
Master Thesis

Automatic Penetration Test Tool for
Detection of XML Signature

Wrapping Attacks in Web Services
Ruhr-Universität Bochum

Christian Mainka

22. May 2012

Lehrstuhl für Netz- und Datensicherheit
Ruhr-Universität Bochum

Universitätsstr. 150
D-44789 Bochum

Adviser: M. Sc. Juraj Somorovsky
Lehrstuhl für Netz- und Datensicherheit, Ruhr-Universität Bochum

Supervision: Prof. Dr.-Ing. Jörg Schwenk
Lehrstuhl für Netz- und Datensicherheit, Ruhr-Universität Bochum

Prof. Dr.-Ing. Christof Paar
Lehrstuhl Embedded Security, Ruhr-Universität Bochum

Abstract

SOAP based web services are a widespread technology for executing remote operations
and transmitting structured data. They can be found in Service Oriented Architectures
(SOAs) as Cloud interfaces, federated identity management, e-Government and military
services. For ensuring integrity and authenticity, the XML Signature standards describes
how to sign and verify document parts. However, the processing is very complex and it
was shown that an attacker can modify the message without invalidating the signature.
The so called XML Signature Wrapping (XSW) attack is one of the most discussed
security issues in the web services community. Its practical relevance is evidenced by the
attacks on the Amazon EC2 SOAP and the Eucalyptus Cloud web service interfaces.

This thesis presents a tool which unites all known XSW variants and is able to auto-
matically create wrapping messages. It is integrated into the web services penetration
testing framework WS-Attacker and can be used for easily attacking SOAP based web
services.

Contents

1 Introduction 5

2 Foundations 7
2.1 XML . 7

2.1.1 XML Parser . 9
2.2 XML Schema . 10
2.3 SOAP based Web Services . 11
2.4 XML Security . 12
2.5 XPath . 13

2.5.1 The XPath descendant-Axis . 14
2.5.2 FastXPath . 14
2.5.3 PreXPath and PostXPath . 14

2.6 XML Signature . 15
2.6.1 Structure and Workflow . 15
2.6.2 XML Canonicalization . 16
2.6.3 XPathFilter . 17
2.6.4 Handling Multiple Elements to Sign 18
2.6.5 XML Signature Verification in Software 19

3 Attacking XML Signatures 20
3.1 Attacking ID based XML Signatures . 20
3.2 Countermeasures for ID based XML Signatures 22
3.3 Attacking XPath Based XML Signatures 23
3.4 Countermeasures for XPath Based XML Signatures 26
3.5 Namespace Injection Attack . 27
3.6 XML Schema Validation as Protection for XSW 31

4 Algorithms 32
4.1 Terminology . 32
4.2 Complexity . 33
4.3 Transforming ID References to XPath Expressions 34
4.4 Handling Timestamps . 34
4.5 Analyzing XML Schema . 35
4.6 XPath Weakness Algorithms . 38

4.6.1 Attribute Weakness . 38

4.6.2 Descendant Weakness . 42
4.6.3 Namespace Injection Attack . 47

4.7 High Level Algorithm . 49

5 Implementation 51
5.1 Components . 51

5.1.1 Signature Manager . 51
5.1.2 XPath Parser . 52
5.1.3 XPath Analyzer . 53
5.1.4 Wrapping Oracle . 54

5.2 Integration in the WS-Attacker Penetration Test Framework 55
5.2.1 WS-Attacker Overview . 55
5.2.2 Concrete Integration: Building the XSW Plugin 57

6 Evaluation 59
6.1 Practical Evaluation of the Implementation Correctness 59
6.2 Real World Scenarios . 61

6.2.1 Attacking Apache Axis2 . 61
6.2.2 Attacking XSpRES . 66
6.2.3 Attacking IBM DataPower XI50 67

7 Conclusion 70

Appendix 71
List of Figures . 76
List of Listings . 77
Glossary . 79
Eigenständigkeitserklärung . 82

Introduction

1 Introduction

The use of Service Oriented Architectures (SOAs) and Cloud computing has been dra-
matically increased in the last few years. A fundamental technology for them are web
services, which use XML based SOAP requests for executing remote operations. The
area of application reaches from public Cloud interfaces up to management of feder-
ated identities, e-Government and military services. Due to the wide adoption of the
SOAP technology, numerous extension specifications – mostly complex – have been re-
leased. For achieving data integrity and authenticity, the XML Signature standard can
be applied. However, in 2005, McIntosh and Austel have found a fundamental weak-
ness named XML Signature Wrapping (XSW) (1): In most applications, the method for
detecting the signed elements by the signature verification logic is not identical to the
method for detecting the payload used by the application logic. This difference allows
an attacker to move the signed parts of a document to another location without inval-
idating the signature. The basic problem is that the signature itself does not protect
the position of the signed element. The practical impact of the XSW attack was shown
in (2), wherein the authors have successfully attacked the Amazon EC2 SOAP and the
Eucalyptus Cloud web service interfaces.

The XSW attack is one of the most discussed security issues in the web services com-
munity. Since then, a lot of researches have been published to secure XML Signatures.
Most of them are policy based or add non-standard compliant elements to enforce the
position of the signed element (3, 4, 5). All these countermeasures have in common,
that they try to secure signatures which detect the signed element by an ID attribute.

A different approach for selecting the signed element is using XPath expressions in
combination with XPathFilter. The basic idea is to describe the location of the signed
element by a string and thus protect its position within the XML document. The XPath
grammar is very powerful and offers a lot of more or less complex functions for referencing
the signed element. Some specific XPath expressions are vulnerable to XSW as well (6),
so in general, the usage of an XPath expression does not prevent XSW attacks.

Gajek et al. have analyzed the whole XPath grammar and worked out a reduced one (7).
The so called FastXPath grammar has a fast evaluation with respect to security. Nev-
ertheless, even this referencing method could be successfully attacked by the namespace
injection attack (8). Therefore, the authors abuses weaknesses in the interplay of XML
Signature, XPath, XML Canonicalization and namespaces, so that a used namespace

5/ 82

Introduction

prefix will be resolved to two different URIs resulting in different element resolution for
application- and verification logic.

As this shows, attacking XML Signatures by the XSW attack is very complex due to the
large number of attack variants. In most cases, a web service developer does not have the
time and the expertise to manually test his implementation for such weaknesses. In some
cases, it is even not his own fault, because the relying framework has an implementation
issue.

Motivated by the enormous number of techniques for attacking and detecting XSW and
its huge complexity, this thesis will present a tool, which can automatically create and
attack SOAP based web services which use XML Signature. It is implemented as an
attack plugin for the web services penetration test framework WS-Attacker (9). The
goal is to create a tool which is easy to use – for web service security experts and none-
experts – and which covers all known attack scenarios. It is not meant to be a one click
wonder, but rather a helper instrument for getting a quick overview and inspecting a
web service implementation. The feasibility of the approach is proved by attacking three
web services which use XML Signatures: Apache Axis2 which uses the standard security
module Rampart, the XSpRES library and the IBM DataPower XI50. Therefore, the
framework user just needs an eavesdropped signed message as input and the tool will
ask him for the payload, update the included timestamps automatically, create and send
the XSW messages to the server and inspect the answer if the attack was successful.

The thesis is structured and organized as follows. The next section gives an overview
of the needed fundamentals for understanding SOAP based web services and XML Sig-
nature. Section 3 introduces the XSW attack and deals with its variants and counter-
measures. Building on that, Section 4 presents generic algorithms for creating XSW
messages out of arbitrary XML messages. The implementation details and the integra-
tion in the WS-Attacker framework are shown in Section 5 and evaluated in Section 6.
The thesis concludes with future work in Section 7.

6/ 82

Foundations

2 Foundations

In this section, the foundations for understanding the web service technology and the
XML Signature standard are explained.

2.1 XML

The eXtended Markup Language (XML) defines a set of rules for encoding documents
and data structures (10). A very basic example for this gives Listing 1.

1 <computer>
2 <hardware>
3 <keyboard layout="german"/>
4 <monitor r e s o l u t i o n="1920 x1080"/>
5 </hardware>
6 <so f tware>
7 <os type="Linux">Ubuntu</os>
8 <ed i t o r>vim</ ed i t o r>
9 </ so f tware>
10 </computer>

Listing 1: First XML example.

As one can see, there are different types of rules formatting XML documents. An
element, e.g. keyboard, can have additional attributes, e.g. the layout attribute. The
value Ubuntu is a special kind of attribute – the text content. It is always enclosed by
the opening and closing element tag.

For a better readability, this thesis will use the tree notation for representing XML
documents, as Figure 1 shows.

7/ 82

2.1 XML Foundations

computer

hardware

keyboard

monitor

software

operatingsystem

Ubuntu

editor

layout=”german”

resolution=”1920x1080”

type=”Linux”

Figure 1: XML tree representation. Attributes are placed horizontally with a dashed
rectangle border. Text contents have the same border but are placed below
the corresponding element.

Elements have a solid, rounded border. Attributes are placed horizontally to the belong-
ing element and have a dashed rectangle border. Text contents are placed like normal
elements but with the same border as an attribute.

