits Identifier

12. Relying Party presents auth result

8. HTTP Redirect

11. HTTP Redirect

6. & 7. Association phase

9. & 10. End User Login 4. & 5. Discovery phase

Figure 2.3.: Abstract OpenID 2.0 Protocol Flow

1. The OpenID 2.0 authentication process is initiated by the End-User requesting
an authentication-required service of the RP.

© Julian Krautwald 7

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

2. The RP prompts the End-User to submit her OpenID Identifier via a login
page.

3. The End-User submits her Identifier.

4. The RP sends the received Identifier to the Identifier Host.

5. The Identifier Host resolves the received Identifier and responds with the iden-
tity of its corresponding OP together with additional metadata.

6. - 7. Within the association phase, the RP and the OP negotiate a shared secret
(e.g. via Diffie-Hellman key exchange) for digitally signing and verifying the
to-be-exchanged token.

8. The RP redirects the End-User to the OP.

9. - 10. The End-User authenticates herself to the OP.

11. The OP issues an authentication token, signed with the beforehand exchanged
secret, redirects the End-User back to the RP and appends the token to the
request.

12. The RP verifies the validity of the received token and presents the End-User
the result of the authentication process.

2.4. OAuth 2.0

Contrary to the above mentioned protocols, OAuth is not a SSO protocol but a
method to allow delegated access to protected resources. Version 1.0 of the protocol,
developed in 2007 by the Internet Engineering Task Force (IETF) community, is an
open standard giving a Client the possibility to access protected resources on behalf
of an End-User (called the Resource Owner) without knowing her password [18]. The
resources of the End-User are usually hosted on a different server called the Resource
Server. A use case for this specific delegation could be a user who wants to access
some of her resources at provider A (the Resource Server) via another provider B
(the Client) without giving provider B her credentials to log in to provider A. As
OAuth 1.0 required the use of signed access requests to provide authenticity of the
Client, it was not easy to implement and thus not widely used by developers. This
fact together with deficient scalability, due to excessive storage of partly redundant
data [19], and a discovered session fixation vulnerability [20] led to the development
of OAuth 2.0 where authenticity of requests and responses is ensured by the use of
TLS. OAuth 2.0 is not downwards compatible to version 1.0 of the protocol [21].

© Julian Krautwald 8

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

OAuth 2.0 was finally standardized within RFC 6749 [5] by the IETF in October
2012.

2.4.1. Roles

Within the OAuth protocol four different parties implying four different roles can
be found. In a real-life implementation, one entity is not strictly bound to a single
role but could also cover multiple, for example, the Authorization Server and the
Resource Server, at once [21, 5]. The relationship between the different roles can be
seen in Figure 2.4.

accessesapproves client access

uses trusts

Client Authorization
Server

Resource
Server

Resource
Owner

owns resource

is registered at

authorizes

Figure 2.4.: Role Relationship within the OAuth protocol

• Resource Owner: The Resource Owner is an End-User trying to access her own
resources at the Resource Server via a Client. Within this context the Resource
Owner is able to delegate access to her resources to the Client (approve Client
access).

• Resource Server: The Resource Server is responsible for hosting the resources
of the Resource Owner. Access to protected resources is only granted when
submitting valid credentials or an OAuth 2.0 Access Token (see Section 2.4.2)
representing delegated authorization through the Resource Owner.

• Authorization Server: The Authorization Server issues an Access Token for
the requested resources to the Client right after successful authorization by the
Resource Owner. In order to do so the Resource Owner has to be authenticated
to the Authorization Server.

© Julian Krautwald 9

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

• Client: The Client is an application which is authorized by the Resource Owner
to access its resources. A Client can be run either on a dedicated webserver
(server side web-application), in an End-User-sided application running within
the browser of the Resource Owner (delivered for example via JavaScript or
as browser extension) or a native application installed on the device of the
Resource Owner. Depending on the application scenario the Client has the
ability to authenticate itself to the Authorization Server.

2.4.2. Access Token

To access protected resources on behalf of a Resource Owner a Client must posses a
so called Access Token. The Access Token is, according to the standard [5], an un-
specified secret value which is entitled to grant access to a specific set of resources.
To access the requested resources at the Resource Server the Client must transmit
the Access Token in each request as Hypertext Transfer Protocol (HTTP) Autho-
rization Header value, Uniform Resource Locator (URL) parameter or form-encoded
body parameter. As the token is a secret value, also called Bearer Token [19], each
transmission of it has to be cryptographically secured using TLS. Once a valid (not
expired) Access Token is somehow disclosed to an entity other than the Client, this
entity is, without any other security restraints, able to access the resources the token
is entitled to access. Consequently the security of the Access Token and thus the
security of the whole protocol is defined through the security of TLS. The to-be-
received resources are defined via a parameter called scope which is exchanged in
an earlier phase of the protocol than the actual Access Token allocation. The scope

parameter can be used by both parties: the Client (to tell the Authorization Server
which resources of the Resource Owner are being requested) and the Authorization
Server (to give the Client feedback about which resources can really be accessed
by the issued token). The lifetime of an Access Token is defined through another
parameter, called expires, which is issued alongside the token itself. The value of
this parameter can vary from several seconds to until the revocation of the token.
In this context, an optional parameter, called Refresh Token, can also be used to
regenerate an expired Access Token.

2.4.3. Protocol Endpoints

Within the OAuth 2.0 specification [5] the following endpoints are defined:

© Julian Krautwald 10

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

2.4.3.1. Authorization Endpoint

In order to consent the Authorization Request of the Client, the Resource Owner
has to be redirected to the Authorization Endpoint of the Authorization Server.
Prior to the proper consent, the Resource Owner has to authenticate herself to the
Authorization Server. The actual authentication process is left unspecified within
the specification. Once the Resource Owner has authenticated and consented the
Authorization Request, the Authorization Server issues a so called Authorization
Grant for the Client.

2.4.3.2. Redirection Endpoint

Each Client has to register one or more Redirect URI(s), building its Redirection
Endpoint, with the Authorization Server it wants to communicate with. This regis-
tration process is left unspecified within the core specification but a proposed spec-
ification for dynamically registering OAuth 2.0 Clients with Authorization Servers
can be found at [22]. To specify the to-be-used Redirect URI, the Client has to add
the URI as request parameter to the initial Authorization Request. This specific URI
has to match (to be validated by the Authorization Server) at least one of the regis-
tered ones of the Client. Thus, after successfully interacting with the Authorization
Server, the Resource Owner can be redirected to the Redirection Endpoint of the
Client. Within this redirect the beforehand issued Authorization Grant is passed as
request parameter from the Authorization Server to the Client.

2.4.3.3. Token Endpoint

To retrieve a valid Access Token (used for the actual resource gathering, see Sec-
tion 2.4.2) the Client has to send a HTTP POST request with the received Autho-
rization Grant as parameter to the Token Endpoint of the Authorization Server.
Depending on the application scenario the Client has the ability to authenticate
itself to the Authorization Server within this request.

2.4.4. Abstract Protocol Flow

To clarify the interaction between the previously described protocol endpoints, Fig-
ure 2.5 depicts an abstract protocol flow including the four roles mentioned in Sec-
tion 2.4.1.

© Julian Krautwald 11

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

Resource

Owner
Client

Authorization

Server

Resource

Server

2. Authorization Response

1. Authorization Request

6. Resource Response

4. Access Token Response

5. Resource Request

3. Access Token Request

Figure 2.5.: OAuth 2.0 Abstract Protocol Flow [5]

1. Authorization Request: To access a protected resource of the Resource Owner,
the Client at first sends an Authorization Request directly, or alternatively via
the Authorization Server, to the Resource Owner.

2. Authorization Response: If the Resource Owner consents the Authorization
Request a Authorization Grant is sent back to the Client.

3. Access Token Request: After receiving the Authorization Grant, the Client uses
the latter to request an Access Token directly at the Authorization Server.

4. Access Token Response: After successfully validating the received Authoriza-
tion Grant and possibly the Client authentication, the Authorization Server
issues an Access Token and sends it back to the Client.

5. Resource Request: To request the protected resources of the Resource Owner,
the Client sends a request containing the previously received Access Token to
the Resource Server.

6. Resource Response: When receiving a valid Access Token, the Resource Server
responds with the requested resources.

2.4.5. Authorization Grant Types

To cover multiple application scenarios / types (see Client role description of Sec-
tion 2.4.1) the specification defines four different protocol flows by redefining the
Authorization Grant Type. The proposed grant types are:

• Authorization Code [5, Section 4.1] (Client as server-sided web-application),

© Julian Krautwald 12

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

• Implicit [5, Section 4.2] (Client as End-User-sided application running within
the browser of the Resource Owner),

• Resource Owner Password Credentials [5, Section 4.3] (Client as native appli-
cation installed on the device of the Resource Owner), and

• Client Credentials [5, Section 4.4] (Client takes over the roles of the Client as
well as the Resource Owner - server-to-server communication).

As the Authorization Code Grant Type is the most prevalent used grant type and
describing all others would bust the extend of a foundations chapter, the following
section will concentrate on a detailed description, alongside its various requests and
responses, of the Authorization Code Grant Type.

2.4.5.1. Authorization Code Grant Type

The Authorization Code Grant Type is used for server-sided applications fulfill-
ing the Client role of the protocol, for example, a server-sided web application for
managing contact details which wants to access a Resource Owner’s stored contact
list on Google Contacts. Figure 2.6 depicts the protocol flow of the Authorization
Code Grant Type with its most important parameters (second row of each message)
together with mention-worth optional ones (enclosed in square brackets).

Resource

Owner
User Agent Client

Authorization

Server

Resource

Server

1. Resource Request 2. GET: Resource

3. HTTP 302: Authorization Request

response_type=code, client_id, [redirect_uri], [scope], [state]

4. GET: Authorization Request

response_type=code, id, [redirect_uri], [scope], [state]

5. HTTP 200: Authentication & Authorization UI6. Display A & A UI

8. POST: Auth & Consent

9. HTTP 302 to [redirect_uri]: Authorization Response

code, [state]

11. POST: Access Token Request

grant_type=code, code, [redirect_uri], [client_id], [client_secret]

12. HTTP 200: Access Token Response

access_token, [expires], [token_type], [refresh_token]

13. GET: Resource

access_token

14. HTTP 200: Resource
15. HTTP 200: Resource16. Display Resource

7. Auth & Consent

10. GET: Redirection Endpoint [redirect_uri]

code, [state]

Figure 2.6.: OAuth 2.0 Authorization Code Grant [2]

© Julian Krautwald 13

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

1. - 2. By using a UA to perform access delegation via the OAuth 2.0 protocol, the
Resource Owner starts the protocol flow by telling the Client to request some
resources of herself on another server.

3. After determining the location of the Authorization Server (through an out-
of-band mechanism because it is not exactly specified within [5]) responsible
for the requesting Resource Owner, the Client responds with a HTTP redi-
rect, called the Authorization Request, to the Authorization Endpoint of the
Authorization Server. This redirect has to contain several mandatory and op-
tional parameters like the Redirect URI (redirect_uri) to which the Resource
Owner is redirected after successful authentication to the Authorization Server
(Step 9.), a Client ID (client_id) which the Authorization Server uses to
identify the Client, a scope (scope) to specify what access privileges are being
requested, and for the Authorization Code Grant Type the response_type

value code. Other optional parameters, like state, which value is commonly
used to prevent Cross-Site Request Forgery attacks, can also be sent within
this redirect.

4. The UA executes the received redirect described in the previous step.

5. - 8. After successfully validating the received Authorization Request (see Sec-
tion 4.1.1 of [5]), the Authorization Server attempts to authenticate the Re-
source Owner or determine whether the Resource Owner is already authen-
ticated. The methods used within this process are beyond the scope of the
OAuth 2.0 specification. After successfully authenticating the Resource Owner,
the Authorization Server must prompt the Resource Owner with an authoriza-
tion decision displaying all access privileges which are being requested by the
Client. This dialogue can usually only be consented or denied.

9. Once the Resource Owner is authenticated and has given her consent, the
Authorization Server responds with a HTTP redirect, called the Authorization
Response, to the Redirect URI retrieved from the Authorization Request. This
redirect has to contain the mandatory code parameter containing the actual
Authorization Grant to be used by the Client. If a state value was present
within the received Authorization Request it also has to be returned in this
response.

10. The UA executes the received redirect described in the previous step.

11. After successfully validating the received Authorization Response (see Section
4.1.2 of [5]), the Client directly communicates with the Token Endpoint of the
Authorization Server. Within this so called Token Request the Client has to

© Julian Krautwald 14

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

2. Foundations

submit several optional and mandatory parameters: The code parameter is
used to present the Authorization Grant (received within the previous step)
to the Authorization Server, the grant_type parameter containing the value
authorization_code, the same Redirect URI as sent within Step 4. for se-
curity reasons, and if applicable (if the Client is a confidential Client to the
Authorization Server) its client_id and client_secret.

12. After successfully validating the received Token Request (see Section 4.1.3 of
[5]) and, if applicable, verifying the identity of the Client (with the received
client_id and client_secret parameters), the Authorization Server issues
an Access Token (as described in Section 2.4.2). Along with this parameter
the Token Response of the Authorization Server has to contain several other
mandatory parameters: token_type describing the type of the issued Access
Token (its value must be Bearer, as specified within [5], unless another to-
ken type has been negotiated with the Client), and expires_in defining the
lifetime in seconds of the Access Token. Other optional parameters, like the
refresh_token which can be used to obtain new Access Tokens, can also be
sent within this response.

13. After successfully validating the received Token Response (see Section 4.1.4 of
[5]), the Client requests the protected resources of the Resource Owner at the
Resource Server. This is done via a simple GET request containing the Access
Token, received in Step 12., within the Authorization header (as described in
[23]).

14. After checking the validity of the received Access Token, the Resource Server
responds with the resources which were requested during the Authorization
Request (specified within the scope parameter).

15. - 16. When receiving the requested resources the Client displays the latter to
the Resource Owner.

© Julian Krautwald 15

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3. OpenID Connect

Within this chapter we are giving a detailed description of the Single Sign-On pro-
tocol OpenID Connect as well as its extensions Discovery and Dynamic Client Reg-
istration. To produce comprehensibility we will at first outline possible objectives
and use cases of the protocol. Later on, after introducing the involved parties of
the protocol, we will elaborate the protocols underlying concepts with the help of
abstract protocol flows. To do so we will introduce the protocols Authentication
Flows together with their intended fields of application. To prepare our work for
the following chapter, Security Analysis, we will also outline several security-related
validation steps to be performed by the protocols involved parties.

3.1. Preliminaries

OpenID Connect provides SPs (from here on called Client or Relying Party (RP))
the ability to verify the identity of an End-User due to her authentication to an IdP
(from here on called OpenID Provider (OP)). In addition to that, as the protocol
extends the OAuth 2.0 framework, it allows a Client to access protected resources
of an End-User (e.g. profile information) via delegated authorization. OpenID Con-
nect thus implements authentication services on top of the authorization process of
OAuth 2.0. To cover multiple client applications (web-based, mobile, JavaScript),
the protocol defines three different Authentication Flows resulting in three differ-
ent protocol variants. The main differences of these flows are within the way of
communication between the Client and the OP and thus indirectly affecting the
security of the protocol. The ”OpenID Connect Protocol Suite” [8] consists, beyond
the ”Core” specification [10], of multiple optional specifications: ”Discovery” [11] is
a specification which can be used by OpenID Connect Clients to utilize the WebFin-
ger protocol [24] to discover, for the Core protocol flow, important (configuration-)
information (like for example the public key of the OP used for signature verification
purposes) of an OP responsible for authenticating a specific End-User. ”Dynamic
Client Registration” [12] specifies a way for Clients to dynamically register them-
selves with a specific OP in order to ensure proper Client authentication during the
Core protocol.