An additional feature of XML are namespaces (11, 12). They are used to clearly identify
elements and attributes. An example document is shown in Figure 2.

ns1:root

ns1:A

ns2:A

A

xmlns:ns1=”http://ns1”

xmlns:ns2=”http://ns2”

xmlns=”http://ns1”

Figure 2: An example for XML namespaces.

The root element belongs to the namespace http://ns1, which is bound to the prefix
ns1. It has three child elements with the same localname A. Nevertheless, only two of
them are semantically the same. The first A element has the prefix ns1, but does not need
to declare the namespace URI it belongs to, because it is inherited by its parent. The
second A element uses its own namespace ns2 which is bound to the URI http://ns2,
so it is different to the first A element. The third one is special – it does not use any
namespace prefix. However, it uses the same namespace URI as the first A element, so
they are semantically the same.

8/ 82

2.1 XML Foundations

The main benefit of using namespaces is that XML documents can embed other XML
documents without conflicting with their element names. They can be distinguished by
their namespace URI.

Note that the example descriptions in this thesis commonly left out namespaces for sim-
plicity, e.g. instead of talking about soap:Envelope, the element is just named Envelope

if the namespace is obvious.

2.1.1 XML Parser

For parsing XML documents, there are the following possibilities:

. The Document Object Model (DOM) reads the whole XML document into memory
and creates an object for each node. A node can be the element itself, an attribute,
the text content or a comment. They are all saved in a tree-like order, which allows
easy access to each node and relationship information like child, parent and sibling
nodes.

. A streaming based parser does not save any object into memory. It parses an
XML stream and handles events if a new node starts or ends. This is extremely
fast but more difficult to use, since the programmer can not go backwards, e.g. to
get the parent node. While processing, he has to save all relevant data himself,
e.g. ancestor or sibling nodes, and he can not directly access to other nodes. There
are two different types of streaming based parsers:
1. The Simple API for XML (SAX) parser reads a stream and sends out events

if, e.g., a new element starts or ends. Thus, SAX is a push parser.
2. The Streaming API for XML (StAX) parser works like a cursor: the pro-

grammer can ask for the next event, so StAX is a pull parser, which does not
interact with the program actively.

Both models are widely used. At first glance, DOM seems to be the better parser type,
as it is easier to use. Nevertheless, it is notable that parsing only a small document will
result in much higher memory consumption. For a server, which has to process several
XML documents per second, this can lead to a bottleneck in memory, being abused by
denial of service attacks. However, the streaming based model also has its disadvantages.
Although it is fast and consumes minimal memory, some XML specific operations, like
XPath (see Section 2.5), are not fully supported.

9/ 82

2.2 XML Schema Foundations

2.2 XML Schema

XML Schema is a recommendation by the World Wide Web Consortium (W3C) for de-
scribing the structure of an XML document (13). Basically, it is a set of rules which can
describe the structure for each contained element. This includes its allowed attributes,
the type of its value (e.g. a string or integer), a description of its allowed child elements
and how often they may occur.

1 <xs:schema xmlns :xs=" ht tp : / / . . . " xmlns : tns=" ht tp : / / . . . ">
2
3 <xs : e l ement name="computer" type=" tns :computer "/>
4 <xs:complexType name="computer">
5 <xs : s equence>
6 <xs : e l ement r e f=" tns :hardware " minOccurs="1"/>
7 <xs : e l ement r e f=" tn s : s o f twa r e " minOccurs="0"/>
8 </ xs : s equence>
9 </xs:complexType>
10
11 <xs : e l ement name="hardware" type=" tns :hardware "/>
12 <xs:complexType name="hardware">
13 <xs : s equence>
14 <xs :any namespace="##any" processContents=" lax " y

minOccurs="0" maxOccurs="unbounded"/>
15 </ xs : s equence>
16 </xs:complexType>
17
18 <xs : e l ement name=" so f tware " type=" tn s : s o f twa r e "/>
19 <xs:complexType name=" so f tware ">
20 <xs : s equence>
21 <xs :any namespace="##other " processContents=" s t r i c t " y

minOccurs="0" maxOccurs="unbounded"/>
22 </ xs : s equence>
23 </xs:complexType>
24
25 </xs:schema>

Listing 2: An XML Schema example.

Listing 2 gives an example of an XML Schema. It describes a computer element with
two child elements. The hardware element must occur exactly once. This is defined by
the attribute minOccurs="1". The attribute maxOccurs is omitted, as its default value

10/ 82

2.3 SOAP based Web Services Foundations

is "1". The computer element can also have a software element. It is optional because
of the attribute minOccurs="0".

The elements hardware and software have special child elements. They are notated as
xs:any, which means, that any kind of child elements are allowed. Their properties can
be constrained by defining the following attributes:

. The namespace attribute defines its allowed namespace. Possible values are ##any
(default value) and ##other to force a different one than its parent’s namespace.

. The processContents attribute controls the behavior of the XML Schema han-
dling for the specified child element. The default value is strict and means that
the element must have an available XML Schema. If it is set to lax, the parser
will lookup if an XML Schema is present and use it in this case. Otherwise, the
element is not parsed, but this is not treated as an error.

The main idea of the xs:any element is to define an extension point for additional plugin
elements. This way, the XML Schema can be expanded by just adding another Schema
file to the parser. Whenever it finds an element at an xs:any position, the parser will
lookup if it matches to the newly added Schema.

The downside of this approach is that xs:any elements can be used to place wrapper
elements for moving signed parts, see Section 3.

2.3 SOAP based Web Services

A web service is the concrete implementation of a Service Oriented Architecture (SOA).
Instead of defining how a services works, a web service just defines its interface. SOAP
is a standard for describing message exchanges with a web service (14, 15). Although it
is not bound to a specific protocol, commonly HTTP is used.

soap:Envelope

soap:Header

additional Headers

soap:Body

Operation

Figure 3: SOAP example. The root Envelope element has an optional Header element
and a mandatory Body element.

11/ 82

2.4 XML Security Foundations

Figure 3 shows a basic SOAP request. It has a root element named soap:Envelope

which has an optional soap:Header and a mandatory soap:Body child element. The
Header element is used to store meta information not meant to be used by the concrete
application logic, e.g. a signature or some routing information. The Body element holds
the payload. In most web service implementations, the first body child element is named
as the operation to be performed. The available operations and the necessary structure
of the request is stored in the Web Services Description Language (WSDL) (16, 17).
Such a request can be seen as a kind of remote procedure call – the message holds
the name of the operation to be executed and all necessary parameters. After the web
service server has executed the operation, it sends the result as a SOAP response back
to the invoker. If any kind of error occurs, the response contains a soap:Error.

2.4 XML Security

SOAP messages are commonly exchanged using HTTP. Thus, these messages can be
easily protected using SSL/TLS (18). Unfortunately, this approach has some disadvan-
tages.

Client
Application
Firewall

Web Services

Figure 4: Security via SSL/TLS. A client wants to execute a web service operation which
is protected by an application firewall.

Suppose the scenario of Figure 4. A client wants to invoke a web service operation
which is protected by an application firewall. For doing this, the client has to establish
an SSL/TLS connection with the firewall. Afterwards, the firewall has the following
possibilities:

1. Sending the message to the web service using an unsecured connection.
2. Establishing a new SSL/TLS connection with the web service.

Obviously, both methods have its downside. Therefore, the OASIS group has maintained
the WS-Security (19) standard, which describes how to:

. Sign and verify (parts of) an XML document (XML Signature, see Section 2.6).

. Encrypt and decrypt (parts of) an XML document (XML Encryption (20)).

12/ 82

2.5 XPath Foundations

. Add security tokens, e.g. timestamps or credentials, to an XML document.

For using such features, a WS-SecurityPolicy is needed (21). It is based on the WS-Policy
standard (22) and describes which security features are required, to which document
parts they shall be applied and which concrete algorithms must be used.

2.5 XPath

XPath is a query language for selecting nodes of an XML document (23, 24). An example
for a valid XPath gives the Figure 5.

/soap:Envelope/soap:Body[@wsu:Id=’bodyId’]/*[1]

Absolute Location Path

Relative Location Path

Step 1 Step 2 Step 3

Attribute Expression

Arbitrary Node

Position Expression: First matched Node

Figure 5: Example for an XPath expression.

The expression describes a node selection beginning with the document root (absolute
location path), which is indicated by the first slash. Without this slash, the expression
would be a relative location path. The next classification is a step, which can consist
of a node name with or without an arbitrary number of expressions in square brackets.
The most commonly used expressions select a node if it has an attribute with a specific
value, e.g. the attribute wsu:Id with the value bodyId as shown in step 2, or if it has
a specific position. The expression [1], see step 3, is an abbreviation for [index()=1],
which means to select only the first matching node. The XPath standard offers a lot
of functions for selecting a node by any kind of property – e.g. by its localname, its
namespace or even if it has some specific ancestor or descendant node.

13/ 82

2.5 XPath Foundations

2.5.1 The XPath descendant-Axis

A special kind of selecting a node is using the descendant-or-self axis, abbreviated
by a double-slash:

/ root//∗[@task=’done’]

Listing 3: Using an XPath expression with the descendant-or-self axis.

This expression would select any descendant-or-self node of the root element in the
XML document which has an attribute named task with the value done. Note that
the asterisk only selects any kind of direct child nodes, but not its descendants, e.g.
/root/∗[@task=’done’] would only select the direct child nodes of the root element
with the specified attribute. Furthermore, there is also a function for selecting any
descendant node, so that the current (self) context node is not allowed. To summarize
both methods, this thesis uses the notation descendant-*.

2.5.2 FastXPath

A subset of the XPath grammar is FastXPath (7). It only uses simple forward axis – so
no descendant or ancestor selection is possible. Additionally, FastXPath requires each
step to have an attribute or position expression. Using this grammar, a very fast XPath
evaluation is possible. As a side effect, FastXPath expressions are very resistant against
some signature attacks. A detailed description of this grammar is given in Section 3.4.

2.5.3 PreXPath and PostXPath

For explaining the algorithms in Section 4, the definition of a PreXPath and a PostXPath
must be introduced. Suppose the XPath /A/B/C/D/E/F. Then, step D as a part of
the whole expression has the following properties:

. Its PreXPath is /A/B/C. It is defined as the concatenation of all steps before
the specified step. If the step D is appended to this expression, it is called the
extended PreXPath (/A/B/C/D).

. Its PostXPath is E/F. Note that this expression does not start with a slash – it
is a relative location path.

14/ 82

2.6 XML Signature Foundations

2.6 XML Signature

2.6.1 Structure and Workflow

XML Signature is a recommendation by the W3C which defines a syntax for using
digital signatures in an XML document (25, 26). It can be used for ensuring integrity
and proofing authenticity of fragments or even the whole document. The basic structure
of an XML Signature element can be seen in Figure 6.

ds:Signature

ds:SignedInfo

ds:CanonicalizationMethod

ds:SignatureMethod

ds:Reference

ds:DigestMethod

ds:DigestValue

ds:SignatureValue

Algorithm=”· · ·”

Algorithm=”· · ·”

URI=”· · ·”

Algorithm=”· · ·”

Figure 6: Structure of the XML Signature element.

The signing process undertakes the following flow: For each XML fragment to be signed,
a Reference element is created and the DigestValue of the element specified by the
URI attribute is computed using the algorithm specified in the DigestMethod element.
Afterwards, the SignedInfo element is signed using the algorithm specified in the
SignatureMethod element.

One problem by signing XML documents is that a signature would become invalid if
the document structure changes without changing its semantics, e.g. by adding white-
spaces between attribute definitions. For solving such problems, the element to be
signed/hashed is normalized using an XML Canonicalization Algorithm as described in
Section 2.6.2.

For embedding an XML Signature into a SOAP message, the Signature element is
placed as a child of a WS-Security header. An example for such a so-called detached
signature gives Figure 7.

15/ 82

2.6 XML Signature Foundations

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

soap:Body

ns1:Operation

ns1:Content

URI=”#body”

wsu:Id=”body”

Figure 7: Signed SOAP message. Structure of the Signature element is simplified.

2.6.2 XML Canonicalization

The idea of an XML Signature is to ensure integrity and proof authenticity of a message.
In general purposes, this means that the message must be exactly the same for sender
and recipient. Nevertheless, in the context of XML, it just means that a message should
be semantically the same.

1 <x a t t r i bu t e 1="one" a t t r i bu t e 2="two" />
2 <x a t t r i bu t e 2=’ two ’ a t t r i bu t e 1=’ one ’ />

Listing 4: Two semantically same elements.

The example Listing 4 shows two elements named x which are semantically identical:
Both elements have the same attributes with the same values, but the order is different,
they use different quotation signs and the latter one has additional white-spaces at
the end. Standard digest algorithms which compute their values by using the string
representation as input lead to different hash values and thus to an invalid signature.

XML Canonicalization is a recommendation by the W3C which normalizes a docu-
ment (27, 28). Semantically identical XML fragments result in the same string rep-
resentation so that standard digest algorithms can be applied. Basically, the XML
Canonicalization method does the following tasks:

. Sort attributes alphabetically.

. Normalize line breaks (Windows, UNIX,. . .), quotation signs, . . .

16/ 82

2.6 XML Signature Foundations

. Add default attributes.

However, for handling namespaces, there exist two different methods:

. The Inclusive Canonicalization method adds any namespace declarations which
can be seen by an element to its attributes. This also includes declarations of
prefixes which are not used in any child elements. A problem of this approach is
that XML Signatures can become invalid if a namespace declaration is added to
any parent of a signed fragment, e.g. the root element. This causes the Inclusive
Canonicalization to add the namespace declaration to each signed element. Thus,
hashing them results in different values leading to an invalid signature.

. The Exclusive Canonicalization method only adds namespace declarations to an
element if it is used for the first time. Namespace declarations in child elements,
which use a prefix declared in an ancestor element, are removed. This behavior is
called visible utilized.

For each of these two methods, there exist two sub-methods: One that omits comments,
and one that does not, so that there are four canonicalization methods in total.

2.6.3 XPathFilter

Commonly, signed elements are referenced by an ID attribute. Therefore, the signature
logic searches for an element anywhere in the XML document which has the specified
attribute and value. Then, the element is added to the list of elements which are hashed.
Another approach for referring elements is using XPath expressions, see Section 2.5. Cur-
rently, there exist two specifications for using XPaths in XML Signatures: XPathFilter1
and XPathFilter2 (29, 30).

The first version has a bad performance: It allows using an XPath expression as a
boolean filter. The expression must be evaluated against every node in the referenced
XML fragment. If the node fulfills the condition, the node is added to the list of objects
which are used for calculating the digest value.

In contrast to this, XPathFilter2 has a different working flow: The XPath expression
starts at the element defined by the URI in the Reference element and then evaluated
the specified XPath. All matched elements will be used for calculating the digest value.
Multiple XPaths can be combined using the set operations intersect, union and subtract.

17/ 82

2.6 XML Signature Foundations

Note that a common scenario for this is to use URI="", which means to let the XPath
begin at the document root.

An example for using XPathFilter2 gives Figure 8.

ds:Signature

ds:SignedInfo

ds:CanonicalizationMethod

ds:SignatureMethod

ds:Reference

ds:Transforms

ds:Transform

XPath

/soap:Envelope/· · ·

ds:DigestMethod

ds:DigestValue

ds:SignatureValue

Algorithm=”· · ·”

xmlns=”ns-xpath”
Filter=”intersect”

Algorithm=”· · ·”

URI=””

Algorithm=”· · ·”

Figure 8: An XML Signature using XPathFilter2.

The structure is very similar to the use of ID attributes, but instead of selecting an ele-
ment by an attribute value, the URI only selects the start point for the XPath expression.
For this purpose, the URI attribute must be set to the empty string. Additionally, an
XPath element is added as a transformation to the Reference element and its text-
content holds the concrete XPath expression. The set operation – intersect in this case
– is defined by its filter attribute.

2.6.4 Handling Multiple Elements to Sign

In most cases, there is the need to protect multiple elements in an XML document. A
very common example for this is protecting the message’s payload and a timestamp.
XML Signature offers different possibilities for realizing this:

1. The XML document can have multiple Signature elements. Note that this allows
an attacker to create a new message by mixing two old ones. It is also a bit slower
than the next purpose, as the verification of each Signature element needs an
expensive asymmetric operation.

18/ 82

2.6 XML Signature Foundations

2. The Signature element can have multiple Reference elements. The benefit of
this is that the SignatureValue protects all referenced elements together. So,
there is a connection between all signed elements.

3. Use XPathFilter2: Only one Signature element with exactly one Reference ele-
ment is necessary. For each element to be signed, an XPath is added to the list of
transformations. The first one uses filter="intersect", all other ones use the
union filter.

Note that in some scenarios, approaches two and three might be impossible, e.g. if there
is an operation chain where different instances have to sign parts of the XML document.
In this case, mixture of the first one with the other ones can be used.

2.6.5 XML Signature Verification in Software

The previous section clarifies that the XML Signature standard is very powerful and
complex. Because of this, most common web services do not implement the standard
itself, but rather use external libraries for the signature creation and verification. This
approach allows to separate security- and application logic, but the downside of this
is that the developer of the web service has to take care, that both, the security- and
the application logic, use the same element for its processing. At first view, this seems
to be absolutely logically, but remember the referencing method used by an ID based
XML Signature. It detects the signed element by searching for any element which has
a specified attribute value. For the application logic, this attribute needs not to be
important. The developer could just process the first child of the Body element, as he
expects the signed element to be there. Obviously, this is not enforced by the signature
verification logic.

19/ 82

Attacking XML Signatures

3 Attacking XML Signatures

McIntosh and Austel published the first basic scenario for attacking XML Signatures in
2005 (1). They named the attack XML Signature Wrapping (XSW), because the basic
idea is to move the original signed element to a wrapper element on a different position
and replace it with a new payload. Since then, more and more different techniques for
attacking and protecting XML Signatures have been published and will be presented in
this section.