© Julian Krautwald 16

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3.2. Use Cases and Objectives

Since OpenID Connect is based on the OAuth 2.0 family of specifications, OAuth 2.0
capabilities are integrated with the protocol itself [7]. This fact alongside its ability
to verify the identity of an End-User [8] is making OpenID Connect a combination
of a SSO and a delegated Authorization protocol. The OpenID Foundation calls it
”a simple identity layer on top of the OAuth 2.0 protocol” [7]. Besides its archi-
tectural similarities to OpenID 2.0, OpenID Connect does support more than only
one application type, thus extending its use cases from only web-based applications
to native- and mobile applications as well. In addition to that, OpenID Connect is
designed to raise interoperability by making it easier for developers to implement
it than OpenID 2.0. This is mostly done by using Representational State Transfer
(REST) / JavaScript Object Notation (JSON) message flows together with TLS in-
frastructure and JSON Web Token (JWT) data structures for cryptography instead
of XML and custom message signature schemes as used in OpenID 2.0. As OpenID
2.0, OpenID Connect is also a decentralized protocol, meaning that literally every-
body can become an OP and provide authentication services for RPs.

With OAuth 2.0 designed for giving Clients access to protected resources, a Client
might be asking why not just use the assigned Access Token to discover the identity
of the corresponding End-User? As the Access Token of OAuth 2.0 is a Bearer token,
a Client receiving the token has no way of knowing to whom it was actually issued
to [25]. This is however a crucial characteristic when trying to authenticate a user
via a token and right at this point OpenID Connect comes into play. By adding an
additional layer to the protocol, a so called ID Token, OpenID Connect provides a
verifiable method to prove the identity of an End-User to a Client.

3.3. Roles

Within the OpenID Connect protocol three different parties implying three differ-
ent roles can be found. The relationship between the different roles can be seen in
Figure 3.1.

© Julian Krautwald 17

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

Client OpenID Provider

End-User

accesses services
authenticates,
grants access

issues tokens & claims

delegates authentication,
requests tokens & claims

Figure 3.1.: Role Relationship within the OpenID Connect protocol [25]

• End-User: The End-User, represented by her UA, wants to access selected
services of a Client. Therefore, she needs to prove her identity to the Client.
Additionally, the End-User has the possibility to authorize the Client to access
a specific set of her resources, defined via the scope and claims parameters,
in her name.

• Client: The Client is an application which delegates the authentication of an
End-User, wanting to access its services, to the corresponding OP. Therefore,
the Client has to request an ID Token which proves the identity of the End-
User and an optional OAuth 2.0 Access Token to access protected resources of
the End-User. Depending on the application scenario the Client has the ability
to authenticate itself to the OP.

• OpenID Provider: The OP issues an ID Token, containing a specific set of
claims proving the identity of the End-User, and an optional OAuth 2.0 Access
Token for the requested resources to the Client right after successful authen-
tication and authorization by the End-User.

© Julian Krautwald 18

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3.4. Protocol Endpoints

Within the OpenID Connect Core specification [10] together with its extensions
Discovery [11] and Dynamic Client Registration [12] the following endpoints are
defined:

3.4.1. Authorization Endpoint

In order to consent the Authentication Request (together with optionally requested
resources) of the Client, the End-User has to be redirected to the Authorization
Endpoint of the OP. Prior to the proper consent, the End-User has to authenti-
cate herself to the OP. The actual authentication process is left unspecified within
the specification. All communication with the Authorization Endpoint must, per
specification, utilize TLS.

3.4.2. Redirection Endpoint

Each Client has to register one or more Redirect URI(s), building its Redirection
Endpoint, with the OP it wants to communicate with. This registration process
is left unspecified within the Core specification but a proposed specification for
dynamically registering OpenID Connect Clients with OPs can be found at [12]. To
specify the, in a specific protocol flow, to-be-used Redirect URI, the Client has to add
the URI as request parameter to the initial Authentication Request. This specific
URI has to match (to be validated by the OP, see Section 3.8.1) at least one of the
registered ones of the Client. Thus, after successfully interacting with the OP, the
End-User can be redirected to the Redirection Endpoint of the Client. Depending
on the used protocol flow, this endpoint has to be able to receive an Authorization
Code (see Section 3.5.2), an ID Token, an Access Token, or a combination of the
three (see Section 3.5.3 and Section 3.5.4) as request parameters.

3.4.3. Token Endpoint

When using the Authorization Code or Hybrid -flow of the protocol, the Client has
to communicate with the Token Endpoint of the OP in order to obtain an Access
Token, an ID Token (described in Section 3.5.1), or a combination of both. This is
done via direct communication (without involving the End-User) between the Client
and the OP. In order for the OP to be able to issue the requested token(s), the Client
has to append the beforehand received Authorization Code as request parameter.

© Julian Krautwald 19

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

Depending on the application scenario the Client has the ability to authenticate
itself to the OP within this request. All communication with the Token Endpoint
must, per specification, utilize TLS.

3.4.4. JSON Web Key Set Endpoint

When using asymmetric cryptography to digitally sign and optionally encrypt the
ID Token, the Client needs the possibility to validate the signature and optionally
decrypt a received ID Token from the OP. The JSON Web Key Set Endpoint of
an OP contains a JSON Web Key Set (JWKS) [26] enlisting the, for the above
described purpose, needed public key(s).

3.4.5. UserInfo Endpoint

To obtain additionally requested claims about the End-User, a Client has the pos-
sibility to make a request to the UserInfo Endpoint of the corresponding OP. This
request however has to contain an Access Token (as defined in [23]) obtained through
OpenID Connect Authentication to prove the validity of the access delegation by the
End-User. All communication with the UserInfo Endpoint must, per specification,
utilize TLS.

3.4.6. Dynamic Registration Endpoint

With the help of the Dynamic Registration Endpoint [12] of an an End-User’s OP, a
Client is able to dynamically register with the latter. This process is needed to pro-
vide the OP with information about the Client (e.g. its Redirect URI(s), see above)
and in return get a unique Client ID and an optional Client Secret used to au-
thenticate the Client to the OP. All communication with the Dynamic Registration
Endpoint must, per specification, utilize TLS.

3.4.7. Discovery Endpoint(s)

In order for an OpenID Connect RP to discover the OP of a specific End-User
and also obtain its configuration information (required for successfully interacting
with it), the OP has the possibility to provide two endpoints with well-known loca-
tions serving the described purpose: With the help of the OpenID Provider Issuer
Discovery Endpoint [11, Chapter 2], the Client is able to determine the location
of the OP and with the OpenID Provider Configuration Information Endpoint [11,

© Julian Krautwald 20

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

Chapter 4] it retrieves the OP’s configuration information (including its endpoint lo-
cations described above). All communication with the Discovery Endpoint(s) must,
per specification, utilize TLS.

3.5. OpenID Connect Core Specification

This section is entitled to give a detailed description of the core OpenID Connect
functionality as specified in [10]. Therefore, we will introduce OpenID Connect’s
most important extension to the OAuth 2.0 protocol, the ID Token, together with
its three Authentication Flows. The to-be-used Authentication Flow is defined by
the response_type parameter (sent within the initial Authentication Request of
the Client) and determines how the ID Token and Access Token are returned to the
Client.

3.5.1. ID Token

The ID Token [10, Chapter 2] is a security token containing claims about the au-
thentication of an End-User by an OP, proving the identity of the End-User to a
Client. Its data structure is represented as a JWT [27]. In order to provide authen-
ticity as well as integrity of the token, the OP is responsible for signing it using
JSON Web Signature (JWS) [28]. To provide an additional layer of security, the
token can also be encrypted using JSON Web Encryption (JWE) [29]. The following
list provides an excerpt of mandatory and optional claims used within an ID Token
when performing authentication via OpenID Connect:

• iss: The issuer identifier is a mandatory claim identifying the issuer (the
OpenID Provider) of the ID Token, represented by a case sensitive URL using
the Hypertext Transfer Protocol Secure / HTTP Over TLS (HTTPS) scheme
(e.g. https://www.myOpenIDProvider.com).

• sub: sub is a mandatory claim specifying an identifier for the End-User to be
consumed by the Client. Issued by the OpenID Provider (iss), it has to be
locally unique and never reassigned (e.g. alice@myOpenIDProvider.com).

• aud: aud is a mandatory claim specifying an array of case sensitive strings
defining the audience(s) that this ID Token is intended for. It must, at least,
contain the OAuth 2.0 client_id of the Client which requested the token.

• iat: Issued at is a mandatory claim specifying the time at which the ID Token
was issued. When a Client receives a token with an iat claim valuing a time

© Julian Krautwald 21

https://www.myOpenIDProvider.com

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

after the current time, the ID Token is issued in the future, which is evidently
not possible, and must not be used.

• exp: Expires is a mandatory claim specifying the time at which the ID Token
will expire. When a Client receives a token with an exp claim valuing a time
before the current time, the ID Token is expired and must not be used.

• nonce: The nonce is a randomly chosen String value, sent by the Client within
the Authentication Request and passed through unmodified to the ID Token,
used to mitigate replay attacks. It is a mandatory claim if it is present in the
Authentication Request sent by the Client.

• at_hash: at_hash is a, depending on the used Authentication Flow, either
optional or mandatory claim valuing the left-most half of the hash of the
corresponding sent Access Token.

• c_hash: c_hash is a, depending on the used Authentication Flow, either op-
tional or mandatory claim valuing the left-most half of the hash of the corre-
sponding sent Authorization Code.

3.5.2. Authentication using the Authorization Code Flow

The Authorization Code Flow [10, Section 3.1] is used by server-sided applications
fulfilling the Client role of the protocol. In this flow all tokens are returned from
the Token Endpoint and thus not revealed to the End-User. Figure 3.2 depicts the
Authorization Code Flow with its most important parameters (second row of each
message) together with mention-worth optional ones (enclosed in square brackets).

© Julian Krautwald 22

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

End-User User Agent
Relying

Party/Client

OpenID

Provider

1. Login Request
2. GET: Login with OIDC

[Identifier]

3. HTTP 302: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

4. GET/POST: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

5. HTTP 200: Authentication & Authorization UI6. Display A & A UI

8. POST: Auth & Consent

9. HTTP 302 to redirect_uri: Authentication Response

code, [state]

11. POST: Token Request

grant_type=authorization_code, code, redirect_uri, [client_id], [client_secret]

12. HTTP 200: Token Response

access_token, token_type, expires_in, id_token, [refresh_token]

[13. GET/POST: UserInfo Request]

access_token

[14. HTTP 200: UserInfo Response]

sub, [name], [email], ...
15. HTTP 200: OIDC Login Response16. Login Response

7. Auth & Consent

10. GET: Redirection Endpoint redirect_uri

code, [state]

Figure 3.2.: OpenID Connect Authorization Code Flow

1. - 2. By using a UA to perform OpenID Connect based authentication, the End-
User usually supplies the ”Login with OIDC” request to the RP with an Identi-
fier (needed when the RP wants to perform OpenID Provider Issuer Discovery).
In some cases the RP might know the OP’s Issuer location through an out-
of-band mechanism and thus the End-User does not have to submit a special
Identifier (e.g. ”Login with Google”).

3. After determining the location of the OP (through OpenID Provider Issuer
Discovery or any other out-of-band mechanism) responsible for the requesting
End-User, the RP responds with a HTTP redirect, called the Authentication
Request, to the Authorization Endpoint of the OP. This redirect has to con-
tain several mandatory parameters like the Redirect URI (redirect_uri) to
which the End-User is redirected after successful authentication to the OP
(Step 9.), a Client ID (client_id) which the OP uses to identify the RP, a
scope (scope) to specify what access privileges are being requested (has to
contain the openid scope value to make sure that the OP utilizes the OpenID
Connect protocol instead of solely OAuth 2.0), and for the Authorization Code
Flow the response_type value code. Other optional parameters, like state,
which value is usually used to prevent Cross-Site Request Forgery attacks, can
also be sent within this redirect.

© Julian Krautwald 23

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

1 HTTP/1.1 302 Found
2 Location: https://example.openIDProvider.com/authorize?response_type=code&scope=op

enid%20profile%20email&client_id=s6BhdRkqt3&state=af0ifjsldkj&redirect_uri=htt
ps%3A%2F%2Fexample.client.com%2Fcallback

Listing 3.1: Non-Normative Example Authentication Request

4. The UA executes the received redirect described in the previous step.

5. - 8. After successfully validating the received Authentication Request (see Sec-
tion 3.8.1), the OP attempts to authenticate the End-User or determine whether
the End-User is already authenticated. The methods used within this process
are beyond the scope of the OpenID Connect specification. After successfully
authenticating the End-User, the OP must prompt the End-User with an au-
thorization decision displaying all access privileges which are being requested
by the RP. This dialogue can usually only be consented or denied.

9. Once the End-User is authenticated and has given her consent, the OP re-
sponds with a HTTP redirect, called the Authentication Response, to the
Redirect URI retrieved from the Authentication Request. This redirect has to
contain the mandatory code parameter. The parameter values the actual au-
thorization code to be used by the RP. If a state value was present within the
received Authentication Request it also has to be returned in this response.

1 HTTP/1.1 302 Found
2 Location: https://example.client.com/callback?code=SplxlOBeZQQYbYS6WxSbIA&stat

e=af0ifjsldkj

Listing 3.2: Non-Normative Example Authentication Response

10. The UA executes the received redirect described in the previous step.

11. After successfully validating the received Authentication Response (see Sec-
tion 3.8.2), the RP directly communicates with the Token Endpoint of the OP.
Within this so called Token Request the RP has to submit several mandatory
parameters: The code parameter is used to present the authorization code
(received within the previous step) to the OP, the grant_type parameter con-
taining the value authorization_code (as described within [5]), the same
Redirect URI as sent within Step 4. for security reasons, and if applicable (if
the RP is a confidential client to the OP) its client_id and client_secret.

© Julian Krautwald 24

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

1 POST /token HTTP/1.1
2 Host: example.openIDProvider.com
3 Content−Type: application/x−www−form−urlencoded
4 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
5

6 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=http
s%3A%2F%2Fexample.client.com%2Fcallback

Listing 3.3: Non-Normative Example Token Request

12. After successfully validating the received Token Request (see Section 3.8.3)
and, if applicable, verifying the identity of the RP (with the received client_id

and client_secret parameters), the OP issues an OAuth 2.0 Access Token
(as described within [5]) and an ID Token (see Section 3.5.1) to prove the
identity of the End-User to the RP. Along with those two parameters the To-
ken Response of the OP has to contain several other mandatory parameters:
token_type describing the type of the issued Access Token (its value must be
Bearer, as specified within [23], unless another token type has been negotiated
with the Client), and expires_in defining the lifetime in seconds of the Access
Token. Other optional parameters, like refresh_token which can be used to
obtain new Access Tokens (as described within [5]), can also be sent within
this response.

1 HTTP/1.1 200 OK
2 Content−Type: application/json
3 Cache−Control: no−store
4 Pragma: no−cache
5 {
6 "access_token": "SlAV32hkKG",
7 "token_type": "Bearer",
8 "refresh_token": "8xLOxBtZp8",
9 "expires_in": 3600,

10 " id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzcyI6ICJodHRw
Oi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5NzYxMDAxIi
wKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZfV3pBMk1qIiw
KICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5NzAKfQ.ggW8h
Z1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6qJp6IcmD3
HP99Obi1PRs−cwh3LO−p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJNqeGpe−gcc
Mg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7TpdQyHE5lcMi
KPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoSK5hoDal
rcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4XUVrWO
LrLl0nx7RkKU8NXNHq−rvKMzqg"

11 }

Listing 3.4: Non-Normative Example Token Response [10]

© Julian Krautwald 25

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

13. After successfully validating the received Token Response (see Section 3.8.4),
the RP has the opportunity to request additional claims about the End-User
at the Userinfo Endpoint of the OP. This is done via a simple GET request
containing the Access Token, received in Step 12., within the Authorization
header (as described in [23]).

14. After checking the validity of the received Access Token, the OP responds with
the claim values of the End-User which were requested during the Authentica-
tion Request (specified within the scope and claims parameter). Additionally,
the sub claim (which is the OPs unique Subject Identifier for the End-User)
has to be sent with this response.