3.1 Attacking ID based XML Signatures

The most frequently used scenario for XML Signature is to refer the signed elements
by an ID attribute. This method is easy to understand for humans and simple to
implement for developers. However, it has the big disadvantage that the signature itself
only protects the content of the signed elements but not its location within the document.
The signed element can be moved to another location – vertically and horizontally in
the document structure – without invalidating the signature.

Figure 9 gives an example for constructing an XSW message which still bypasses the
signature verification process but changes the payload used by the application logic.

20/ 82

3.1 Attacking ID based XML Signatures Attacking XML Signatures

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

soap:Body

ns1:Operation

ns1:Content

URI=”#body”

wsu:Id=”body”

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

atk:Wrapper

soap:Body

ns1:Operation

ns1:Content

soap:Body

ns1:Operation

atk:AttackerContent

URI=”#body”

wsu:Id=”body”

wsu:Id=”new-body”

copy to

Figure 9: Creating an XSW message for an ID referencing based XML Signature. The
original signed message is shown on the left side. The XSW message on the
right side is constructed by copying the signed element to a Wrapper element
and modifying the signed content to the attackers’ needs.

The original message has a signed Body element which is referenced by the ID attribute
#body. The attack message on the right has a new Wrapper element placed as a child of
the Header element. Its child is a copy of the original signed Body element. Note that
the ID attribute still has the value #body. The original Content element is replaced
by a new AttackerContent element and the ID attribute of its ancestor Body element
is changed to new-body, so that the signature verification logic will not use it. There
might also be other attack scenarios in which the attribute value remains the same as in
the Wrapper element or it removed completely. The success of this attack depends on
the implemented application- and verification logic.

The main problem why this attack works is that the signature verification- and the
application logic use different methods for detecting their elements. The signature ver-
ification logic looks for an element which has the attribute wsu:Id="body" and uses it
to compute the digest value. The application logic, in contrast, does not care about
the attribute wsu:Id="body" – it just uses the first child element of the Body element
in the SOAP message. Obviously, these referencing methods are not equivalent, as the
example attack message shows.

21/ 82

3.2 Countermeasures for ID based XML Signatures Attacking XML Signatures

3.2 Countermeasures for ID based XML Signatures

Since the discovery of XSW, several countermeasures for preventing this attack have
been proposed. The authors of the original paper themselves suggested a policy based
approach to prevent it. This can be summarized summarized to the following rules
(namespaces are omitted):

. The Signature element must be present in the Security header.

. The Reference element must be a child of the Signature element and refer to
the Body element which itself must be a child of the Envelope root element.

. The position of the Timestamp element must be /Envelope/Header/Security/ y
Timestamp.

. The signature verification key must be provided by an X.509 certificate and the
CA must be confidential.

Nevertheless, Gruschka and Lo Iocano showed that these proposed checks are not suffi-
cient to prevent XSW (31).

Another WS-Policy based approach was created by Bhargavan et. al (4). The authors
developed a policy adviser and proofed its theoretical correctness in a wide class of
WS-Security protocols, but although the Amazon EC21 Cloud fulfilled these security
requirements, it could be successfully attacked (2). This example shows that a theo-
retically secure policy is not sufficient for getting real-world security. There might be a
gap between the formal WS-SecurityPolicy and its concrete implementation. Another
problem with this approach is that very strong restrictions to the security policy are
made. Many elements are claimed to be signed and the whole Body must be signed in
every case. This reduces the flexibility of the SOAP security mechanism.

Rahaman et. al used a different approach for securing XML Signatures (5). Instead
of forcing the elements to be signed by a WS-SecurityPolicy, the authors introduced a
way to embed the elements’ position directly in the XML document. The goal of this
so-called inline approach is to fix the signed elements position so that each movement
within the document results in an invalid signature verification. This is realized by
including a SoapAccount element for each referenced element in the XML Signature,
which holds the following information:

. The number of child elements of the SOAP root element Envelope.

1https://aws.amazon.com/de/ec2/

22/ 82

https://aws.amazon.com/de/ec2/

3.3 Attacking XPath Based XML Signatures Attacking XML Signatures

. The number of child elements of the Header element.

. The number of references in each XML Signature.

. The successors and predecessors of each signed object.

Although the idea of fixing the position seems to be plausible, this solution has some
disadvantages: At first, the SoapAccount element is not standardized, thus, the result-
ing XML Signature is not standards-compliant. Secondly, the saved properties do not
prevent XSW in general. An attacker could modify the message structure while fulfilling
the secured account information of the inline approach as showed in (32).

3.3 Attacking XPath Based XML Signatures

XML Signatures can use XPath expressions for referencing signed elements. The advan-
tage is that this method allows to describe the position of the signed element within the
XML document. Liao et. al introduced two notations for this (6):

. The hashed subtree contains the nodes which are the input for the digest algo-
rithm. For simplicity, this can be seen as the signed element2.

. The protected subtree contains the hashed subtree and other nodes which are
necessary to locate it, e.g. ancestor elements or attributes.

Suppose the XPath /soap:Envelope/soap:Header/ns:Signed. Figure 10 then shows the
difference of the protected and the hashed subtree nodes for an example SOAP mes-
sage.

soap:Envelope

soap:Header

ns:Signed

Signed Text Content

soap:Body

Hashed Subtree

Protected Subtree

Figure 10: Visualization of the hashed- and the protected subtree.

2Note that one XPath can also match multiple elements, attributes or text contents.

23/ 82

3.3 Attacking XPath Based XML Signatures Attacking XML Signatures

In the example, the location of the Signature element is omitted. Remembering the
structure of an XML Signature and the usage of XPathFilter2 as described in Sec-
tion 2.6.3, the XPath expression is located in the Reference element. This implies, that
the expression is protected by the signature itself. Thus, if an attacker tries to build an
XSW message, the structure of the protected subtree must remain.

Although using XPaths seems to be able to protect the position of a signed object, so
that XSW attacks might be detected, it must be mentioned that using them is not a
countermeasure in general. There are some possibilities for attacking specific XPath
expressions.

An example for this is the descendant axis specification. It selects a succeeding element
which can be located anywhere below the current context node.

Consider the XPath expression //soap:Body[1]. It queries any Body element which is
a descendant of the document root. In this case, for selecting nodes by the descendant
axis, the abbreviated form // (double-slash) is used. This is equivalent to the XPath ex-
pression /descendant−or−self::node()/soap:Body[1]. Note, the XPath begins with the
descendant axis selection, but it is also possible to use it in the middle of an expression,
e.g. /soap:Envelope//soap:Body[1]

Assume the example message given by Figure 11 and the XPath expression //soap: y
Body[1] as mentioned before.

soap:Envelope

soap:Header

wsse:Security

soap:Body

soap:Envelope

soap:Header

wsse:Security

soap:Body

soap:Body

Copy to
Selected by Depth-First search

Selected by Breadth-First search

Figure 11: Comparing Depth-First and Breadth-First search: Which Body element is
selected with the XPath //soap:Body[1]?

With regard to semantics, the XPath selects the first Body element in the XML docu-
ment. However, an attacker can copy the original Body element and place it as a child
of the Header element. It now depends on the XPath implementation which element
is selected. If the implementation uses a Depth-First search, the element located at
/soap:Envelope/soap:Header/soap:Body is selected. In case of a Breadth-First search,

24/ 82

3.3 Attacking XPath Based XML Signatures Attacking XML Signatures

the other one is used. This illustrates the ambiguousness of the descendants axis. Com-
monly, the Depth-First search is used3, which allows an attacker to create an XSW
message as shown on the right side of Figure 11.

In some scenarios, it is also possible to attack XPaths which do not contain a descendant-
* axis specifier. Consider the example given by Figure 12.

soap:Envelope

soap:Header

ns:Signed

Signed Content

soap:Body

soap:Envelope

soap:Header

ns:Signed

Attacker Content

ns:Signed

Signed Content

soap:Body

ID=”signed”

ID=”signed”

Copy to

Figure 12: Creating an XSW message which is signed by using the XPath /soap: y
Envelope/soap:Header/ns:Signed[@ID=’signed’].

The signed content is selected by the XPath /soap:Envelope/soap:Header/ns:Signed y
[@ID=’signed’]. Note that the signed element Signed has the attribute ID=’signed’,
which is used by the XML Signature verification logic. If the application logic ignores this
attribute and just selects the first child element named Signed of the Header element,
an attacker could construct the XSW message as shown on the right side. Therefore, he
places a copy of the signed content after the original content. Afterwards, he removes
the ID attribute from the original Signed element and places his payload in it.

Further examples use a mixture of both attack scenarios. A common example for this
is an XPath with the following structure:

//∗[@ID=’signed’]

This expression does semantically the same as selecting the signed element by only using
its attribute – this is equivalent to an ID based referencing signature as shown in (7).
An attacker therefore has to process both attacks:

3Tested with Java6 and the javax.xml.xpath.XPath package.