15. - 16. After successfully validating the received Token Response (see Section 3.8.4),
the identity of the End-User is now proven to the RP and the End-User should
be notified that she has successfully logged in.

3.5.3. Authentication using the Implicit Flow

The Implicit Flow [10, Section 3.2] is mainly used by End-User-sided applications,
implemented in a browser using a scripting language, fulfilling the Client role of the
protocol. In this flow all tokens are returned from the Authorization Endpoint and
thus revealed to the End-User. By avoiding the Token Endpoint, Clients are not
able to authenticate to the OP. Figure 3.3 depicts the Implicit Flow with its most
important parameters (second row of each message) together with mention-worth
optional ones (enclosed in square brackets).

© Julian Krautwald 26

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

End-User User Agent
Relying

Party/Client

OpenID

Provider

1. Login Request
2. GET: Login with OIDC

[Identifier]

3. HTTP 302: Authentication Request

response_type=id_token token, client_id, redirect_uri, scope, nonce, [state], ...

4. GET/POST: Authentication Request

response_type=id_token token, client_id, redirect_uri, scope, nonce, [state], ...

5. HTTP 200: Auhentication & Authorization UI6. Display A & A UI

8. POST: Auth & Consent

9. HTTP 302 to redirect_uri: Authentication Response

access_token, token_type, id_token, [state], [expires_in]

[11. GET/POST: UserInfo Request]

access_token

[12. HTTP 200: UserInfo Response]

sub, [name], [email], ...

13. HTTP 200: OIDC Login Response14. Login Response

7. Auth & Consent

10. GET: Redirection Endpoint redirect_uri

access_token, token_type, id_token, [state], [expires_in]

Figure 3.3.: OpenID Connect Implicit Flow

1. - 2. Analogous to Steps 1. and 2. of the Authorization Code Flow.

3. Analogous to Step 3. of the Authorization Code Flow except that the value of
the response_type parameter has to be one of the following:

• id_token token: When both, ID Token and Access Token, are requested.

• id_token: When only an ID Token is requested.

Additionally, a nonce parameter (containing a value to associate a client ses-
sion with an ID Token), in order to mitigate replay attacks, has to be appended
to the request.

4. The UA executes the received redirect described in the previous step.

5. - 8. Analogous to Steps 5. - 8. of the Authorization Code Flow.

9. Once the End-User is authenticated and has given her consent, the OP issues
an ID Token (see Section 3.5.1) to prove the identity of the End-User to the
RP and, if applicable (see Step 3.), an OAuth 2.0 Access Token (as described
within [5]) and appends them to its HTTP redirect, called the Authentication
Response, to the Redirect URI retrieved from the Authentication Request.

10. The UA executes the received redirect described in the previous step.

11. - 12. Analogous to Steps 13. - 14. of the Authorization Code Flow.

© Julian Krautwald 27

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

13. - 14. After successfully validating the received Authentication Response (see Sec-
tion 3.8.4), the identity of the End-User is now proven to the RP and the
End-User should be notified that she has successfully logged in.

3.5.4. Authentication using the Hybrid Flow

The Hybrid Flow [10, Section 3.3] is mainly used by native applications fulfilling the
Client role of the protocol. In this flow both, the Authorization Endpoint as well
as the Token Endpoint, are used to retrieve tokens. Figure 3.4 depicts the Hybrid
Flow with its most important parameters (second row of each message) together
with mention-worth optional ones (enclosed in square brackets).

End-User User Agent
Relying

Party/Client

OpenID

Provider

1. Login Request
2. GET: Login with OIDC

[Identifier]

3. HTTP 302: Authentication Request

response_type=code id_token token, scope, redirect_uri, client_id, [state], ...

4. GET/POST: Authentication Request

response_type=code id_token token, scope, redirect_uri, client_id, [state], ...

5. HTTP 200: Auhentication & Authorization UI6. Display A & A UI

8. POST: Auth & Consent

9. HTTP 302 to redirect_uri: Authentication Response

code, access_token, token_type, id_token, [state], [expires_in]

11. POST: Token Request

grant_type=authorization_code, code, redirect_uri, [client_id], [client_secret]

12. HTTP 200: Token Response

access_token, token_type, expires_in, id_token, [refresh_token]

[13. GET/POST: UserInfo Request]

access_token

[14. HTTP 200: UserInfo Response]

sub, [name], [email], ...
15. HTTP 200: OIDC Login Response16. Login Response

7. Auth & Consent

10. GET: Redirection Endpoint redirect_uri

code, access_token, token_type, id_token, [state], [expires_in]

Figure 3.4.: OpenID Connect Hybrid Flow

1. - 2. Analogous to Steps 1. and 2. of the Authorization Code Flow.

3. Analogous to Step 3. of the Authorization Code Flow except that the value of
the response_type parameter has to be one of the following:

• code id_token token: When alongside the authorization code both, ID
Token and Access Token, are requested.

• code token: When alongside the authorization code only the Access To-
ken is requested.

• code id_token: When alongside the authorization code only the ID Token
is requested.

© Julian Krautwald 28

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

4. The UA executes the received redirect described in the previous step.

5. - 8. Analogous to Steps 5. - 8. of the Authorization Code Flow.

9. Once the End-User is authenticated and has given her consent, the OP re-
sponds with a HTTP redirect, called the Authentication Response, to the
Redirect URI retrieved from the Authentication Request. This redirect has to
contain the mandatory code parameter containing the actual authorization
code to be used by the RP and, if applicable (see Step 3.), an ID Token and /
or an OAuth 2.0 Access Token. If a state value was present within the received
Authentication Request it also has to be returned in this response.

10. The UA executes the received redirect described in the previous step.

11. - 16. Analogous to Steps 11. - 16. of the Authorization Code Flow.

3.6. OpenID Connect Discovery Specification

In order for an OpenID Connect RP to discover the OP of a specific End-User and
also obtain its configuration information (required for successfully interacting with
it), both parties have to communicate with each other before initiating the Core
protocol. Within the Core specification, this interaction is presumed and thus not
specified. The OpenID Connect Protocol Suite however contains an additional spec-
ification, called OpenID Connect Discovery [11], defining ”how Clients dynamically
discover information about OpenID Providers” [8]. The protocol flow (as defined in
the specification) can be separated into two main tasks:

• Location of the OP for an End-User via WebFinger [24], from now on called
Issuer Discovery.

• Retrieval of the OP’s configuration information via a well-known location of
the OP, from now on called Configuration Discovery.

Figure 3.5 depicts the Discovery Flow (containing the above mentioned tasks: Is-
suer Discovery: Steps 1. - 4.; Configuration Discovery: Steps 5. - 6.) with its most
important parameters (second row of each message) together with mention-worth
optional ones (enclosed in square brackets).

© Julian Krautwald 29

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

End-User User Agent
Relying

Party/Client

OpenID

Provider

1. Login Request
2. GET: Login with OIDC

Identifier

4. HTTP 200: WebFinger Response
href, rel

5. GET: Configuration Discovery Request

6. HTTP 200: Configuration Discovery Response
issuer, authorization_endpoint, token_endpoint, jwks_uri, response_types_supported,

subject_types_supported, id_token_signing_alg_values_supported,

[registration_endpoint], [userinfo_endpoint], ...

WebFinger

Endpoint

3. GET: WebFinger Request

resource, rel

Figure 3.5.: OpenID Connect Discovery Flow

1. - 2. By using a UA to perform OpenID Connect based authentication, the End-
User initially supplies the ”Login with OIDC” (see for example Figure 3.2)
request to the RP with an Identifier in order to help the RP locate the OP
for this specific End-User. The supplied Identifier is usually a URL or URI
relative reference (as defined in [30]) containing a host value (server where a
WebFinger service is hosted) and a resource value (identifier for the target
End-User that is the subject of the discovery request).

3. After normalizing the received Identifier (see section 2.1 of [11]) and thus deter-
mining its resource and host, the RP sends a WebFinger request (as defined
in [24]), called the Issuer Discovery Request, containing the given resource

and another parameter called rel (URI identifying the type of service whose
location is being requested; here it is: http://openid.net/specs/connect/

1.0/issuer for OpenID Connect Issuer) to the Issuer Discovery Endpoint of
the host.

1 GET /.well−known/webfinger?resource=https%3A%2F%2FopenIDProvider.com%3
A8080%2F&rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer
HTTP/1.1

2 Host: openIDProvider.com:8080

Listing 3.5: Non-Normative Example Issuer Discovery Request

4. The location of the requested service, which is in this case the OpenID Provider
issuer location, is then returned in the corresponding WebFinger response,
called the Issuer Discovery Response, as the value of the href member of a
links array element with the same rel member value as in the request.

1 HTTP/1.1 200 OK
2 Content−Type: application/jrd+json

© Julian Krautwald 30

http://openid.net/specs/connect/1.0/issuer
http://openid.net/specs/connect/1.0/issuer

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3 {
4 "subject" : "https://openIDProvider.com:8080/",
5 " l inks":
6 [
7 {
8 "rel " : "http://openid.net/specs/connect/1.0/issuer",
9 "href" : "https://example.openIDProvider.com"

10 }
11]
12 }

Listing 3.6: Non-Normative Example Issuer Discovery Response

5. In order to retrieve the configuration information, including the OAuth 2.0
endpoint locations, of the previously identified OP, the received issuer location
concatenated with a well-known path (/.well-known/openid-configuration)
is requested.

6. When receiving a Configuration Discovery Request, the OP responds with a
set of claims about its configuration: issuer being the URL which the OP
claims as its issuer identifier (has to be identical to the href value returned in
the Issuer Discovery Response from Step 4.), authorization_endpoint being
the URL of the OP’s OAuth 2.0 Authorization Endpoint, token_endpoint

being the URL of the OP’s OAuth 2.0 Token Endpoint, jwks_uri being the
URL of the OP’s JWKS document (containing public key material to verify
signatures of the OP), response_types_supported being a list of the OAuth
2.0 response_type values that this OP supports, subject_types_supported

being a list of the Subject Identifier types that this OP supports, id_token_-

signing_alg_values_supported being a list of the JWS signing algorithms
supported by the OP, and possibly other optional ones.

1 HTTP/1.1 200 OK
2 Content−Type: application/json
3 {
4 " i ssuer": "https://example.openIDProvider.com",
5 "authorization_endpoint": "https://example.openIDProvider.com/authorize",
6 "token_endpoint": "https://example.openIDProvider.com/token",
7 " jwks_uri": "https://example.openIDProvider.com/jwks.json",
8 "response_types_supported": ["code", "code id_token", "id_token", "token id_token"],
9 "subject_types_supported": ["public", "pairwise"],

10 " id_token_signing_alg_values_supported": ["RS256", "ES256", "HS256"],
11 "registration_endpoint": "https://example.openIDProvider.com/register",
12 "userinfo_endpoint": "https://example.openIDProvider.com/userinfo"
13 }

Listing 3.7: Non-Normative Example Configuration Discovery Response

© Julian Krautwald 31

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3.7. OpenID Connect Dynamic Client Registration
Specification

In order for an OpenID Connect RP to commit client-specific metadata (like the
redirect_uri or the application_type) to an OP of a specific End-User as well
as to establish a trust relationship with the latter, both parties have to communicate
with each other before initiating the Core protocol. Within the Core specification,
this interaction is presumed and thus not specified. The OpenID Connect Protocol
Suite however contains an additional specification, called OpenID Connect Dynamic
Client Registration [12], defining ”how clients dynamically register with OpenID
Providers” [8].

Figure 3.6 depicts the Dynamic Client Registration Flow (defined in the above men-
tioned specification) with its most important parameters (second row of each mes-
sage) together with mention-worth optional ones (enclosed in square brackets).

Relying

Party/Client

2. HTTP 201: Client Registration Response

client_id, [client_secret], [client_secret_expires_at], ...

1. POST: Client Registration Request

redirect_uris, [client_name], [token_endpoint_auth_method], ...

OpenID

Provider

Figure 3.6.: OpenID Connect Dynamic Client Registration Flow

1. In order for a RP to dynamically register with the End-User’s OP, it needs to
provide information about itself to the OP and in return obtain information
needed to use it during the OpenID Connect Core protocol. This is accom-
plished by sending a Client Registration Request to the Registration Endpoint
of the OP. This request has to contain at least one mandatory client metadata
parameter: redirect_uris being an array of Redirect URI values to be used
during the OpenID Connect Core protocol. The redirect_uri parameter of
each Authentication Request (of the Core protocol) has to exactly match one of
the registered ones. Other optional request parameters containing additional

© Julian Krautwald 32

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

client metadata can also be sent with this request. For OPs that only sup-
port authorized registration requests, it is also possible to append an optional
Authorization header (as described in [23]), to the registration request. The
therefore required initial Access Token is provisioned out-of-band.

1 POST /register HTTP/1.1
2 Content−Type: application/json
3 Accept: application/json
4 Host: example.openIDProvider.com
5 {
6 "redirect_uris": ["https://example.client.com/callback", "https://example.client.com/c

allback2"],
7 "cl ient_name": "Example Client",
8 "token_endpoint_auth_method": "client_secret_basic"
9 }

Listing 3.8: Non-Normative Example Client Registration Request

2. When receiving a Client Registration Request, the OP assigns the Client
an unique Client Identifier (client_id), optionally assigns a Client Secret
(client_secret), and associates the metadata given in the request with the
issued Client Identifier. The OP then responds with the beforehand chosen
values and, if applicable, other optional response parameters.

1 HTTP/1.1 201 Created
2 Content−Type: application/json
3 Cache−Control: no−store
4 Pragma: no−cache
5 {
6 "cl ient_id": "s6BhdRkqt3",
7 "cl ient_secret": "ZJYCqe3GGRvdrudKyZS0XhGv_Z45DuKhCUk0gBR1vZk",
8 "cl ient_secret_expires_at": 1577858400,
9 "cl ient_name": "Example Client",

10 "token_endpoint_auth_method": "client_secret_basic",
11 "redirect_uris": ["https://example.client.com/callback", "https://example.client.com/c

allback2"]
12 }

Listing 3.9: Non-Normative Example Client Registration Response

3.8. Validation Steps

As the security of SSO protocols like OpenID Connect heavily depends on the con-
fidentiality, integrity and authenticity of the, within the protocol, exchanged data,
it is of utmost importance for a developer to implement security-relevant validation

© Julian Krautwald 33

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

steps as prescribed in the specification. In order to be able to understand the attack-
scenarios, to be described in the following chapter, this section enlists validation
steps to be performed by the protocols involved parties to guaranty the mentioned
attributes. In addition to the following validation steps, each party must validate
the correctness and reliability of the certificate presented by their communication
partner when the use of TLS is prescribed (see Section 3.4).

3.8.1. Authentication Request Validation

The Authentication Request, received by the OP, must be validated as follows (only
security-relevant validation steps are enlisted):

1. The value of the client_id parameter (received within the request) must
belong to a beforehand registered Client of the OP.

2. The value of the redirect_uri parameter (received within the request) has to
exactly match at least one of the beforehand registered (of the Client identified
by the submitted client_id, see above).

3. If the Authentication Response should contain an Access Token, ID Token or
both, the value of the redirect_uri parameter (received within the request)
must use the HTTPS scheme.

4. If the Authentication Response should contain an ID Token, the request has
to contain a nonce parameter.

5. If the sub claim is requested with a specific value for the ID Token (either
by the claims parameter itself or by usage of the request or request_uri

parameter), the End-User must successfully authenticate herself to the OP
resulting in exactly that requested sub.

3.8.2. Authentication Response Validation

The Authentication Response, received by the RP, must be validated as follows (only
security-relevant validation steps are enlisted):

1. If the state parameter was present in the corresponding sent Authentication
Request, the value of the state parameter (received within the response) must
exactly match the one of the request.

2. If the response contains an ID Token, additional validation steps from Sec-
tion 3.8.4 have to be applied.

© Julian Krautwald 34

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

3.8.3. Token Request Validation

The Token Request, received by the OP, must be validated as follows (only security-
relevant validation steps are enlisted):

1. The value of the client_id parameter (received within the request) must
belong to a beforehand registered Client of the OP.