25/ 82

3.4 Countermeasures for XPath Based XML Signatures Attacking XML Signatures

1. First, he has to find another location within the XML document which also matches
the descendant axis specifier.

2. Second, he has to adjust the attributes in the signed and the wrapper elements.

A more detailed description is given in Section 4.

3.4 Countermeasures for XPath Based XML Signatures

As the previous section shows, the use of XPath as referencing method does not bring
any security in general. The leakage of ID based referencing is that it does not protect
the position of the signed element in the XML document. An XPath expression seems
to have the possibilities to do this, but this does not affect the whole XPath grammar.
Especially the case of transforming an ID based reference into an XPath expression clar-
ifies this. Gajek et al. analyzed the XPath grammar in points of security and efficiency.
Their results, the so-called FastXPath grammar, has the following structure:

1 FastXPath : := ’/ ’ RelativeFastXPath
2 RelativeFastXPath : := Step
3 | RelativeFastXPath ’ / ’Step
4 Step : := QName PredicatePosition?
5 PredicatePosition : := Position Predicate?
6 | Predicate Position?
7 Position : := ’ [’ [1−9][0−9]∗ ’] ’
8 Predicate : := ’ [’ PredicateExpr ’] ’
9 PredicateExpr : := PredicateStep
10 | PredicateExpr ’ and ’ PredicateStep
11 PredicateStep : := ’@’ QName ’= ’ Literal
12 Literal : := ’" ’ [^"]∗ ’ " ’
13 | " ’" [^ ’]∗ " ’"

Listing 5: The FastXPath grammar.

Listing 6 gives an example FastXPath expression, which selects the first Body child
named Operation, as this is used in most implementations by the application logic.

/soap : Envelope[1]/soap : Body[1]/ns : Operation[1]

Listing 6: An example FastXPath expression.

26/ 82

3.5 Namespace Injection Attack Attacking XML Signatures

The FastXPath uses only direct forward axis selection, which allows to use a SAX/StAX
parser to parse the XML document. It is faster than a DOM parser and also requires
less RAM. By using this subset of the XPath grammar, the security is also improved,
as the FastXPath grammar explicitly denies the usage of the descendant axis.

Nevertheless, the selection of an element according to its attribute value is still allowed.
In cases where the application logic ignores such attributes, the same attacks as shown
in Section 3.3 are possible.

3.5 Namespace Injection Attack

XPath expressions can select a node by using its namespace prefix, e.g. /soap: y
Envelope/soap:Body/ns:Operation. However, this concept itself does not contain any
information about the mapping of a prefix to its concrete URI. Jensen et al. developed
a technique named namespace injection attack, which overrides namespace declarations
in such a way, that the signature verification- and the application logic resolve one and
the same prefix into different namespaces URIs (8).

Consider the SOAP message given in Figure 13.

27/ 82

3.5 Namespace Injection Attack Attacking XML Signatures

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Canonicalization

ds:Reference

ds:Transforms

ds:Transform

xf:XPath

/soap:Envelope[1]/soap:Body[1]
/op:Operation[1]/cnt:Content[1]

soap:Body

op:Operation

cnt:ContentElement

some signed content

Algorithm=”Exclusive”

xmlns:soap=ns-soap

xmlns:wsse=ns-soap

xmlns:ds=ns-ds

xmlns:xf=ns-xf
xmlns:op=ns-op
xmlns:cnt=ns-cnt

xmlns:op=ns-op

xmlns:cnt=ns-cnt

Figure 13: Prerequisites for namespace injection.

It shows a basic SOAP request which uses a FastXPath to selected the cnt:ContentElement
located in the soap:Body part. The XPath itself uses the three prefixes soap, op and cnt.
If the signature verification logic tries to detect the hashed subtree, it has to resolve those
prefixes. Therefore, it looks for a fitting namespace declaration in the xf:XPath element
and uses it if it is found. Otherwise, its ancestors are traveled upwards and it is searched
for a matching declaration. Afterwards, the hashed subtree and the ds:SignedInfo el-
ement are canonicalized and the hash value on them is computed. Note that only the
canonicalized form of the element is hashed, thus, only this form is protected by the
XML Signature. In the case of Exclusive Canonicalization, all namespace declarations,
which are not used in the hashed element, are removed during the canonicalization pro-
cess (visible utilized, see Section 2.6.2). The prefixes used in the xf:XPath element are
handled as text content, so that they are removed by the Exclusive Canonicalization if
they are not needed. So, the canonicalized form of the example xf:XPath element only
keeps the namespace declaration of the xf prefix, because the prefixes op and cnt are
not used in the ds:SignedInfo element.

28/ 82

3.5 Namespace Injection Attack Attacking XML Signatures

Using the namespace injection technique, an XSW message can be constructed as shown
in Figure 14.

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Canonicalization

ds:Reference

ds:Transforms

ds:Transform

xf:XPath

/soap:Envelope[1]/soap:Body[1]
/op:Operation[1]/cnt:Content[1]

soap:Body

op:Operation

cnt:ContentElement

attackers content

atk:Operation

cnt:ContentElement

some signed content

Algorithm=”Exclusive”

xmlns:soap=ns-soap

xmlns:wsse=ns-soap

xmlns:ds=ns-ds

xmlns:xf=ns-xf
xmlns:op=ns-attacker
xmlns:cnt=ns-cnt

xmlns:atk=ns-attacker

xmlns:op=ns-op

xmlns:cnt=ns-cnt

Used by application logic

Used by signature logic

Figure 14: Example namespace injection attack message.

The message is constructed by the following steps:

. The op:Operation element is doubled.
→ The first one is used by the application logic, so it holds the attacker content.
→ The second one is used by the signature verification logic. Its prefix is changed

to atk which is bound to an attacker namespace URI.
. The namespace declaration for the op prefix in the xf:XPath element is changed

so that it uses the attacker URI.

29/ 82

3.5 Namespace Injection Attack Attacking XML Signatures

The attack works, because the application logic simply looks in the soap:Body for an
Operation element which is bound to the operation namespace4, thus it uses the attacker
content for the execution. The signature verification logic has to resolve the op prefix.
It searches in the xf:XPath element and finds the declaration which binds the prefix
op to the attacker URI, so it will use the atk:Operation element for computing the
hash. As the Exclusive Canonicalization method is used, the namespace declaration for
op in the xf:XPath element is omitted as described before and the hash value for the
ds:SignedInfo element unchanged – the XML Signature is still valid.

As a countermeasure, Jensen et. al. proposed to embed the namespace URI in the XPath
expression. For this purpose, the namespace-uri() and local-name() function can be
used. Suppose the FastXPath of Listing 7.

/soap : Envelope[1]/soap : Body[1]

Listing 7: A sample FastXPath which uses prefixes.

The XPath can be transformed, so that it does not use the prefixes to select an element,
but directly the concrete namespace URI. This is shown in Figure 8.

/∗[local-name()="Envelope" and namespace-uri()="..."][1] y
/∗[local-name()="Body" and namespace-uri()="..."][1]

Listing 8: Prefix-free transformed FastXPath.

Using a FastXPath expression as input, the authors showed that this transformation still
allows a streaming based procession (SAX/StAX). An obvious disadvantage is the bad
readability for humans. Although the example XPath only uses two prefixes, the length
of the expression is much longer, even without showing concrete namespace URIs.

An attempt to combine the usability of FastXPath with the security of the transformed
XPath expressions is shown in (33). The authors implemented an Axis25 module which
uses a FastXPath based WS-SecurityPolicy and automatically transformed these expres-
sions into its prefix-free equivalent.

4In a simpler scenario, the application logic just uses the first child of the Body element.
5https://axis.apache.org/axis2/

30/ 82

https://axis.apache.org/axis2/

3.6 XML Schema Validation as Protection for XSW Attacking XML Signatures

3.6 XML Schema Validation as Protection for XSW

Another more general approach for defending XSW is using XML Schema validation as
shown in (34).

The general idea of XML Schema validation is to constrict the XML document in such
a way, that an attacker can not find any possible position to place his wrapper element.
This does not directly affect the XML Signature verification process – it is only started
if the Schema validation was successful.

The main problem of this approach is its difficulty to apply it on SOAP based web
services. The SOAP standard Schemas use the <xs:any/> property which allows an
element to have any kind of child elements. Obviously, this is not compatible with the
idea to constrict the whole XML document.

As a solution, the authors of the paper introduced the idea of Hardened Schemas, which
remove all <xs:any/> declarations and embed SOAP extensions, like WS-Security and
XML Signature.

Unfortunately, this procedure is not standard compliant, so that it must be explicitly
integrated in the web service.

31/ 82

Algorithms

4 Algorithms for Automatic XML Signature

Wrapping

The previous section showed different techniques for attacking XML Signatures and
examples for the construction of XSW messages in different scenarios. In the follow-
ing, algorithms for creating such messages with arbitrary XML documents as input are
presented. The goal consists in combining these algorithms to create one generic algo-
rithm which just uses any signed SOAP message as input and creates reasonable XSW
messages out of it.

4.1 Terminology

For understanding the algorithms described in the next sections, three important terms
must be introduced.