2. If agreed upon beforehand, the received Client authentication has to be vali-
dated.

3. The value of the code parameter (received within the request) must belong
to a beforehand, to that Client (identified by the submitted client_id, see
above), issued one.

4. The value of the code parameter (received within the request) must be used
the first time within a Token Request.

5. The value of the redirect_uri parameter (received within the request) must
exactly match the one included in the initial Authentication Request of the
Client.

3.8.4. Token Response Validation

The Token Response, received by the RP, must be validated as follows (only security-
relevant validation steps are enlisted):

1. If agreed upon beforehand, the received ID Token has to be decrypted using
a public key of the OP.

2. The signature of the received ID Token has to be validated using either the
client_secret or a public key of the OP depending on the used signature
algorithm.

3. The iss claim of the ID Token (received within the response) has to exactly
match the issuer identifier of the issuing OP (typically obtained during Dis-
covery, see Section 3.6).

4. The aud claim of the ID Token (received within the response) has to contain at
least (as it can be an array with more than one element) the Client’s client_id

registered at the OP identified by the iss claim.

5. If the received aud claim contains multiple Client IDs, the azp claim of the
ID Token (received within the response) has to exactly match the client_id

described in the previous step.

© Julian Krautwald 35

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

3. OpenID Connect

6. The exp claim of the ID Token (received within the response) must be a time
after the current.

7. The iat claim of the ID Token (received within the response) must be a time
before the current.

8. If the nonce parameter was present in the corresponding sent Authentication
Request, the nonce claim of the ID Token (received within the response) must
exactly match the one of the request.

9. If the response_type parameter of the corresponding sent Authentication
Request valued id_token token or code id_token token, the left-most half
of the hash of the corresponding sent Access Token has to exactly match the
at_hash claim of the ID Token (received within the response).

10. If the response_type parameter of the corresponding sent Authentication
Request valued code id_token or code id_token token, the left-most half of
the hash of the corresponding sent Authorization Code has to exactly match
the c_hash claim of the ID Token (received within the response).

© Julian Krautwald 36

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

4. Security Analysis

This chapter is intended to outline the general concept of our security analysis of
the Single Sign-On protocol OpenID Connect, give references to related work, as
well as reveal several custom designed attack-scenarios. In addition to this, we will
demonstrate the applicability of such scenarios by introducing two self-developed
proof-of-concept Java pentest applications for auditing OpenID Connect implemen-
tations. Furthermore, we will introduce a custom designed security aspect catalog
and reveal the results of our practical analysis with the help of the latter.

4.1. Security Model

This section will give a detailed description of the security model used in the proper
analysis of the protocol. To do so, we will at first outline the objectives of an attacker
together with mention-worth assumptions when analyzing a Single-Sign On protocol.
Later on we will define the capabilities of an attacker as well as the behavior of a
victim.

4.1.1. Objectives of the Attacker

The essential goal of the attacker is to impersonate her victim when accessing a
service of a RP. This subsequently leads to an unauthorized access of protected re-
sources of the victim. Within the context of OpenID Connect, this could either mean
acquiring an ID Token issued for the victim and redeeming it at the proper RP or
tricking a RP into accepting a manipulated ID Token resulting in the impersonation
of the victim.

4.1.2. Assumptions

As a huge proportion of the security of OpenID Connect is based on the utilization
of TLS to secure the communication between the involved parties, we consider, if
TLS is used, TLS to be secure. For instance, the implemented version of TLS is up-
to-date and not vulnerable to some known attack, for example, BEAST [31], which

© Julian Krautwald 37

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

could decrypt or manipulate data sent from one party to another. Deceiving an
End-User, via for example, Cross-Site Scripting, Phishing or false TLS certificates,
is also considered out of scope. Basically all software used by the End-User, for
example, her User Agent, and furthermore her Operating System is assumed to be
not compromised. Thus the attacker has no way of exploiting vulnerabilities within
the UA or the Operating System of the End-User. Furthermore, all tests on live
implementations of the protocol can be regarded as black-box tests, due to the lack
of the source code or any documentation of the implemented libraries. Beyond that,
when solely acting as the End-User, the attacker cannot see or influence any data
which is directly sent from the RP to the OP or vice versa.

4.1.3. Capabilities of the Attacker

The attacks to-be-introduced in this thesis have been strictly verified in the ”web
attacker” model [32]. In contrast to the network-based attacker model (cryptographic
attacker model), the web attacker does not need full control over the network and
thus is not able to eavesdrop or manipulate network connections. She is however able
to use an UA or a custom HTTP client to send HTTP requests to every publicly
available web application in the web and subsequently receive its response. HTTP
parameters (to-be-sent within a request) as well as headers can be freely chosen or
manipulated. Requests of the attacker can also be delayed or aborted and responses
do not need to be handled in a standard-compliant way, for example, HTTP redirect
responses do not need to be followed. For tests within live implementations the
attacker is able to register as many accounts on a specific RP or OP as she wishes.
Furthermore, links (e.g. sent via email) or web-blog commentaries can be used to
lure the victim into opening a (manipulated) URI to, for example, conduct Cross-
Site Request Forgery attacks. Other attacks on the web application part not directly
handling OpenID Connect, like SQL Injections or Cross-Site Scripting attacks, are
considered out of scope. In addition to that, an attacker may set up her own web
application(s) extending her role from End-User only to RP and OP as well. With
that capability the attacker is also able to influence data which is directly sent from
the RP to the OP or vice versa.

4.1.4. Behavior of the Victim

Within our security model, the victim is assumed to visit every publicly available web
application she wants to or is directed to (e.g. by sending the victim a link to a web
application controlled by the attacker) [33]. HTTP parameters within such requests,
made by the victim, are not checked for sanity or validity. Phishing attempts, like

© Julian Krautwald 38

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

reconstructing a known website for example, are however discovered by the victim
and thus not leading to the exposure of sensitive information of the latter.

4.2. Related Work

Writing this thesis, there is still a lack of security-relevant research work on OpenID
Connect itself. Therefore, this section refers to related work about the protocols
OAuth 2.0 and OpenID 2.0 as OpenID Connect is based on the concepts of both
protocols.

Formal Verification of OAuth 2.0 using Alloy Framework. In June 2011, Suhas
Pai et al. published a paper called ”Formal Verification of OAuth 2.0 using Alloy
Framework” [34]. Within this paper the authors conducted a knowledge flow analysis
[35] for formal specification of OAuth 2.0. Using the Alloy modeling language [36]
for specification and the Alloy Analyzer for verification they were able to discover a
known security vulnerability [37] of the protocol.

Universally Composable Security Analysis of OAuth v2.0. In September 2011,
Suresh Chari, Charanjit Jutla and Arnab Roy published a paper called ”Universally
Composable Security Analysis of OAuth v2.0” [38]. Intent of this paper was to
conduct a security analysis of an universally-composable (UC) [39] realization of the
Authorization Code Grant Type of OAuth 2.0. Unlike common UC settings, the
implementation of Chari et al. does not require the involved parties of the protocol
to decide on a session identifier in advance.

The Devil is in the (Implementation) Details: An Empirical Analysis of OAuth
SSO Systems. The paper ”The Devil is in the (Implementation) Details: An Em-
pirical Analysis of OAuth SSO Systems” [40], published by San-Tsai Sun and Kon-
stantin Beznosov in 2012, gives a thorough examination of the security of OAuth
2.0 deployed in real-life implementations. By analyzing HTTP traffic and conduct-
ing known web application attacks like XSS or XSRF against multiple SPs using
the OAuth protocol, Sun and Beznosov uncovered several vulnerabilities resulting
in unauthorized access of protected resources or user impersonification. Altogether
they analyzed OAuth (-related) implementations of 96 SPs as well as the three IdPs:
Facebook, Microsoft, and Google. As most of the found vulnerabilities were ”caused
by a set of design decisions that trade security for implementation simplicity” they

© Julian Krautwald 39

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

furthermore gave several design and implementation suggestions to improve the se-
curity of OAuth 2.0.

Sicherheitsanalyse von OAuth 2.0 mittels Web Angriffen auf bestehende Imple-
mentierungen. Within his master thesis ”Sicherheitsanalyse von OAuth 2.0 mittels
Web Angriffen auf bestehende Implementierungen” [2], released in December 2013,
Christoph Nickel made a practical security analysis of several live implementations
of the OAuth 2.0 protocol. While using the web attacker model, the thesis analyzes
common protocol features as well as reactions to protocol-parameter-changes of the
tested Client implementations. The author discovered that, in many cases, Autho-
rization Servers poorly validated the received Redirect URI of a Client enabling
malicious users to access the Access Token of another user. Additionally, Nickel in-
troduced a concept as well as a prototypal implementation for automated testing of
the OAuth 2.0 protocol.

SSOScan: Automated Testing of Web Applications for Single Sign-On Vulnera-
bilities. In the beginning of 2014, Yuchen Zhou and David Evans published a paper
called ”Automated Testing of Web Applications for Single Sign-On Vulnerabilities”
[41]. Within their paper they presented five novel attacks on applications using Face-
book Single Sign-On (SSO) Application Programming Interfaces(APIs). Facebook
SSO is using a variant of the OAuth 2.0 protocol to give applications (implementing
it) the possibility for delegated authentication and authorization of their users. All
presented attacks are stemming from implementation flaws of the Facebook SSO
APIs and result in user impersonification. They additionally introduced their im-
plementation of an automatic vulnerability checker utilizing the described attacks
and furthermore presented a large-scale study on applications using Facebook SSO
discovering that over 20% of them suffered from at least one of their attacks.

The FAT Attack. Facebook Social Login Session Hijacking. In July 2014, MetaIn-
tell made a press release [42] disclosing a security vulnerability in the Facebook SDK
for IOS and Android. Facebook SDK, used by 71 of the top 100 free iOS apps to-
gether with 31 of the top 100 Android apps [42], can be used to utilize a variant
of the OAuth 2.0 protocol to obtain an Access Token providing access to the user’s
Facebook APIs. Furthermore, it can be used to confirm a person’s identity for regis-
tration and sign-in purposes. MetaIntell discovered that the Access Token of a user
is insecurely cached on the device and thus vulnerable to session hijacking.

© Julian Krautwald 40

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Systematically breaking and fixing OpenID security: Formal analysis, semi-automated
empirical evaluation, and practical countermeasures. In March 2012, San-Tsai
Sun, Kirstie Hawkey, and Konstantin Beznosov published a paper called ”Systemat-
ically breaking and fixing OpenID security: Formal analysis, semi-automated empir-
ical evaluation, and practical countermeasures” [43]. Within their paper, the authors
summarized their formal analysis of OpenID 2.0 as well as an empirical evaluation
of 132 popular websites that support OpenID. Their formal analysis revealed ”that
the protocol does not guarantee the authenticity and integrity of the authentication
request”. Their empirical evaluation revealed that 81% of the tested OpenID-enabled
websites were prone to Cross-Site Request Forgery (CSRF) attacks allowing ”an at-
tacker to stealthily force a victim user to sign into the OpenID supporting website
and launch subsequent CSRF attacks”. Other CSRF vectors as well as extension-
parameter-forgery attacks resulting in the impersonation of a victim were also in-
troduced.

Untrusted Third Parties: When IdPs Break Bad. Within their paper ”Untrusted
Third Parties: When IdPs Break Bad” [1], Vladislav Mladenov and Christian Mainka
summarized their research work about analyzing OpenID 2.0 from the RP point of
view. While using the web attacker model, they designed four novel attacks on
OpenID resulting in the impersonation (”Identity Theft”) of a rightful user by an
attacker. All attacks are based on insufficient validation of security-aspects of the
protocol on the RP- (token verification) or OP -side. To test the applicability of the
designed attacks, 16 OpenID implementations were audited and 11 of them found
vulnerable. Additionally, a free and open source tool, called OpenID Attacker, capa-
ble of executing the attacks was developed by the authors within their research.

4.3. OpenID Connect Pentest Applications

In the beginning of the protocol analysis, we decided to use the open source ref-
erence implementation of OpenID Connect and OAuth 2.0, ”MITREid Connect”
[44], from the MITRE Corporation and MIT Kerberos and Internet Trust (KIT),
to get a detailed understanding of the concepts as well as the communication flows
of the protocol. MITREid Connect offers a Java-based implementation of the OP-
as well as the RP -side of OpenID Connect. In addition to the Core specification, it
implements its extensions Discovery and Dynamic Client Registration. After using
the implementation to connect to several OP test-deployments, found via the Fifth
OpenID Connect Interop (OC5) [9], we decided to implement our own OpenID Con-
nect implementation of the OP- as well as the RP -side. This decision was mostly

© Julian Krautwald 41

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

influenced by the wish to analyze the protocol step-by-step being able to influence
all parameters of each step, which the reference implementation MITREid Connect
could not provide (without having to rebuild the web application each time). Both
developed applications are written in Java and utilize the following third party li-
braries to add certain functionality:

• NanoHttpd: NanoHttpd [45], developed by Paul Hawke, is an open source
implementation of a light-weight HTTP server designed to be embedded into
other Java applications. In order to enable TLS support for our server, we used
a slightly customized version of this library.

• jose.4.j: jose.4.j [46], developed by Brian Campbell, is an open source im-
plementation of the Javascript Object Signing and Encryption (JOSE) spec-
ification suite. The library can be used to access functionality defined in the
[28, 29, 26] specifications and subsequently to build JWTs [27].

• JSON.simple: JSON.simple [47], developed by Yidong Fang, is an open
source library for encoding and decoding JSON text.

• Apache HttpClient: Apache HttpClient [48], as a module of the Apache
HttpComponents project [49], is a HTTP/1.1 compliant HTTP agent imple-
mentation to provide client-sided HTTP services extending the basic function-
ality of the java.net package.

4.3.1. The Relying Party

Our developed Java GUI ”OpenID Connect Provider TestSuite” enables a user to
feature-test and/or security-audit OpenID Connect Provider implementations. It
therefore acts as an OpenID Connect RP being able to conduct each protocol flow
of OpenID Connect step-by-step. The tool can be configured manually by providing
the Provider EndPoints view (see Figure 4.1) with a set of endpoint locations of
the to-be-tested OP or automated by providing the Metadata Discovery view (see
Figure 4.2) with the Configuration Information Endpoint of the OP: Once clicked
on the ”Send Metadata Discovery Request” button, the tool automatically sends a
Configuration Discovery Request (as described in Section 3.6) to the OP and fills
the Provider EndPoints view with the corresponding received data.

© Julian Krautwald 42

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Figure 4.1.: OpenID Connect Provider TestSuite - Provider EndPoints

Figure 4.2.: OpenID Connect Provider TestSuite - Metadata Discovery

If the Configuration Information Endpoint of the OP is not known or support for
Issuer Discovery has to be tested, the WebFinger Discovery view, see Figure 4.3,
can be provided with an Identifier: Once clicked on the ”Send WebFinger Request”
button, the tool automatically sends a Issuer Discovery Request (as described in
Section 3.6) to the OP and fills the Metadata Discovery view with the corresponding
received data.

Figure 4.3.: OpenID Connect Provider TestSuite - WebFinger Discovery

In order to register our Client with a specific OP or just test its support for Dy-
namic Client Registration, the Dynamic Registration Request Parameters view, see
Figure 4.4, can be provided with arbitrary parameters: Once clicked on the ”Send
Dynamic Registration Request” button, the tool automatically sends a Client Regis-

© Julian Krautwald 43

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

tration Request (as described in Section 3.7) to the Registration Endpoint (retrieved
from the Provider EndPoints view) of the OP.

Figure 4.4.: OpenID Connect Provider TestSuite - Dynamic Registration Request
Parameters

To submit an actual Authentication Request, the Authorization Request Parameters
view, see Figure 4.5, can be provided with arbitrary parameters: Once clicked on
the ”Send Authorization Request” button, the tool opens the UA of the user and
submits a request (as described in Section 3.5.2, Section 3.5.3 or Section 3.5.4) to
the Authorization Endpoint (retrieved from the Provider EndPoints view) of the
OP with the beforehand specified parameters. If the tool subsequently receives an
Authentication Response, it is parsed and displayed to the user.

Figure 4.5.: OpenID Connect Provider TestSuite - Authorization Request Parame-
ters

© Julian Krautwald 44

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

If the Authorization Code Flow is used or just to test the Token Endpoint of the OP,
the Token Request Parameters view, see Figure 4.6, can be used to submit a Token
Request (as described in Section 3.5.2 or Section 3.5.4). The, to-be-sent, parameters
of the request are either obtained automatically by the tool (e.g. a previous Reg-
istration Request fills the client_secret text-area) or manually specified by the
user. When a response is received it is parsed and displayed to the user as seen in
Figure 4.7.

Figure 4.6.: OpenID Connect Provider TestSuite - Token Request Parameters

Figure 4.7.: OpenID Connect Provider TestSuite - Parsed Token Response

4.3.2. The OpenID Provider

Our developed Java GUI ”OpenID Connect Client TestSuite” enables a user to
feature-test and/or security-audit OpenID Connect RP implementations. It there-
fore acts as an OpenID Provider being able to conduct each protocol flow of OpenID
Connect step-by-step. When setting up the tool a web-server is started for a spe-

© Julian Krautwald 45

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

cific domain and all accessible endpoints are bound to a specific path as seen in
Figure 4.8.

Figure 4.8.: OpenID Connect Client TestSuite - Accessible Endpoints

All incoming requests are then handled upon their path: If a specific endpoint of
the Provider is requested (e.g. http://alpha.cloud.nds.rub.de/auth) the tool
invokes the corresponding response handler and creates a customized response based
on several input parameters provided by the user:
If the Configuration Information Endpoint is requested, response parameters of the
Metadata Discovery Response Data view, see Figure 4.9, are gathered, upon these
a response is created and subsequently sent back to the Client.

Figure 4.9.: OpenID Connect Client TestSuite - Metadata Discovery Response Data

If the Dynamic Registration Endpoint is requested, response parameters of the Dy-
namic Client Registration Response Data view, see Figure 4.10, are gathered, upon
these a response is created and subsequently sent back to the Client.

Figure 4.10.: OpenID Connect Client TestSuite - Dynamic Client Registration Re-
sponse Data

If the Authorization Endpoint is requested, response parameters of the Authentica-
tion Response Data view, see Figure 4.11, are gathered, upon these a response is
created and subsequently sent back to the Client.

© Julian Krautwald 46

http://alpha.cloud.nds.rub.de/auth

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Figure 4.11.: OpenID Connect Client TestSuite - Authentication Response Data

If the Token Endpoint is requested, response parameters of the Token Response
Data view, see Figure 4.12, are gathered, upon these a response is created and
subsequently sent back to the Client.

Figure 4.12.: OpenID Connect Client TestSuite - Token Response Data

To be able to monitor all incoming requests as well as outgoing responses, each
request-response pair is printed to a special debug area as seen in Figure 4.13.

Figure 4.13.: OpenID Connect Client TestSuite - Token Request-Response Pair

© Julian Krautwald 47

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

4.4. Attacks / Attack-Scenarios

This section is intended to enumerate several attack-scenarios corresponding to our,
in Section 4.1, defined security model. There are two basic requirements which apply
to all to-be-described attack-scenarios:

1. As within the context of OpenID Connect, the identity of an End-User is
proven to a RP via a combination of an ID Token’s sub and iss claim (e.g.
ID = sub : iss), an attacker has to control both values in order to impersonate
her victim.

2. As the sub claim is just a unique identifier, it cannot be verified by a RP.

4.4.1. ID Spoofing

ID Spoofing (IDS) is an attack which targets the ID Token verification part of
a RP. If the iss claim verification (see Step 3. of Section 3.8.4) by a RP is not
handled correctly, an attacker may be able to log in as an arbitrary End-User of this
application: To perform an IDS attack an attacker has to act as an End-User and an
OP simultaneously. Let the identity of the victim be represented by IDV = subV :
issV and the identity of the attacker by IDA = subA : issA with issV belonging to
OPV and issA belonging to OPA. In theory, OPA should not be able to issue a valid
ID Token t∗ containing issV . In the attack however, the attacker uses her OP OPA

to send exactly t∗ to a RP with which her victim is registered. If the RP accepts t∗

the attack is successful (and the attacker should be logged in with IDV).

4.4.2. Issuer Confusion

Issuer Confusion (IC) is an attack which targets the Configuration Discovery veri-
fication part of a RP. If the issuer claim verification (see Step 6. of Section 3.6)
by a RP is not handled correctly, an attacker may be able to log in as an arbitrary
End-User of this application: To perform an IC attack an attacker has to act as an
End-User and an OP simultaneously. Let the identity of the victim be represented by
IDV = subV : issV and the identity of the attacker by IDA = subA : issA with issV

and issuerV (being the issuer claim of the Provider’s Configuration Discovery Re-
sponse) belonging to OPV and issA and issuerA belonging to OPA. In theory, OPA

should not be able to send a valid Configuration Discovery Response cdr∗ containing
issuerV . In the attack however, the attacker uses her OP OPA to send exactly cdr∗

to a RP with which her victim is registered. If the RP accepts cdr∗ and later on

© Julian Krautwald 48

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

compares the iss claim of the ID Token (which also contains issV) to issuerV from
cdr∗ the attack is successful (and the attacker should be logged in with IDV).

4.4.3. Signature Manipulation

Signature Manipulation (SM) is an attack which targets the ID Token verification
part of a RP. If the signature verification (see Step 2. of Section 3.8.4) by a RP
is not handled correctly, an attacker may be able to log in as an arbitrary End-
User of this application: To perform a SM attack an attacker has to act as an
End-User only. Let the ID Token of the victim be represented by tV = IDV ||σV

where IDV = subV : issV and σV is the signature or HMAC of IDV . In theory, an
attacker should not be able to alter the contents of her ID Token tA = IDA||σA to,
for example, t∗ = IDV ||σ without being noticed by the RP verifying the token. In
the attack however, the attacker uses an Authentication Flow (e.g. Implicit) where
she has direct access to the issued ID Token and alters the intercepted token as
described above. If the RP accepts t∗ the attack is successful (and the attacker
should be logged in with IDV).

4.4.4. Sub Claim Spoofing

Sub Claim Spoofing (SCS) is an attack which targets the Authentication Request
verification part of an OP. If the sub claim verification (see Step 5. of Section 3.8.1)
by an OP is not handled correctly, an attacker may be able to log in as any End-
User registered with this OP at a RP of her choice: Within the Authentication
Request of OpenID Connect, the RP has the possibility to request individual claims
about the End-User either by using the claims parameter or by using an additional
JWT containing a whole OpenID Connect request via the request or request_uri

parameter. An example of a decoded claims parameter value can be seen in List-
ing 4.1.

1 {
2 "userinfo":
3 {
4 "given_name": {"essential": true},
5 "nickname": null,
6 "email": {"essential" : true},
7 "email_verified": {"essential" : true},
8 "picture": null
9 },

10 " id_token":
11 {
12 "auth_time": {"essential" : true},

© Julian Krautwald 49

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

13 "acr" : {"values": ["urn:mace:incommon:iap:silver"]}
14 }
15 }

Listing 4.1: Non-Normative Example Claims Request [10]

Within our example the RP requests the additional claims auth_time and acr (with
the value ”urn:mace:incommon:iap:silver”) to be added to the default claims in the
ID Token. As in the example (for the acr claim) a RP has the possibility to request
that an individual claim is returned with a particular value. For instance the decoded
claims parameter value:

1 {"id_token":{"sub": {"value": "subOfTheVictim"}}}

Listing 4.2: Sub Claim Request

can be used to specify that the request applies to the End-User with Subject Identi-
fier ”subOfTheVictim”. To perform an SCS attack an attacker has to act as an End-
User only. Let the identity of the victim be represented by IDV = subV : iss∗ and the
identity of the attacker by IDA = subA : iss∗. In theory, if the sub claim is requested
with a specific value for the ID Token, the OP must only send a positive response if
the End-User identified by that sub value has an active session with the OP or has
been authenticated as a result of the request. In the attack however, the attacker
appends a claims parameter valuing {”id_token” : {”sub” : {”value” : subV }}} to
the Authentication Request to the OP identified by iss∗. If the OP subsequently
issues an ID Token t∗ containing IDV , although the attacker did not authenticate
with the credentials resulting in subV , the attack is successful (and the attacker
should be logged in with IDV).

4.4.5. Redirect URI Manipulation

Redirect URI Manipulation (RUM) is an attack which targets the Authentication
Request verification part of an OP. If the redirect_uri verification (see Step 2. of
Section 3.8.1) by an OP is not handled correctly, an attacker may be able to log in as
any End-User registered with this OP at a RP of her choice. As RUM is applicable
to Authentication using the Authorization Code Flow and Authentication using the
Implicit Flow, there are actually two variants of the attack:

1. Redirect URI Manipulation using the Code Flow (RUM #1) Within this
attack-scenario the Authentication Response of a victim is redirected to a website

© Julian Krautwald 50

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

controlled by the attacker. The thereby obtained authorization code is then used
within a separate protocol flow, initiated by the attacker, to redeem it for an ID
Token of the victim. Figure 4.14 depicts the attack-procedure of the attacker using
the Authorization Code Flow (all manipulated request parameters are highlighted
in red).

End-User User Agent
Relying

Party/Client

OpenID

Provider

1. Manipulated Authentication Request Link
response_type=code, scope, redirect_uri, client_id, [state], ...

3. GET/POST: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

4. HTTP 200: Authentication & Authorization UI5. Display A & A UI

7. POST: Auth & Consent

8. HTTP 302 to redirect_uri: Authentication Response

code, [state]

10*. POST: Token Request
grant_type=authorization_code, code,

redirect_uri, [client_id], [client_secret]

11*. HTTP 200: Token Response
access_token, token_type, expires_in,

id_token, [refresh_token]
12*. HTTP 200: OIDC Login Response

6. Auth & Consent

9. GET: Redirection Endpoint redirect_uri

code, [state]

Attacker

2. Follow Link

3*. GET/POST: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

4*. - 7*. Authentication & Authorization

8*. HTTP 302 to redirect_uri: Authentication Response

code, [state]

9*. GET: Redirection Endpoint redirect_uri

code, [state]

Figure 4.14.: RUM using Authorization Code Flow

1. The attacker sends her victim a manipulated Authentication Request (e.g.
via a link) containing a Redirect URI pointing to a website controlled by the
attacker.

2. - 7. The victim follows the link and thus starts the Authorization Code Flow
of OpenID Connect. In the following steps she authenticates to the OP and
consents the Authentication Request of the Client.

8. - 9. When the UA of the victim receives the Authentication Response, it is redi-
rected to the server of the attacker, thus sending her the authorization code.

3∗. - 7∗. The attacker initiates her own protocol flow with the same Client. The
Redirect URI in this case is however not manipulated.

© Julian Krautwald 51

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

8∗. - 9∗. When receiving the Authentication Response via her UA, the attacker at
first substitutes the received authorization code with the one received in Step
9. and then follows the redirect.

10∗. - 11∗. The Client redeems the received authorization code of the attacker for
an ID Token.

12∗. The attacker is notified that she is now logged in with the identity of the
victim.

2. Redirect URI Manipulation using the Implicit Flow (RUM #2) Within this
attack-scenario the Authentication Response of a victim is redirected to a website
controlled by the attacker. The thereby obtained ID Token of the victim is then used
within a separate protocol flow, initiated by the attacker, to send it to the Client.
Figure 4.15 depicts the attack-procedure of the attacker using the Implicit Flow (all
manipulated request parameters are highlighted in red).

End-User User Agent
Relying

Party/Client

OpenID

Provider

4. HTTP 200: Auhentication & Authorization UI5. Display A & A UI

7. POST: Auth & Consent

8. HTTP 302 to redirect_uri: Authentication Response

access_token, token_type, id_token, [state], [expires_in]

6. Auth & Consent

9. GET: Redirection Endpoint redirect_uri

access_token, token_type, id_token, [state], [expires_in]

Attacker

1. Manipulated Authentication Request Link
response_type=id_token token, scope, redirect_uri, client_id, [state], ...

2. Follow Link
3. GET/POST: Authentication Request

response_type=id_token token, scope, redirect_uri, client_id, [state], ...

3*. GET/POST: Authentication Request

response_type=id_token token, scope, redirect_uri, client_id, [state], ...

8*. HTTP 302 to redirect_uri: Authentication Response

access_token, token_type, id_token, [state], [expires_in]

9*. GET: Redirection Endpoint redirect_uri

access_token, token_type, id_token, [state], [expires_in]

10*. HTTP 200: OIDC Login Response

4*. - 7*. Authentication & Authorization

Figure 4.15.: RUM using Implicit Flow

1. The attacker sends her victim a manipulated Authentication Request (e.g.
via a link) containing a Redirect URI pointing to a website controlled by the
attacker and a Response Type indicating the usage of the Implicit Flow.

© Julian Krautwald 52

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

2. - 7. The victim follows the link and thus starts the Implicit Flow of OpenID
Connect. In the following steps she authenticates to the OP and consents the
Authentication Request of the Client.

8. - 9. When the UA of the victim receives the Authentication Response, it is redi-
rected to the server of the attacker, thus sending her the ID Token issued for
the victim.

3∗. - 7∗. The attacker initiates her own protocol flow with the same Client. The
Redirect URI in this case is however not manipulated.

8∗. - 9∗. When receiving the Authentication Response via her UA, the attacker at
first substitutes the received ID Token with the one received in Step 9. and
then follows the redirect.

10∗. The attacker is notified that she is now logged in with the identity of the
victim.

4.5. Provider / Library Selection

To arrange a list of libraries implementing either the OP part of OpenID Connect
1.0 (and optionally its extensions Discovery and Dynamic Client Registration) or
the RP part of such, we used the official OpenID website [50] alongside the official
feature test initiative of individual deployed OpenID Connect implementations [9].
Since implementation flaws are independent of programming languages, we tried to
cover every available language. Our target list contains implementations written in
the languages Java, C, PHP, Python and Ruby.

4.5.1. Relying Party Implementations

Table 4.1 shows the selected RP libraries, described by their name, URL (of the
project page), tested version and a check-box defining if the library contains a work-
ing test-implementation of the code (out of the box - checkmark in column Box) or
if it is just a framework for building OpenID Connect services.
As things turned out, mostly due to the, at the time of this writing, just recently
released final version of the Core specification, we were not able to find live (meaning
running in a productive environment) services implementing the RP part of OpenID
Connect 1.0 worth testing.

© Julian Krautwald 53

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Name URL Language Tested
Version

Box

MITREid Connect http://kit.mit.edu/projects/
mitreid-connect

Java 1.1.2 X

mod_auth_openidc https://github.com/
pingidentity/mod_auth_
openidc

C 1.3 X

Nimbus OAuth 2.0
SDK with OpenID
Connect extensions

https://bitbucket.org/
connect2id/oauth-2.0-
sdk-with-openid-connect-
extensions

Java 3.3 X

Google OAuth Client
Library for Java

https://code.google.com/p/
google-oauth-java-client/

Java 1.18.0-rc ×

Apache Oltu https://oltu.apache.org/ Java 0.31 / 1.0.0 ×
phpOIDC https://bitbucket.org/

PEOFIAMP/phpoidc
PHP Commit

0d7944b
X

Drupal OpenID Con-
nect Module

https://www.drupal.org/
project/openid_connect

PHP 7.x-1.0-beta
1

X

pyoidc https://github.com/rohe/
pyoidc

Python 0.5.0beta X

Ruby OpenIDCon-
nect

https://github.com/nov/
openid_connect

Ruby 0.8.0 X

Table 4.1.: Relying Party Libraries

4.5.2. OpenID Provider Implementations

Table 4.2 shows the selected OpenID Provider libraries, described by their name,
URL (of the project page), tested version and a check-box defining if the library
contains a working test-implementation of the code (out of the box - checkmark in
column Box) or if it is just a framework for building OpenID Connect services.
Table 4.3 shows a list of selected live (meaning running in a productive environment)
services implementing the OP part of OpenID Connect, described by their name,
URL (of the service page or developers page), and a description of the service.