. The signed element is the root element of the hashed subtree. When using ID
references, it is the element which has the matching attribute. In case of an XPath
reference, it is commonly defined by its last step.

. The payload element replaces the signed element. This element will be used by
the application logic. Note that it is also possible to use a different element name
than the one of the signed element and try to let the application logic use it.

. The wrapper element is the element which holds the signed element, but is located
at a different position within the XML document. In some cases, the name of the
wrapper element is the same as the name of the signed element, meaning, no real
Wrapper element is used.

If the attack is successful, the payload element replaces the signed element, which is
then located in the wrapper element as shown in Figure 15.

32/ 82

4.2 Complexity Algorithms

soap:Envelope

soap:Header

soap:Body

SignedElement

soap:Envelope

soap:Header

ns:Wrapper

SignedElement

soap:Body

PayloadElementPayloadElement

Input Message

User Input

XSW Message

Figure 15: Terminology of signed element, payload element and wrapper element.

4.2 Complexity

First of all, the complexity of XSW must be analyzed. The example attacks in Section 3
showed only one specific XSW message. However, for creating this message, a lot of
decisions have been made. Thus, there is not just one possible attack message, in fact,
the number of possibilities is very high. Figure 16 gives an overview about the complexity
of creating such XSW messages.

SOAP
Message

XML
Signature Reference

XPath
Expression

Matched
Elements

XPath
Weakness

Wrapper
Position

Additional
Adjustments

0, . . . , n 1, . . . , n

0, .
. . ,

n

1, .
. . ,

n

0, . . . , n 0, . . . , n

0, . . . , n

0, . . . , n

Figure 16: XSW complexity overview. There are a lot of one-to-many relationships, e.g.
a Reference element can have multiple XPath expressions. This results in a
huge number of possible XSWmessages for one and the same input document.

In general, an XSW message places one wrapper element for each signed element, but
in detail, it looks like the following:

. One SOAP message can have multiple XML Signatures.

. Each Signature element has at least one Reference element.

33/ 82

4.3 Transforming ID References to XPath Expressions Algorithms

. A Reference element can have a URI to select the signed element by its ID at-
tribute. However, it can also use multiple XPath expressions.
→ If it uses XPath expressions, each one can match multiple elements, so that

each one must be re-positioned (wrapped) in the XML document.
→ One XPath can have multiple weaknesses and the attack abuses one of them,

see Section 4.6.
. At least, if an element for placing the wrapper is found, there are several possibil-

ities for doing this, e.g. the wrapper can be placed as the first child or any other
child position.

. As a post processing step, there might exist some additional adjustments, e.g.
change the value of an ID attribute.

This summary clarifies, that the number of possible XSW messages increases with each
of these steps. Even small messages with only one signed element can have hundreds of
alternative attack messages. Nevertheless, all these possibilities are deterministic. This
allows to create an algorithm which can return the maximum number of possibilities
and each of them can be accessed by its index.

4.3 Transforming ID References to XPath Expressions

The transformation of the ID referencing method to an XPath equivalent is an important
fact for creating an XSW algorithm. As shown in Section 3.3, an XML Signature, which
accesses the signed element by the attribute wsu:Id=’signedID’, can be transformed
to the XPath expression //∗[@wsu:Id=’signedID’]. Both methods select the same
element, but this transformation can simplify the building of wrapping attack messages.
Instead of creating two algorithms – one for handling ID references and one additional
for XPath references – only the latter is necessary. Thus, in the following, this thesis
will concentrate on attacking XPath referencing XML Signatures.

4.4 Handling Timestamps

Timestamps are used to specify a time slot for a SOAP message. If it is expired, the
message is rejected. The basic structure of a WS-Security Timestamp element can be
seen in Figure 17.

34/ 82

4.5 Analyzing XML Schema Algorithms

wsu:Timestamp

wsu:Created

2012-03-28T12:52:33.360Z

wsu:Expires

2012-03-28T13:17:33.360Z

Figure 17: A sample Timestamp element.

If such an element is signed, the XSW attack should detect it and automatically use an
updated, valid timestamp as the payload element. Therefore, the format must be kept,
i.e.:

. Compute the lifetime of the timestamp as the difference of Expires and Created.

. The standard allows a timestamp to use milliseconds. The payload must keep this
format if it is used.

Afterwards, the payload element can be easily created and use the same format, so that
the server application can not distinguish it from a regular timestamp.

4.5 Analyzing XML Schema

The complexity of creating XSW messages mentioned in Section 4.2 showed that in
general there are many possibilities to place a wrapper element. However, not each
position makes sense, e.g. placing the wrapper as a child of the SignatureValue element
invalidates an XML Signature. Those positions can be statically ignored, but another
problem appears if the web service validates XML Schema. Wrapper elements at wrong
positions will cause the SOAP request to raise a Schema validation error. Therefore, it
is important to create Schema-valid SOAP messages, as they will be accepted no matter
whether the web service uses a Schema validator or not.

Section 3.6 showed that the xs:any property of elements can be used to place wrapper
elements. Suppose an attacker who wants to create an XSW message out of an arbitrary
input document. Then, he has to answer the question, where to put the wrapper element,
if the XSW message should remain Schema valid. The following algorithm will return a
list of elements which allows to place xs:any child elements below a specified element
in the XML document.

35/ 82

4.5 Analyzing XML Schema Algorithms

Algorithm 1 (XML Schema Analyzer)

Input: . Element x which is highest possible wrapper position.
. XML Schema definition files. Files for SOAP, XML Security, . . . , can

be set as default.
Output: List L of allowed extension points.

1. Initiate the list of allowed extension points L with an empty list.
2. If x has the xs:any property, then append x to L.
3. For any child element y of x in the working document or in the XML Schema

definition:
. Go to Step 2 with x← y.

The idea of the algorithm is to search recursively for elements which allow any child
elements. It is notable, that the algorithm does not only look for elements in the working
XML document. If the Schema allows an element to have one specific child element,
which is currently not present in the document, it will also be used to look for the xs:any
property.

As an example, consider the following XML Schema, which is notated as a grammar for
simplicity.

. A→ B+ C

. B→ any + D+ E

. E→ any

. C→ F+ any

The Schema analyzer algorithm is now used to find extension points for the XML doc-
ument on the left side of Figure 18.

36/ 82

4.5 Analyzing XML Schema Algorithms

A

B

D

C

F

A

B

any

D

E

any

C

F

Analyze Schema for B

Figure 18: Example for the Schema analyzer algorithm.

Suppose that the attacker wants to place the wrapper element somewhere below the
element B. Note that the attacker could also ask for extension points below the root
element. This is what he would usually do for ID based references, but some XPath
expression, e.g. /A/B//∗[@ID=’signed’] need extension points at different positions.
The algorithm then processes the following steps:

1. L = {}, x← B (Initialization)
. x = B has xs:any property with rule B→ any + D+ E

⇒ L = {B}
2. y ← D (from input document).

. No more rules for D.
3. y ← E (from rule B→ any + D+ E).

. x = E has xs:any property with rule E→ any

⇒ L = {B, E}

The algorithm found two possibilities for placing a wrapper element. The first possibility
is placing it as a direct child of element B. The second possibility needs to create the
element E as a child of element B. Note that this element is not part of the input
document. Its validity is only defined in the XML Schema.

A use-case for this scenario is the Object element in an XML Signature. The XML
Signature Schema definition allows this element to occur as a child of the Signature

element. Commonly, this can be used to store the signed content of a classical XML
document, which is called an enveloping signature. However, in the case of SOAP
messages, detached signatures are commonly used, which means, that the signed object

37/ 82

4.6 XPath Weakness Algorithms Algorithms

is located outside of the Signature element. If the XML Schema definition is searched
only for elements which are allowed and available in the current working document, the
Object element can not be found.

4.6 XPath Weakness Algorithms

The XPath grammar is a very powerful language. In Section 3, multiple techniques for
creating XSWmessages are presented. As shown before, an ID based XML Signature can
be treated as if it references the signed object by an XPath expression, see Section 4.3.
Thus, for creating such XSW messages, only attacks on XPaths are relevant. The
following sections will present algorithms which abuse a specific aspect of an XPath
expression to create an XSW message.

4.6.1 Attribute Weakness

An XPath expression can select a node by its attribute name and value. However, this
does only mean that the signature verification logic uses this attribute to detect the
signed object. It does not mean that the application logic does the same – maybe it just
checks, if an attribute with the same name is present, but does not check, if it has the
same value. It is also possible that the application logic does not verify the attribute’s
presence at all.

Suppose an attacker who wants to create an XSW message for the input message shown
on the left side of Figure 19, which is signed with the XPath given by Listing 9. Note
that the Signature element is omitted in the figure for simplicity.

/soap : Envelope/soap : Header/ns : Order[@num=’1’]/ns : Shipping

Listing 9: Example XPath which uses an attribute to select a node.

38/ 82

4.6 XPath Weakness Algorithms Algorithms

soap:Envelope

soap:Header

ns:Order

ns:Shipping

Signed Content

soap:Body

Operation

ns:Shipping

Attacker Content

num=’1’

Figure 19: Example message to use for the XPath of Listing 9. The payload element is
located on the right side.