© Julian Krautwald 54

http://kit.mit.edu/projects/mitreid-connect
http://kit.mit.edu/projects/mitreid-connect
https://github.com/pingidentity/mod_auth_openidc
https://github.com/pingidentity/mod_auth_openidc
https://github.com/pingidentity/mod_auth_openidc
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://code.google.com/p/google-oauth-java-client/
https://code.google.com/p/google-oauth-java-client/
https://oltu.apache.org/
https://bitbucket.org/PEOFIAMP/phpoidc
https://bitbucket.org/PEOFIAMP/phpoidc
https://www.drupal.org/project/openid_connect
https://www.drupal.org/project/openid_connect
https://github.com/rohe/pyoidc
https://github.com/rohe/pyoidc
https://github.com/nov/openid_connect
https://github.com/nov/openid_connect

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Name URL Language Tested
Version

Box

Thinktecture Identi-
tyServer v3

https://github.com/
thinktecture/Thinktecture.
IdentityServer.v3

C# 3 X

Nimbus OAuth 2.0
SDK with OpenID
Connect extensions

https://bitbucket.org/
connect2id/oauth-2.0-
sdk-with-openid-connect-
extensions

Java 3.4 ×

MITREid Connect http://kit.mit.edu/projects/
mitreid-connect

Java 1.1.8 X

oxAuth http://www.gluu.org/open-
source/open-source-vs-on-
demand/

Java 1.1.0.Final X

Apache Oltu https://oltu.apache.org/ Java 0.31 / 1.0.0 ×
phpOIDC https://bitbucket.org/

PEOFIAMP/phpoidc
PHP Commit

e6e82c4
X

oauth2-server-php https://github.com/bshaffer/
oauth2-server-php

PHP 1.4 X

pyoidc https://github.com/rohe/
pyoidc

Python 0.5.0beta X

Ruby OpenIDCon-
nect

https://github.com/nov/
openid_connect

Ruby 0.8.1 X

Table 4.2.: OpenID Provider Libraries

Name URL Description
Google+ Sign-In https://developers.

google.com/accounts/docs/
OAuth2Login

Search Engine, Identity Services,
. . .

Log In with PayPal https://developer.paypal.
com/docs/integration/direct/
identity/log-in-with-paypal/

E-Commerce, Identity Services, . . .

Salesforce Identity https://developer.
salesforce.com/page/Inside_
OpenID_Connect_on_Force.com

Cloud Computing, Identity Ser-
vices, . . .

Table 4.3.: OpenID Provider Live Implementations

4.6. Security Aspect Catalog

In order to be able to conduct a thorough practical analysis of each selected im-
plementation, this section introduces two custom designed security aspect catalogs
to be utilized when classifying certain security-related aspects of an OP or RP im-
plementation. With the help of the defined catalogs, testing implementations for

© Julian Krautwald 55

https://github.com/thinktecture/Thinktecture.IdentityServer.v3
https://github.com/thinktecture/Thinktecture.IdentityServer.v3
https://github.com/thinktecture/Thinktecture.IdentityServer.v3
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
https://bitbucket.org/connect2id/oauth-2.0-sdk-with-openid-connect-extensions
http://kit.mit.edu/projects/mitreid-connect
http://kit.mit.edu/projects/mitreid-connect
http://www.gluu.org/open-source/open-source-vs-on-demand/
http://www.gluu.org/open-source/open-source-vs-on-demand/
http://www.gluu.org/open-source/open-source-vs-on-demand/
https://oltu.apache.org/
https://bitbucket.org/PEOFIAMP/phpoidc
https://bitbucket.org/PEOFIAMP/phpoidc
https://github.com/bshaffer/oauth2-server-php
https://github.com/bshaffer/oauth2-server-php
https://github.com/rohe/pyoidc
https://github.com/rohe/pyoidc
https://github.com/nov/openid_connect
https://github.com/nov/openid_connect
https://developers.google.com/accounts/docs/OAuth2Login
https://developers.google.com/accounts/docs/OAuth2Login
https://developers.google.com/accounts/docs/OAuth2Login
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

the attack-scenarios introduced in Section 4.4 can be facilitated. Both catalogs are
segmented into three parts: 1. The name or the class of the security aspect; 2. A
description of the latter or a question exemplifying the to-be-tested security aspect;
3. A statement of the applicability of the security aspect. The first catalog, see Ta-
ble 4.4, is intended to reveal important general information of a tested RP or OP.
Therefore, it defines several protocol-specific questions alongside security-related and
non-security-related characteristics of the implementation itself. The second catalog,
see Table 4.5, is intended to gather information about the implementation of the
most important security-related validation steps (see Section 3.8) of the protocol. It
is segmented by the certain messages sent during an Authentication Flow.

Security Aspect Description Applicable to
Authentication Flow
Response Type(s) Which Response Type(s) are supported? RP & OP
Additional-
Specifications
Discovery Is OpenID Connect Discovery supported? RP & OP
Dynamic Client Regis-
tration

Is OpenID Connect Dynamic Client Registration
supported?

RP & OP

TLS Security
Non-HTTPS #1 Are non-HTTPS OpenID Providers accepted? RP
Non-HTTPS #2 Are non-HTTPS Relying Parties accepted? OP
Client Authentica-
tion
Client Authentication Which Client Authentication methods are sup-

ported?
RP & OP

Authentication-
Request Parameters
claims_parameter_-
supported

Can claims be requested using the claims request
parameter?

OP

request_parameter_-
supported

Can request objects be passed by value using the
request request parameter?

OP

ID Token
Validity How long is an issued ID Token valid? OP
Miscellaneous
Account Separation Are OpenID Connect user-accounts separated from

”normal” ones?
RP

Multiple OPs Are multiple OpenID Providers supported? RP
Table 4.4.: Security Aspect Catalog - General Information

© Julian Krautwald 56

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

Security Aspect Description Applicable to
Configuration-
Discovery Response
issuer claim Verification if the received issuer claim value is

identical to the href value received in the corre-
sponding Issuer Discovery Response.

RP

Authentication-
Request
redirect_uri Parameter Verification if the received redirect_uri parame-

ter matches at least one of the of the Clients, iden-
tified by the submitted client_id, beforehand reg-
istered.

OP

sub Claim Verification if the sub claim is requested with a
specific value which does not match the of the au-
thenticated End-User.

OP

Authentication-
Response
state Parameter Verification if the received state parameter

matches the one sent in the corresponding Authen-
tication Request.

RP

Token Request
redirect_uri Parameter Verification if the received redirect_uri parame-

ter matches the one of the initial Authentication
Request.

OP

Token Response
iss Claim Verification if the received iss claim value matches

the issuer identifier of the issuing OpenID
Provider

RP

aud Claim Verification if the received aud claim contains
the Clients client_id registered at the OpenID
Provider identified by the iss claim.

RP

nonce Claim Verification if the received nonce claim matches the
one sent in the corresponding Authentication Re-
quest.

RP

iat Claim Verification if the received iat claim values a time
before the current.

RP

exp Claim Verification if the received exp claim values a time
after the current.

RP

Signature Verification if the signature of the received ID To-
ken is valid.

RP

UserInfo Response
sub Claim Verification if the received sub claim matches the

one of the corresponding ID Token.
RP

Table 4.5.: Security Aspect Catalog - Validation

© Julian Krautwald 57

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

4.7. Practical Analysis

Table 4.6 and Table 4.7 depict the results of our practical analysis of the selected
RP implementations mentioned in Section 4.5.1. Table 4.8 and Table 4.9 depict
the results of our practical analysis of the selected OP libraries mentioned in Sec-
tion 4.5.2. All tables strictly correspond to our defined security aspect catalogs from
Section 4.6. Almost all results of the analysis were produced by testing out of the box
test-implementations (developed by the library developers) of the library code itself.
Thus all libraries which did not provide a working test-implementation of their code
could not be tested for certain security aspects (as they heavily depend on the exact
implementation of the framework). Beneath the tables we will summarize several
aspects of the catalogs and, if need be, exemplify some of the results of certain RP
and OP implementations. Furthermore, Table 4.12, Table 4.13 and Table 4.14 show
the applicability of our in Section 4.4 defined attack-scenarios on the selected RP
libraries, OP libaries as well as the selected OP live implementations.

© Julian Krautwald 58

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

M
IT

R
E
id

C
on

ne
ct

m
od

_
au

th
_
op

en
id
c

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

G
oo

gl
e
O
A
ut
h
C
lie

nt
L
ib
ra
ry

fo
r
Ja
va

A
pa

ch
e
O
lt
u

ph
pO

ID
C

D
ru
pa

l
O
pe

nI
D

C
on

ne
ct

M
od

ul
e

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

Authentication Flow
Response Type(s) AC AC,

I,H*
AC,
I,H**

AC n/a AC,
I,H*

AC AC,
I*

AC

Additional-
Specifications
Discovery X X X × × X × X X

Dynamic Client Regis-
tration

X X X × × X × X X

TLS Security
Non-HTTPS #1 X X X X n/a × X × X

Client Authentica-
tion
Client Authentication B,P,

JWT
B,P B,P,

JWT
n/a n/a B,P,

JWT
P B,P,

JWT
B,P

Miscellaneous
Account Separation n/a n/a n/a n/a n/a n/a X n/a ×
Multiple OPs X X X × × X X X X

Table 4.6.: Relying Party Libraries - General Information
Legend: AC = code; I = id_token, id_token token; H = code id_token, code
token, code id_token token; I* = id_token token; H* = code id_token, code

id_token token; H** = code id_token; B = client_secret_basic; P =
client_secret_post; JWT = client_secret_jwt and/or private_key_jwt

© Julian Krautwald 59

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

M
IT

R
E
id

C
on

ne
ct

m
od

_
au

th
_
op

en
id
c

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

G
oo

gl
e
O
A
ut
h
C
lie

nt
L
ib
ra
ry

fo
r
Ja
va

A
pa

ch
e
O
lt
u

ph
pO

ID
C

D
ru
pa

l
O
pe

nI
D

C
on

ne
ct

M
od

ul
e

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

Configuration-
Discovery Response
issuer claim X X × n/a n/a × n/a X ×
Authentication-
Response
state Parameter X X X n/a n/a × X × ×
Token Response
iss Claim X X × X* X* × × X X

aud Claim X X × X* X* × × × X

nonce Claim X X × ×* ×* × × × X

iat Claim X X × X* ×* × × × ×
exp Claim X X × X* ×* × × × X

Signature X* X X ×* × X × × X

UserInfo Response
sub Claim X × × n/a n/a × × × ×

Table 4.7.: Relying Party Libraries - Validation

As seen in Table 4.6 most of the examined libraries support key features of the Core
specification like authentication using the Authorization Code Flow (denoted with an
”AC” in line Response Type(s)) or Client authentication using the HTTP Basic au-
thentication scheme (denoted with a ”B” in line Client Authentication). Additional
features, like the support for the Implicit or Hybrid Flow or the implementation of
the optional specifications Discovery and Dynamic Client Registration, are however
not that common. Disturbingly almost all libraries allow non-HTTPS communica-
tion with OPs, thus exposing sensitive information, for example, client_secret, to
potential man-in-the-middle attackers. Most of the analyzed test-implementations of
the libraries do not provide any user management within their application and thus
could not be classified according to their account separation capabilities. Table 4.7
shows that the sub claim of the UserInfo Response is, in most cases, left unvalidated,
thus relying that the response is guaranteed to be about the End-User identified by
the sub claim of the ID Token.

© Julian Krautwald 60

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

MITREid Connect Although MITREid Connect does offer a comparatively good
overall-security concerning the distinct validations steps during the Authorization
Code Flow, its signature verification is erroneous: If the contents received via the
stored jwks_uri (which usualy points to its JSON Web Key Set Endpoint) of an
OP is no valid JWKS document the signature verification of a received ID Token
is skipped. In addition to this, a received UserInfo Response is only validated for
its sub claim if it is indeed present within the response; if not the response is still
accepted and not rejected as the Core specification demands.

Nimbus OAuth 2.0 SDK with OpenID Connect extensions The test-implementation
OpenID Connect Dev Client (accessible via https://bitbucket.org/connect2id/

openid-connect-dev-client/) as well as the commercial product Connect2id server
(accessible via http://connect2id.com/products/server/download) are both us-
ing the library Nimbus OAuth 2.0 SDK with OpenID Connect extensions. Both
implement almost none of the validation steps described in Section 3.8, enabling
an attacker to use the ID Spoofing attack to impersonate any user of the applica-
tion. Connect2id however describes it as only ”Designed for testing and development
purposes”.

Google OAuth Client Library for Java Google OAuth Client Library for Java is
only a framework for building OpenID Connect services as it does not provide a
test-implementation of its code. It however does provide several built-in procedures
for initiating the Authorization Code Flow. It furthermore does provide a method for
validating a received ID Token. Within the method, only the iss claim, exp claim,
iat claim and the aud claim are validated. Other validation steps (like signature
verification) are not provided. Above this, the mentioned method can be initialized
without passing any reference-values of iss and aud to it without throwing an
exception, thus circumventing two critical validation steps.

Apache Oltu Apache Oltu is only a framework for building OAuth 2.0 (and addi-
tional OpenID Connect) services as it does not provide a test-implementation of its
code. In version 0.31 of the library the only support for OpenID Connect was pro-
vided by a built-in method for validating a received ID Token. Within the method,
only the iss claim, exp claim and the aud claim were validated. Other validation
steps (like signature verification) were not provided. Above this, the implemented
exp claim validation was incorrect as it required the exp claim value to be a time
before the current and not after. Within the current version, 1.0.0, of the library

© Julian Krautwald 61

https://bitbucket.org/connect2id/openid-connect-dev-client/
https://bitbucket.org/connect2id/openid-connect-dev-client/
http://connect2id.com/products/server/download

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

the mentioned method and all its corresponding classes and packages and thus all
support for building OpenID Connect services is however gone.

phpOIDC The test-implementation of phpOIDC does provide almost none of the
validation steps described in Section 3.8, enabling an attacker to use the ID Spoofing
attack to impersonate any user of the application. The developers however explicitly
state that ”less focus was given to the security issues around the implementation”.

Drupal OpenID Connect Module The OpenID Connect module for Drupal is the
only tested implementation which provides the capability to separate End-Users au-
thenticated with the help of OpenID Connect from otherwise authenticated users.
Despite of not implementing one validation step as described within the Core speci-
fication, the module is not vulnerable to any of our defined attack-scenarios. This is
mostly achieved by restricting the authentication to the Authorization Code Flow
only and by not supporting arbitrary OPs for authentication of its users.

pyoidc The analyzed test-implementation (accessible via https://github.com/

rohe/pyoidc/tree/master/oidc_example/rp3) of the pyoidc library does barely
provide that much validation steps as described in Section 3.8, to prevent ID Spoofing
and Issuer Confusion attacks. Unfortunately its signature verification is erroneous:
If a signature of a given ID Token is manipulated, the ID Token is accepted anyway,
enabling an attacker to use the Signature Manipulation attack to impersonate any
user of the application.