If the attacker wants to create a classical XSW message (see Section 3.3, Figure 12), he
first has to find the element which is selected by the XPath step that uses the attribute
expression. This element will be called the signed post part element SPP .

In the example, the SPP element is the Order element, because it is matched by the step
ns:Order[@num=’1’]. Note that the attribute expression does not select the signed
element (the Shipping element) directly – it only specifies one of its ancestor elements,
the Order element.

Generally, the signed post part element SPP can be detected by Algorithm 2.

Algorithm 2 (Signed Post Part by PreXPath)
Input:
. The signed element S.
. An XPath step x.

Output: The signed post part element SPP .
1. Evaluate the extended PreXPath of step x to get a list of matchesM.
2. For each match m inM:

. If m is an ancestor of S, return SPP ← m.

The algorithm evaluates the extended PreXPath to find elements which are matched by
the input XPath step x. The for loop is then used to identify which one of those matched
elements is the ancestor of the signed element – this is the signed post part element
SPP . It would also be possible to find this element by the PostXPath. Therefore, one
has to start at the signed element and evaluate the PostXPath. If it matches, the signed

39/ 82

4.6 XPath Weakness Algorithms Algorithms

post part element is found. Otherwise one has to retry with its parent element, until a
match is found. However, as this method requires multiple XPath evaluation, the former
method is used.

To apply Algorithm 2 to the example input message, one has to set S ← Shipping and
x = ns:Order[@num=’1’]. Note that in this case,M does only contain one element:
Order, which is an ancestor of S.

The next step is to create the payload post part element PPP . This is shown in Fig-
ure 20.

ns:Order

ns:Shipping

Signed Content

ns:Shipping

Attacker Content

num=’1’

ns:Order

ns:Shipping

Attacker Content

num=’1’

Signed Post Part

Payload

Payload Post Part

Figure 20: Creating the payload post part.

It can easily be seen, that for the example attack message, the payload post part is
created by using the payload element Shipping and adding the Order element as its
parent node. For generic messages, this is realized by Algorithm 3.

Algorithm 3 (Payload Post Part)
Input:
. The signed post part element SPP .
. The signed element S
. The payload element P .

Output: The payload post part element PPP .
1. Create a deep copy of SPP =: tmp.
2. Replace the corresponding S in tmp, which is a descendant of SPP or it is
SPP itself, with P .

3. Return PPP ← tmp.

40/ 82

4.6 XPath Weakness Algorithms Algorithms

Putting all together, the XPath attribute weakness algorithm has the following flow:

Algorithm 4 (XPath Attribute Weakness)
Input:
. The signed element S, and the whole XML document where it is located.
. The payload element P . It is not part of the input document.
. The XPath attribute expression N = V with attribute name N and its

value V . It is a part of the step x, which belongs to the XPath used to
select S.

Output: An XSW message.
1. Detect the position of the signed post part element SPP by using Algo-

rithm 2 with input S and x.
2. Create the payload post part element PPP by using Algorithm 3 with input
SPP , S and P .

3. Place the PPP element as a sibling of the SPP element.
4. Change the attribute N of the PPP element. There are three possibilities:

4.1. Remove the whole attribute N from PPP .
4.2. Change the value V to an arbitrary value.
4.3. Leave N = V as it is.

The created XSWmessage can be seen in Figure 21. The three possibilities are analogous
to Algorithm 4.

soap:Envelope

soap:Header

ns:Order

ns:Shipping

Attacker Content

ns:Order

ns:Shipping

Signed Content

soap:Body

Operation

num=’1’

num=’2’

num=’1’

1. rem
ove

2. change value

3. keep value

Figure 21: XSW message for Figure 19 after Algorithm 4.

41/ 82

4.6 XPath Weakness Algorithms Algorithms

However, the algorithm itself offers even more possibilities. The PPP element could
also be placed after the SPP element. The more siblings the SPP element has, the
more possibilities exist, as shown in Section 4.2.

4.6.2 Descendant Weakness

XPath expressions can select nodes which are located anywhere below a specified el-
ement. This feature is realized by using the descendant-* axis selection, as shown in
Section 2.5.1. However, when using such a function in the context of XML Signature,
an attacker can try to use the following technique to create an XSW message.

As an example, suppose the XPath in Listing 10 and the SOAP request of Figure 22.

/soap : Envelope//ns : Operation/ns : Signed

Listing 10: Example XPath which uses the descendant-or-self axis to select a node.

soap:Envelope

soap:Header

ds:Signature

soap:Body

ns:Operation

ns:Signed ns:Payload

Figure 22: Example message to use for the XPath /soap:Envelope//ns:Operation/ y
ns:Signed. The attacker is going to include the payload element on the right
side.

The main problem is that the protected subtree does not contain every element on the
path from the document root down to the signed element as a step in the given XPath
expression. The element Body is not a part of it. Thus, the attacker can split the
expression at the descendant step named x into the PreXPath /soap:Envelope and the
PostXPath ns:Operation/ns:Signed. Obviously, both are part of the protected subtree,
so the attacker has to keep their structures. Figure 23 visualizes which part of the
document is selected by those XPath parts.

42/ 82

4.6 XPath Weakness Algorithms Algorithms

soap:Envelope

soap:Header

ds:Signature

soap:Body

ns:Operation

ns:Signed

/soap:Envelope

/ns:Operation

/ns:Signed

/descendant-or-self

↪→ Here: the Body element

Figure 23: Visualization of the protected parts.

Commonly, an attacker knows the position of the signed element S, which is the Signed
element in this case. For finding this element, he only has to evaluate the whole XPath
expression. However, he needs to find the signed post part element SPPpost, in this case
the Operation element, which is the highest element selected by the PostXPath. For
detecting it, there are again the same two possibilities as mentioned in Section 4.6.1.
Thus, Algorithm 2 with the signed element S and the first step after the descendant-*
step x can be used as input parameters.

Applying this algorithm to the example, the ns:Operation step is used and internally
expanded to the extended PreXPath /soap:Envelope//ns:Operation, so that the correct
Operation element is found.

Additionally, the signed post part element SPPpre, matched by the PreXPath must be
detected. In this case, it is obviously the Envelope element. Furthermore, it can be
identified by using Algorithm 2 with the signed element S and the first step before the
descendant-* step x as input parameters. The attacker then knows that he has to place
the wrapper element, which must contain the SPPpost element Operation, somewhere
below the SPPpre element Envelope.

The next step is to decide where to place exactly the SPPpost element Operation. To
reduce the number of possibilities, the attacker can try to create an XML Schema valid
XSW message. Therefore, he can use Algorithm 1 with the SPPpre element Envelope
as input to get a list of extension points, i.e. L = {Header, Body, Object, . . . }. Note
that for this result, the SOAP request is assumed to use version 1.2. For version 1.1,
the Envelope element itself would be contained, too. Note that the Object element is
defined in the XML Signature Schema, but the element itself is not yet contained in
the input document. The attacker then has to choose E as one of those possibilities,

43/ 82

4.6 XPath Weakness Algorithms Algorithms

e.g. E ← Object. As this element does not exist yet, it has no child elements, thus,
the attacker determines to put the wrapper element as the first child of the Object

element.

Afterwards, the attacker has to decide if a special wrapper element should be used. This
is shown in Figure 24.

E

Allows xs:any child element

Property:
processContents

Property:
namespace

Create wrapper with
available XML Schema

Optional
ns:wrapper

Create wrapper with
different namespace

is strictis skip
or is lax

is ##other
and
namespace(E)

=
namespace(SPPpost)

is ##any

. . .

ns1:E

ns2:Wrapper

ns1:SPPpost

. . .

E

e.g. soap:Header

SPPpost

. . .

ns1:E

ns1:SPPpost

. . .

ns1:E

Wrapper

ns1:SPPpost ;

Figure 24: Overview of XML Schema properties and their influence for creating wrapper
elements.

An attacker needs to create a specific wrapper in the following two scenarios:

1. The XML Schema has the property namespace="##other" for the element E and
the SPPpost element uses the same namespace as the element E . In this case, there
must be inserted a wrapper element between E and SPPpost which has a different
namespace.

2. If the Schema definition for the element E has the property processContents=

"strict", the XML Schema definition for the child element must be available. As
a trick, one can insert a soap:Header element, whose Schema definition is always
present.

44/ 82

4.6 XPath Weakness Algorithms Algorithms

In the example, the element E = Object has the properties processContents="lax"

and namespace="##any", so that there are no restrictions and the attacker does not
need to create a special wrapper element. Note that in some scenarios, both restrictions
may occur and the wrapper element must fulfill them all. Nevertheless, for didactic
reasons, the example attacker decided to use an ns:Wrapper element W . Thereafter,
the attacker places the wrapper element W (ns:Wrapper) as a child of the element E
(ds:Object). The signed element is now relocated.