© Julian Krautwald 62

https://github.com/rohe/pyoidc/tree/master/oidc_example/rp3
https://github.com/rohe/pyoidc/tree/master/oidc_example/rp3

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

T
hi
nk

te
ct
ur
e
Id
en
ti
ty
Se

rv
er

v3

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

M
IT

R
E
id

C
on

ne
ct

ox
A
ut
h

A
pa

ch
e
O
lt
u

ph
pO

ID
C

oa
ut
h2

-s
er
ve
r-
ph

p

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

Authentication Flow
Response Type(s) AC,

I
AC,
I,H*

AC AC,
I,H*

n/a AC,
I,H

AC,
I

AC,
I,H

AC,
I,H

Additional-
Specifications
Discovery X* X* X X × X × X X

Dynamic Client Regis-
tration

× X X X × X × X X

TLS Security
Non-HTTPS #2 X X X × n/a X X X X

Client Authentica-
tion
Client Authentication B,P B,P,

JWT
B,P,
JWT

B,P,
JWT

n/a B,P,
JWT

B,P B,P,
JWT

B,P

Authentication-
Request Parameters
claims_parameter_-
supported

× X × × × X × X ×

request_parameter_-
supported

× X X X × X × X X

ID Token
Validity 1h n/a 10min 1h n/a 30min 1h 24h 6h

Table 4.8.: OpenID Provider Libraries - General Information
Legend: AC = code; I = id_token, id_token token; H = code id_token, code
token, code id_token token; H* = code id_token, code id_token token; B =
client_secret_basic; P = client_secret_post; JWT = client_secret_jwt

and/or private_key_jwt

© Julian Krautwald 63

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

T
hi
nk

te
ct
ur
e
Id
en
ti
ty
Se

rv
er

v3

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

M
IT

R
E
id

C
on

ne
ct

ox
A
ut
h

A
pa

ch
e
O
lt
u

ph
pO

ID
C

oa
ut
h2

-s
er
ve
r-
ph

p

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

Authentication-
Request
redirect_uri Parameter X ×* X X ×* X X X X

sub Claim n/a ×* X X n/a X n/a X X

Token Request
redirect_uri Parameter X ×* X × ×* × X X X

Table 4.9.: OpenID Provider Libraries - Validation

As seen in Table 4.8 most of the examined libraries implement most of the described
Authentication Flows as well as the additional specifications Discovery and Dynamic
Client Registration. Most libraries also offer a wide range of Client authentication
mechanisms. Mechanisms to handle requests for additional claims using the claims

or request parameter are however rarely implemented. The validity of the issued ID
Tokens also varies in a wide range between leastwise 10 minutes and 24 hours at the
maximum. Disturbingly, like in the case of the RP libraries, almost all libraries allow
non-HTTPS communication with RPs by accepting non-HTTPS Redirect URIs dur-
ing registration. Table 4.9 however shows that, among other factors, due to recent
publications, like [2], the security-awareness of developers implementing OAuth-like
protocols on the Authorization Server side has evolved: Almost all of the examined
libraries verify that the, with the Authentication Request received, Redirect URI
matches at least one of the Clients registered.

Thinktecture IdentityServer v3 Thinktecture IdentityServer v3 is a .NET-based
open source implementation of an OP and OAuth 2.0 Authorization Server. It sup-
ports authentication using the Authorization Code- and the Implicit Flow. Addi-
tional specifications are only partly supported: While the implementation provides
a Configuration Information Endpoint for retrieving the OP’s configuration infor-
mation, it lacks the possibility to determine the location of the OP via an Issuer
Discovery Endpoint. Support for Dynamic Client Registration is also not provided.

© Julian Krautwald 64

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

With an ID Token validity of one hour and adequate implemented redirect_uri

validation mechanisms, Thinktecture IdentityServer v3 does however offer a com-
paratively good overall-security.

Nimbus OAuth 2.0 SDK with OpenID Connect extensions Although it does not
provide a test-implementation of its code, Nimbus OAuth 2.0 SDK with OpenID
Connect extensions is an almost fully-featured framework for building OpenID Con-
nect services: The implementation does provide ready-to-use Java classes and meth-
ods for all three Authentication Flows of the Core specification, multiple Client
authentication mechanisms as well as support for Configuration Discovery and Dy-
namic Client Registration. Only Issuer Discovery is not supported. As the focus of
the implementation is obviously on interoperability and not security, it lacks however
of built-in validation mechanisms and secure default values of specific parameters
(e.g. ID Token validity).

oxAuth oxAuth is an OP implementation by Gluu as a component of their open
source ”OX Server Stack” as well as their on demand ”Gluu Server Stack” [51]. It
supports almost all OpenID Connect Response Types (defined in the Core spec-
ification) and additional support for Discovery and Dynamic Client Registration.
Although the implementation’s default values of the OP’s configuration information
stated the support for handling requests for additional claims using the claims pa-
rameter (claims_parameter_supported), a closer look at the code revealed that it
only supports the request parameter (request_parameter_supported). Nonethe-
less sufficient mechanisms for preventing Sub Claim Spoofing attacks are in place.
Surprisingly, while on the one hand validating the received redirect_uri parameter
of a given Authentication Request and thus raising the security of the implemen-
tation, on the other previous security-considerations are disregarded by leaving the
redirect_uri parameter of a given Token Request unvalidated.

Apache Oltu Apache Oltu is only a framework for building OAuth 2.0 (and addi-
tional OpenID Connect) services as it does not provide a test-implementation of its
code. In version 0.31 of the library the only support for OpenID Connect was pro-
vided by a built-in method for validating a received ID Token. Classes of the OAuth
2.0 implementation, for example, for handling the Authorization Code Grant Type,
could however be extended to build up a working OP implementation. Within the
current version, 1.0.0, of the library the mentioned method and all its corresponding
classes and packages and thus all support for building OpenID Connect services is
however gone.

© Julian Krautwald 65

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

pyoidc The analyzed test-implementation (accessible via https://github.com/

rohe/pyoidc/tree/master/oidc_example/op2) of the pyoidc library does support
all OpenID Connect Response Types, Discovery and Dynamic Client Registration,
multiple Client authentication mechanisms as well as handling requests for additional
claims using the claims and request parameter. It does also provide sufficient sub

claim and redirect_uri validation mechanisms. Unfortunately the implementation
ships with a downright ridiculously high default value for the validity of its issued
ID Tokens.

G
oo

gl
e+

Si
gn

-I
n

L
og

In
w
it
h
P
ay
P
al

Sa
le
sf
or
ce

Id
en
ti
ty

Authentication Flow
Response Type(s) AC, I, H AC, I*, H* AC, I**
Additional-
Specifications
Discovery X* × X*
Dynamic Client Regis-
tration

× × ×

TLS Security
Non-HTTPS #2 X X ×
Client Authentica-
tion
Client Authentication P B, P P, JWT
Authentication-
Request Parameters
claims_parameter_-
supported

× × ×

request_parameter_-
supported

× × ×

ID Token
Validity 1h 5min 8h 2min
Table 4.10.: OpenID Provider Live Implementations - General Information

Legend: AC = code; I = id_token, id_token token; H = code id_token, code
token, code id_token token; I* = id_token; I** = id_token token; H* = code

id_token; B = client_secret_basic; P = client_secret_post; JWT =
client_secret_jwt and/or private_key_jwt; X* = only Configuration Discovery

© Julian Krautwald 66

https://github.com/rohe/pyoidc/tree/master/oidc_example/op2
https://github.com/rohe/pyoidc/tree/master/oidc_example/op2

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

G
oo

gl
e+

Si
gn

-I
n

L
og

In
w
it
h
P
ay
P
al

Sa
le
sf
or
ce

Id
en
ti
ty

Authentication-
Request
redirect_uri Parameter X X* X

sub Claim n/a n/a n/a
Token Request
redirect_uri Parameter X X X

Table 4.11.: OpenID Provider Live Implementations - Validation
Legend: X* = except for the path, query and fragment part of the URI

Log In with PayPal Log In with PayPal (formerly PayPal Access) is a commerce,
OpenID Connect based identity solution. Acting as OpenID Provider, PayPal pro-
vides a selected set of Response Types for all three Authentication Flows of OpenID
Connect. Optional specifications like Discovery or Dynamic Client Registration as
well as handling requests for additional claims using the claims and request pa-
rameter are not supported. Clients have to be registered with the help of the PayPal
Developer Console. The redirect_uri verification (see Step 2. of Section 3.8.1)
of PayPal is implemented incorrectly as it only uses the scheme and authority
part of a registered Redirect URI of a Client to match the sent redirect_uri

of an Authentication Request. Possible path, query or fragment parts of the sent
redirect_uri are left unvalidated. For instance, if a Client’s registered Redirect
URI is https://goodRP.com/callback and PayPal receives an Authentication Re-
quest with the Client’s client_id and a redirect_uri parameter valuing, for
example, https://goodRP.com/anotherPath, the End-User (after successful au-
thentication to PayPal) is redirected to https://goodRP.com/anotherPath and
not to the registered one. As the authority part is still validated and the Redi-
rect URI thus cannot be changed to, for example, https://badRP.com/callback,
one might be questioning the security-relevancy of this observation. Acting in the
defined security model (see Section 4.1), it is truly irrelevant as RUM is (due to
the authority part validation) not feasible. Extending the capabilities of our at-
tacker to be able to conduct Cross-Site Scripting attacks as well, our observation
might however make a variant of RUM applicable: If, for example, the query part of
https://goodRP.com/anotherPath can be misused to inject malicious script-code
(via Cross-Site Scripting) into the site, a precisely chosen payload can be used to

© Julian Krautwald 67

https://goodRP.com/callback
https://goodRP.com/anotherPath
https://goodRP.com/anotherPath
https://badRP.com/callback
https://goodRP.com/anotherPath

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

send the authorization code (in case of the Authorization Code Flow) or the ID
Token issued for the victim (in case of the Implict Flow) to the attacker. In addition
to the described faulty implementation of the redirect_uri verification part, some
claims of the ID Tokens issued by PayPal are not compliant to the Core specification
of OpenID Connect: Instead of the mandatory sub claim of the ID Token, another
claim called user_id valuing the identifier of the End-User to be consumed by the
Client is used; Instead of valuing a timestamp with the time at which the ID Token
will expire, the exp claim of PayPal values a timespan specifying the validity of
the issued ID Token. Both observations alongside a deprecated ID Token signature
verification-logic are not directly security-relevant but could cause interoperability
problems on the side of the Clients trying to communicate with PayPal in a OpenID
Connect specification compliant way.

M
IT

R
E
id

C
on

ne
ct

m
od

_
au

th
_
op

en
id
c

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

G
oo

gl
e
O
A
ut
h
C
lie

nt
L
ib
ra
ry

fo
r
Ja
va

A
pa

ch
e
O
lt
u

ph
pO

ID
C

D
ru
pa

l
O
pe

nI
D

C
on

ne
ct

M
od

ul
e

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

ID Spoofing × × X n/a n/a X × × ×
Issuer Confusion × × × n/a n/a × × × ×
SM × × × n/a n/a × × X ×

Table 4.12.: Relying Party Libraries - Applicable Attack-Scenarios

© Julian Krautwald 68

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

4. Security Analysis

T
hi
nk

te
ct
ur
e
Id
en
ti
ty
Se

rv
er

v3

N
im

bu
s
O
A
ut
h
2.
0
SD

K
w
it
h

O
pe

nI
D

C
on

ne
ct

ex
te
ns
io
ns

M
IT

R
E
id

C
on

ne
ct

ox
A
ut
h

A
pa

ch
e
O
lt
u

ph
pO

ID
C

oa
ut
h2

-s
er
ve
r-
ph

p

py
oi
dc

R
ub

y
O
pe

nI
D
C
on

ne
ct

Sub Claim Spoofing n/a n/a × × n/a × n/a × ×
RUM #1 × n/a × × n/a × × × ×
RUM #2 × n/a × × n/a × × × ×

Table 4.13.: OpenID Provider Libraries - Applicable Attack-Scenarios

G
oo

gl
e+

Si
gn

-I
n

L
og

In
w
it
h
P
ay
P
al

Sa
le
sf
or
ce

Id
en
ti
ty

Sub Claim Spoofing n/a n/a n/a
RUM #1 × × ×
RUM #2 × × ×

Table 4.14.: OpenID Provider Live Implementations - Applicable Attack-Scenarios

© Julian Krautwald 69

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

5. Conclusion

5. Conclusion

5.1. Summary

In this thesis, we gave a comprehensive description of the SSO protocol OpenID
Connect. We therefore provided insight into the general concept of (web-based) Sin-
gle Sign-On as well as OpenID Connect’s related protocols OAuth 2.0 and OpenID
2.0. By introducing the use cases as well as the involved parties of OpenID Con-
nect we lay the foundations for describing the different endpoints of the protocol.
With an understanding of the latter, we presented the protocol’s Authentication
Flows and its extensions Discovery and Dynamic Client Registration. Furthermore,
to be able to present a thorough security analysis of OpenID Connect, we listed the
(within the specification of the protocol) proposed security-relevant validation steps.

In the main part of this thesis, we focused on the security analysis of OpenID
Connect. We therefore presented our used security model and gave reference to re-
lated work. Furthermore, we introduced five novel attacks / attack-scenarios on the
protocol all resulting in unauthorized access of a victim’s protected resources. All
of the defined attacks target implementation flaws on either the RP or the OP side.
Three of them target RP implementations and the other two target OP implemen-
tations. To ease the work when testing an OpenID Connect implementation for the
applicability of such attacks, we additionally introduced two self-developed proof-of-
concept Java pentest applications. For a selection of nine Relying Party libraries, nine
OpenID Provider libraries as well as three OP live implementations of the protocol,
we developed a security aspect catalog to summarize the implementations’ feature
and validation variety. We finally concluded with a summary of the applicability of
our defined attacks on the selected implementations. With the help of our developed
applications, we were able to exploit three out of nine RP libraries using two of our
defined attacks. Although all tested OP implementations (libraries and live ones)
proved to be not vulnerable to our introduced attacks, the implementations never
proved to be flawless regarding all security-relevant validation steps, leaving space
for security improvements. Additionally, most of the tested implementations (on the
RP or the OP side) did not support all features of the OpenID Connect Core specifi-
cation and its extensions Discovery and Dynamic Client Registration. Furthermore,

© Julian Krautwald 70

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

5. Conclusion

several libraries seemed to be proof-of-concept implementations mostly focusing on
the operability and not the security of the protocol. Thus, additional security flaws
may arise when integrating such libraries into 3rd party products.

Our evaluation results show that security-relevant validation steps, as defined in
the specification of the protocol, are either not regarded as important enough or
not well enough understood to be completely implemented in the tested libraries.
As a whole section of the Core specification is dedicated to security considerations
and variants of some of our defined attacks [1, 2, 41] are known to be applicable to
related protocols like OAuth or OpenID, this observation gives reason for concern.

5.2. Further Studies

As the development of most of our tested libraries is still in progress and features
as well as validation mechanisms are constantly added, in combination with the
few found live implementations of OpenID Connect, the security analysis presented
in this thesis cannot be regarded as final. On the contrary, we are thinking about
starting a large scale study on multiple RP and OP live and library implementations
to raise the awareness of developers regarding SSO security in general and OpenID
Connect security in specific. While our presented pentest applications might help
trained security auditors to test OpenID Connect implementations for certain vul-
nerabilities, it is not yet suited for not security-aware application developers. To
enable such functionality, fully-automated vulnerability tests (comparable to the
ones implemented in the OAuth 2.0 vulnerability checker ”SSOScan” [41]) have to
be integrated into the applications. Test-automation however implies coping with
certain implementation difficulties like:

• Handling and interpretation of dynamic responses due to parameter changes.

• Handling of a great variety of ID Token permutations.

• Handling of generic and customized error messages.

• Simulating user interactions.

Some of the mentioned difficulties arise due to the developers’ interpretation variety
of the protocol. This variety may sometimes cause an unpredictable behavior and
thus make coping with this difficulty unachievable. Nonetheless we will try to extend
our proof-of-concept applications into a single fully-automated OpenID Connect
pentest application capable of testing implementations for our defined attacks. By
making the source code of our to-be-developed application publicly available, we like

© Julian Krautwald 71

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

5. Conclusion

to encourage developers and pentesters to improve the security of OpenID Connect
based SSO systems.

© Julian Krautwald 72

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Bibliography

Bibliography

[1] V. Mladenov and C. Mainka, “Untrusted Third Parties: When IdPs Break Bad,”
2014, Unpublished. 1, 4.2, 5.1

[2] C. Nickel, “Sicherheitsanalyse von OAuth 2.0 mittels Web Angriffen auf beste-
hende Implementierungen,” Master’s thesis, Ruhr-Universität Bochum, 2013.
1, 2.6, 4.2, 4.7, 5.1

[3] 2013 Consumer Research: The Value of Social Login. Blue Research, 2013.
[Online]. Available: http://janrain.com/resources/industry-research/2013-
consumer-research-value-of-social-login/ 1

[4] OpenID Usage Statistics. BuiltWith, 2014. [Online]. Available: http://trends.
builtwith.com/docinfo/OpenID 1

[5] D. Hardt, The OAuth 2.0 Authorization Framework, Internet Engineering
Task Force (IETF) Std. RFC 6749, October 2012. [Online]. Available:
http://tools.ietf.org/html/rfc6749 1, 2.4, 2.4.1, 2.4.2, 2.4.3, 2.5, 2.4.5, 2.4.5.1,
3.5.2, 3.5.2, 3.5.3

[6] The OpenID Foundation (OIDF), OpenID Authentication 2.0 - Final, The
OpenID Foundation (OIDF) Std., December 2007. [Online]. Available:
http://openid.net/specs/openid-authentication-2_0.html 1, 2.3

[7] OpenID Connect FAQ and Q&As. The OpenID Foundation (OIDF), 2014.
[Online]. Available: http://openid.net/connect/faq/ 1, 3.2

[8] What is OpenID Connect? The OpenID Foundation (OIDF), 2014. [Online].
Available: http://openid.net/connect/ 1, 3.1, 3.2, 3.6, 3.7

[9] OC5:OpenID Connect Interop 5. OSIS Open Source Identity, 2013. [Online].
Available: http://osis.idcommons.net/wiki/OC5:OpenID_Connect_Interop_5
1, 4.3, 4.5

[10] The OpenID Foundation (OIDF), OpenID Connect Core 1.0, The OpenID
Foundation (OIDF) Std., February 2014. [Online]. Available: http://openid.
net/specs/openid-connect-core-1_0.html 1, 3.1, 3.4, 3.5, 3.5.1, 3.5.2, 12, 3.5.3,
3.5.4, 16

© Julian Krautwald 73

http://janrain.com/resources/industry-research/2013-consumer-research-value-of-social-login/
http://janrain.com/resources/industry-research/2013-consumer-research-value-of-social-login/
http://trends.builtwith.com/docinfo/OpenID
http://trends.builtwith.com/docinfo/OpenID
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/connect/faq/
http://openid.net/connect/
http://osis.idcommons.net/wiki/OC5:OpenID_Connect_Interop_5
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Bibliography

[11] ——, OpenID Connect Discovery 1.0, The OpenID Foundation (OIDF) Std.,
February 2014. [Online]. Available: http://openid.net/specs/openid-connect-
discovery-1_0.html 1, 3.1, 3.4, 3.4.7, 3.6, 3.6

[12] ——, OpenID Connect Dynamic Client Registration 1.0, The OpenID
Foundation (OIDF) Std., February 2014. [Online]. Available: http:
//openid.net/specs/openid-connect-registration-1_0.html 1, 3.1, 3.4, 3.4.2,
3.4.6, 3.7

[13] D. DiNucci, “Fragmented Future,” Print, vol. 53, no. 4, pp. 32, 221 – 222,
April 1999. [Online]. Available: http://darcyd.com/fragmented_future.pdf 2.1

[14] Kerberos Papers and Documentation. MIT, 2004. [Online]. Available: http:
//web.mit.edu/kerberos/papers.html 2.2

[15] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in
large networks of computers,” Magazine Communications of the ACM, vol. 21,
no. 12, pp. 993 – 999, December 1978. 2.2

[16] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o, “The Evolution of the Kerberos
Authentication Service,” Distributed Open Systems, pp. 78 – 94, 1994. [Online].
Available: http://www.isi.edu/div7/publication_files/rs-94-412.pdf 2.2, 2.1

[17] M. Amon, “The Strong Locked Same Origin Policy in Firefox and its Appli-
cation in Single Sign-On Schemes,” Master’s thesis, Ruhr-Universität Bochum,
November 2010. 2.2

[18] E. Hammer-Lahav, The OAuth 1.0 Protocol, Internet Engineering Task
Force (IETF) Std. RFC 5849, April 2010. [Online]. Available: http:
//tools.ietf.org/html/rfc5849 2.4

[19] ——, “Introducing OAuth 2.0,” hueniverse, May 2010. [Online]. Available:
http://hueniverse.com/2010/05/15/introducing-oauth-2-0/ 2.4, 2.4.2

[20] OAuth Security Advisory: 2009.1. The OAuth Community, April 2009.
[Online]. Available: http://oauth.net/advisories/2009-1/ 2.4

[21] R. Boyd, Getting Started with OAuth 2.0. O’Reilly Media, February 2012. 2.4,
2.4.1

[22] J. Richer, M. Jones, J. Bradley, M. Machulak, and P. Hunt, OAuth 2.0 Dynamic
Client Registration Protocol draft-ietf-oauth-dyn-reg-17, OAuth Working Group
Std., May 2014. [Online]. Available: http://tools.ietf.org/html/draft-ietf-oauth-
dyn-reg-17 2.4.3.2

© Julian Krautwald 74

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://darcyd.com/fragmented_future.pdf
http://web.mit.edu/kerberos/papers.html
http://web.mit.edu/kerberos/papers.html
http://www.isi.edu/div7/publication_files/rs-94-412.pdf
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849
http://hueniverse.com/2010/05/15/introducing-oauth-2-0/
http://oauth.net/advisories/2009-1/
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-17
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-17

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Bibliography

[23] M. Jones and D. Hardt, The OAuth 2.0 Authorization Framework: Bearer
Token Usage, Internet Engineering Task Force (IETF) Std. RFC 6750,
October 2012. [Online]. Available: http://tools.ietf.org/html/rfc6750 2.4.5.1,
3.4.5, 3.5.2, 3.5.2, 1

[24] P. Jones, G. Salgueiro, M. Jones, and J. Smarr, WebFinger, Internet
Engineering Task Force (IETF) Std. RFC 7033, September 2013. [Online].
Available: http://tools.ietf.org/html/rfc7033 3.1, 3.6, 3.6

[25] Inside OpenID Connect on Force.com. Salesforce.com, inc., 2014. [Online].
Available: https://developer.salesforce.com/page/Inside_OpenID_Connect_
on_Force.com 3.2, 3.1

[26] M. Jones, JSON Web Key (JWK) draft-ietf-jose-json-web-key-30, JOSE Work-
ing Group Std., July 2014. [Online]. Available: http://tools.ietf.org/html/draft-
ietf-jose-json-web-key-30 3.4.4, 4.3

[27] M. Jones, J. Bradley, and N. Sakimura, JSON Web Token (JWT) draft-ietf-
oauth-json-web-token-25, OAuth Working Group Std., July 2014. [Online].
Available: http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25 3.5.1,
4.3

[28] ——, JSON Web Signature (JWS) draft-ietf-jose-json-web-signature-30, JOSE
Working Group Std., July 2014. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-jose-json-web-signature-30 3.5.1, 4.3

[29] M. Jones and J. Hildebrand, JSON Web Encryption (JWE) draft-ietf-jose-json-
web-encryption-31, JOSE Working Group Std., July 2014. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31 3.5.1, 4.3

[30] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform Resource Identifier
(URI): Generic Syntax, Network Working Group Std. RFC 3986, January
2005. [Online]. Available: http://www.ietf.org/rfc/rfc3986 3.6

[31] T. Duong and J. Rizzo, Eds., Here Come The XOR Ninjas, May 2011.
[Online]. Available: http://www.infoworld.com/sites/infoworld.com/files/pdfe/
BEAST_Duong_Rizzo.pdf 4.1.2

[32] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication
in browsers,” Communications of the ACM - One Laptop Per Child: Vision
vs. Reality, vol. 52, pp. 83–91, June 2009. [Online]. Available: http:
//seclab.stanford.edu/websec/frames/post-message.pdf 4.1.3

© Julian Krautwald 75

http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc7033
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-30
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-30
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-30
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-30
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://www.ietf.org/rfc/rfc3986
http://www.infoworld.com/sites/infoworld.com/files/pdfe/BEAST_Duong_Rizzo.pdf
http://www.infoworld.com/sites/infoworld.com/files/pdfe/BEAST_Duong_Rizzo.pdf
http://seclab.stanford.edu/websec/frames/post-message.pdf
http://seclab.stanford.edu/websec/frames/post-message.pdf

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Bibliography

[33] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards a Formal
Foundation of Web Security,” CSF ’10 Proceedings of the 2010 23rd IEEE
Computer Security Foundations Symposium, pp. 290–304, 2010. 4.1.4

[34] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal Verification
of OAuth 2.0 Using Alloy Framework,” Communication Systems and Network
Technologies (CSNT), 2011 International Conference, pp. 655–659, June 2011.
[Online]. Available: http://www.researchgate.net/profile/Sanjay_Singh7/
publication/214826971_Formal_Verification_of_OAuth_2.0_using_Alloy_
Framework/file/32bfe50d18aab86c40.pdf 4.2

[35] E. Torlak, M. van Dijk, B. Gassend, D. Jackson, and S. Devadas,
Eds., Knowledge Flow Analysis for Security Protocols, August 2005. [Online].
Available: http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-1007.
pdf 4.2

[36] D. Jackson, Ed., alloy: a language & tool for relational models, 2012. [Online].
Available: http://alloy.mit.edu/alloy/ 4.2

[37] R. Paul, “Compromising Twitter’s OAuth security system,” Ars Technica,
September 2010. [Online]. Available: http://arstechnica.com/security/2010/
09/twitter-a-case-study-on-how-to-do-oauth-wrong/ 4.2

[38] S. Chari, C. Jutla, and A. Roy, “Universally Composable Security Analysis
of OAuth v2.0,” Cryptology ePrint Archive, Report 2011/526, September 2011.
[Online]. Available: http://eprint.iacr.org/2011/526.pdf 4.2

[39] R. Canetti, “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols,” Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium, pp. 136–145, October 2001. [Online]. Available:
http://eprint.iacr.org/2000/067.pdf 4.2

[40] S.-T. Sun and K. Beznosov, “The Devil is in the (Implementation) Details: An
Empirical Analysis of OAuth SSO Systems,” CCS ’12 Proceedings of the 2012
ACM conference on Computer and communications security, pp. 378–390, 2012.
4.2

[41] Y. Zhou and D. Evans, “SSOScan: Automated Testing of Web Applications
for Single Sign-On Vulnerabilities,” 23rd USENIX Security Symposium, 2014.
[Online]. Available: http://www.ssoscan.org/SSOScan.pdf 4.2, 5.1, 5.2

[42] The FAT Attack. Facebook Social Login Session Hijacking. MetaIntell, July
2014. [Online]. Available: http://metaintell.com/blog/2014/06/24/the-fat-
attack-facebook-social-login-session-hijacking/ 4.2

© Julian Krautwald 76

http://www.researchgate.net/profile/Sanjay_Singh7/publication/214826971_Formal_Verification_of_OAuth_2.0_using_Alloy_Framework/file/32bfe50d18aab86c40.pdf
http://www.researchgate.net/profile/Sanjay_Singh7/publication/214826971_Formal_Verification_of_OAuth_2.0_using_Alloy_Framework/file/32bfe50d18aab86c40.pdf
http://www.researchgate.net/profile/Sanjay_Singh7/publication/214826971_Formal_Verification_of_OAuth_2.0_using_Alloy_Framework/file/32bfe50d18aab86c40.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-1007.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-1007.pdf
http://alloy.mit.edu/alloy/
http://arstechnica.com/security/2010/09/twitter-a-case-study-on-how-to-do-oauth-wrong/
http://arstechnica.com/security/2010/09/twitter-a-case-study-on-how-to-do-oauth-wrong/
http://eprint.iacr.org/2011/526.pdf
http://eprint.iacr.org/2000/067.pdf
http://www.ssoscan.org/SSOScan.pdf
http://metaintell.com/blog/2014/06/24/the-fat-attack-facebook-social-login-session-hijacking/
http://metaintell.com/blog/2014/06/24/the-fat-attack-facebook-social-login-session-hijacking/

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

Bibliography

[43] S.-T. Sun, K. Hawkey, and K. Beznosov, “Systematically breaking and fixing
OpenID security: Formal analysis, semi-automated empirical evaluation, and
practical countermeasures,” Computers & Security, vol. 31, no. 4, pp. 465–483,
June 2012. 4.2

[44] MITREid Connect. MITRE Corporation, MIT Kerberos, Internet Trust (KIT),
2014. 4.3

[45] P. Hawke, “NanoHttpd,” 2014. [Online]. Available: https://github.com/
NanoHttpd/nanohttpd 4.3

[46] B. Campbell, “jose.4.j,” 2014. [Online]. Available: https://bitbucket.org/b_c/
jose4j/wiki/Home 4.3

[47] Y. Fang, “JSON.simple,” 2014. [Online]. Available: https://code.google.com/
p/json-simple/ 4.3

[48] Apache HttpClient. The Apache Software Foundation, 2014. [Online].
Available: http://hc.apache.org/httpcomponents-client-ga/ 4.3

[49] Apache HttpComponents. The Apache Software Foundation, 2014. 4.3

[50] Libraries, Products, and Tools. The OpenID Foundation (OIDF), 2014.
[Online]. Available: http://openid.net/developers/libraries/ 4.5

[51] Open Source vs On Demand | The Gluu Server for SSO, 2FA & WAM. Gluu,
Inc., 2014. [Online]. Available: http://www.gluu.org/open-source/open-source-
vs-on-demand/ 4.7

© Julian Krautwald 77

https://github.com/NanoHttpd/nanohttpd
https://github.com/NanoHttpd/nanohttpd
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/
http://hc.apache.org/httpcomponents-client-ga/
http://openid.net/developers/libraries/
http://www.gluu.org/open-source/open-source-vs-on-demand/
http://www.gluu.org/open-source/open-source-vs-on-demand/

Single Sign-On – OpenID Connect(ing) people
Security Analysis of the OpenID Connect Standard and its real-life Implementations

A. Appendix

A. Appendix

The attached DVD contains the following:

• The OpenID Connect Provider TestSuite application compiled as
OpenIDConnectProviderTestSuite-1.0-SNAPSHOT-jar-with-dependencies.jar

• The source code of the OpenID Connect Provider TestSuite application

• The OpenID Connect Client TestSuite application compiled as
OpenIDConnectClientTestSuite-1.0-SNAPSHOT-jar-with-dependencies.jar

• The source code of the OpenID Connect Client TestSuite application

• This thesis as PDF file

© Julian Krautwald i

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Foundations
	The Concept of Single Sign-On
	Original and Browser-Based Kerberos
	OpenID 2.0
	OAuth 2.0
	Roles
	Access Token
	Protocol Endpoints
	Authorization Endpoint
	Redirection Endpoint
	Token Endpoint

	Abstract Protocol Flow
	Authorization Grant Types
	Authorization Code Grant Type

	OpenID Connect
	Preliminaries
	Use Cases and Objectives
	Roles
	Protocol Endpoints
	Authorization Endpoint
	Redirection Endpoint
	Token Endpoint
	JSON Web Key Set Endpoint
	UserInfo Endpoint
	Dynamic Registration Endpoint
	Discovery Endpoint(s)

	OpenID Connect Core Specification
	ID Token
	Authentication using the Authorization Code Flow
	Authentication using the Implicit Flow
	Authentication using the Hybrid Flow

	OpenID Connect Discovery Specification
	OpenID Connect Dynamic Client Registration Specification
	Validation Steps
	Authentication Request Validation
	Authentication Response Validation
	Token Request Validation
	Token Response Validation

	Security Analysis
	Security Model
	Objectives of the Attacker
	Assumptions
	Capabilities of the Attacker
	Behavior of the Victim

	Related Work
	OpenID Connect Pentest Applications
	The Relying Party
	The OpenID Provider

	Attacks / Attack-Scenarios
	ID Spoofing
	Issuer Confusion
	Signature Manipulation
	Sub Claim Spoofing
	Redirect URI Manipulation

	Provider / Library Selection
	Relying Party Implementations
	OpenID Provider Implementations

	Security Aspect Catalog
	Practical Analysis

	Conclusion
	Summary
	Further Studies

	Bibliography
	Appendix