The last step is to create the payload post part element PPP . Therefore, Algorithm 3
can be used with input SPPpost, S and the payload element P . Afterwards, the PPP
element is moved to the exact position, where the SPPpost element was moved from.
The final XSW message can be seen in Figure 25.

soap:Envelope

soap:Header

ds:Signature

ds:Object

nsatk:Wrapper

ns:Operation

ns:Signed

soap:Body

ns:Operation

ns:Payload

SPPpre / signed post part by PreXPath

E / extension point

W / (optional) wrapper element

SPPpost / signed post part by PostXPath

S / signed element

PPP / payload post part

P / payload element

Figure 25: Final XSW message which abuses the XPath descendant-* axis.

All in all, Algorithm 5 summarizes the previous steps for creating an XSW message by
abusing the XPath descendant-* axis.

45/ 82

4.6 XPath Weakness Algorithms Algorithms

Algorithm 5 (XPath Descendant Weakness)
Input:
. The signed element S, and the whole XML document where it is located.
. The payload element P . It is not part of the input document.
. The XPath descendant step x, which belongs to the XPath used to select
S.

Output: An XSW message.
1. Detect the signed post part element SPPpost by Algorithm 2 with input S

and next_step(x).

2. Detect the signed post part element SPPpre by using Algorithm 2 with
input S and previous_step(x).

3. Place the wrapper by the following steps:
. Get a List L of Schema weaknesses by using the Schema Analyzer

Algorithm 1 with input x = SPPpre.
. Choose one element E of L. If it is not contained in the current docu-

ment, it must be created at the defined position.
. Choose i ∈ {0, . . . , number_of_child_elements (E)}.
. Detect if a special wrapper element is necessary. If true, setW to this

element, otherwise set W ← SPPpost.
. Place the wrapper W as the i-th child of element E .

4. Create the payload post part element PPP by using Algorithm 3 with input
SPP , S and P .

5. Place PPP at the old position of SPPpost

This algorithm itself does only abuse the descendant-* weakness. When attacking real
web services, there might be XPath expressions which contain additional attribute ex-
pressions. A common example might be a transformed ID reference, e.g. //∗[@ID y
=’signed’. For creating an XSW message in such scenarios, the attribute weakness
shown in Section 4.6.1 must be applied afterwards. Note that in such cases, the al-
gorithm must not duplicate the signed post part element, as this is processed by the
descendant weakness algorithm. It only needs to adjust the attribute values of the SPP
and the PPP elements.

46/ 82

4.6 XPath Weakness Algorithms Algorithms

4.6.3 Namespace Injection Attack

The last included XPath weakness algorithm uses the namespace injection technique.
This one has – compared to the attribute- and the descendant weakness – some more
prerequisites:

1. The XPath step x uses a prefix ρorg = uriorg.
2. The XML Signature uses Exclusive Canonicalization.
3. The prefix ρorg is not protected by the XML Signature.
4. The step x is not the first step.

The first prerequisite is obvious – the namespace injection attack needs the presence
of a prefix. The second one is a bit special. While the other presented attacks do not
depend on any special XML Signature characteristic, the namespace injection attack
requires the usage of Exclusive Canonicalization. This is fundamental, as the attack
directly manipulates the hashed subtree. Nevertheless, those changes do not affect its
canonicalized form – the signature will remain valid. Additionally, the prefix ρorg must
not be protected by the XML Signature, because the idea of this attack is to insert a
namespace declaration in an element, e.g. the xf:XPath element. Every prefix, that is
not used, will be removed be the Exclusive Canonicalization. Thus, the only declaration
kept in this element will be the xf prefix, so this one can not be overwritten. However,
this will be no restriction in most cases. The last requirement is that the step x must
not be the first step, as the namespace injection attack will double the element matched
by this step. This is simply not possible for the root element of a SOAP request.

The formal procedure for the namespace injection attack is shown in Algorithm 6.

47/ 82

4.6 XPath Weakness Algorithms Algorithms

Algorithm 6 (Namespace Injection Weakness)
Input:
. The signed element S, and the whole XML document where it is located.
. The payload element P . It is not part of the input document.
. The XPath step x, which belongs to the XPath used to select S. It uses a

prefix ρorg which belongs to the namespace URI uriorg.
Output: An XSW message.

1. Detect the position of the signed post part element SPP by using Algo-
rithm 2 with input S and x.

2. Create the payload post part element PPP by using Algorithm 3 with input
SPP , S and P .

3. Insert PPP as a sibling of SPP .

4. Choose an injection prefix ρatk and its corresponding URI uriatk.
5. For SPP and each child element of SPP , do:

. If the element uses prefix ρorg and uriorg, then change it to ρatk and
uriatk.

6. Locate the xf:XPath element of the used XPath within the input document.
Insert the namespace declaration ρorg = uriatk.
It is also possible to insert this declaration in one of its ancestors but before
the original declaration ρorg = uriorg is defined.

The first steps are similar to the other algorithms. The attacker has to detect the signed
post part element SPP and then creates the payload post part element PPP . After-
wards, the PPP element is inserted as a sibling of the SPP element. Note that there
are again two possibilities for doing this, namely before and after the SPP element.

In the next phase, the attacker must inject the namespace declaration. Therefore, he
chooses his attacker namespace ρatk and the corresponding uriatk. Then he searches for
every occurrence of the original prefix ρorg in the SPP element and all of its descendants.
If a match is found, the prefix is replaced with the attacker prefix ρatk and the namespace
URI is also changed to the attacker URI uriatk.

The last step is to insert the namespace declaration ρorg = uriatk. Note that this will map
the original prefix ρorg to the URI uriatk, which is defined by the attacker. Thus, this
declaration must be placed in the xf:XPath element, because the signature verification

48/ 82

4.7 High Level Algorithm Algorithms

logic will start at this element to resolve the prefix ρorg. There are still more possible
positions for placing this declaration. As the namespace resolution process will start
searching for the prefix declaration in the xf:XPath element, going upwards if nothing is
found, it could also be declared in one of its ancestors. The only restriction to this is, that
it must not overwrite the original declaration. If, e.g. ρorg = wsse and uriorg is the URI
of WS-Security, the ρatk URI must be declared as a descendant of the wsse:Security

element. Otherwise, the signature verification logic will not find the ds:Signature

element, because the namespace for the wsse:Security element has changed.

4.7 High Level Algorithm

The previous sections described algorithms for creating XSW messages for specific sce-
narios. Algorithm 7 merges those techniques to one general procedure.

Algorithm 7 (XSW Algorithm)
Input: Signed SOAP request.
Output: One possible wrapped message.

1. Analyze the message:
. Detect signed parts.
. Offer a payload for each part (user interaction required).
→ Take care of Timestamp elements and update them automatically

as shown in Section 4.4.
2. For each pair of signed- and payload element,

detect where to move the signed part:
. If referenced by ID, convert it into an XPath as shown in Section 4.3.
. Analyze the XPath:
→ If it uses an attribute expression,

use the attribute weakness Algorithm 4.
→ If it uses descendant-* step,

use the descendant weakness Algorithm 5.
→ If it uses prefixes and the other prerequisites mentioned in Sec-

tion 4.6.3 are fulfilled, use namespace injection attack Algorithm 6.

The high level algorithm needs to identify all signed parts within the SOAP requests.
For each one, a payload element must be offered – the attacker has to set this element to

49/ 82

4.7 High Level Algorithm Algorithms

the content he wants to execute. Afterwards, the algorithm needs to move each signed
document part to its wrapper position. Therefore, each signed part is inspected. If it
is accessed by an ID reference, it will be transformed to an XPath reference. Note that
this transformation is not really applied to the concrete SOAP request – it is rather
handled internally. Then, the used XPath is analyzed. If a specific part is used, e.g. the
descendant-* axis, the corresponding algorithm is applied.

The algorithm’s final output is one XSW message, which has relocated all signed parts
to another valid location within the input document. Additionally, all payload elements
have taken the original position of the signed parts. Then, this message can be sent to
the concrete web service for testing if it is accepted, which means that the signature
is valid, contained timestamps are not expired and the custom payload is used by the
application logic.

50/ 82

Implementation

5 Implementation

The following section will discuss the design decisions made for implementing the algo-
rithms of Section 4. The goal is to create an automatic penetration test tool for detection
of XSW attacks in web services. The tool will analyze the message, identify the signed
parts and relocate them within the SOAP request. Additionally, the user is asked to set
the payload for each signed element and the tool will put it on the original position of
the signed element, so that the application logic will hopefully use it.

5.1 Components

In this section, the basic components for building the XSW tool will be presented. The
tool is autarkic, so that it could be easily integrated into any framework or even be used
as a standalone application.

5.1.1 Signature Manager

The signature manager is the binding component between the XML Signature and the
input XML document. The XSW components are independent of the SOAP standard
(although the examples shown before always used SOAP messages for understandabil-
ity), but as the goal is to create SOAP XSW messages, there must be a component
which connects the SOAP characteristics to the XSW tool:

A signed SOAP request can have an arbitrary number of signed parts, e.g. by ID refer-
ences or XPath expressions. For creating an XSW message, those have to be identified
and for each part, a payload element must be created. This is the task of the signature
manager as shown in Figure 26.

51/ 82

5.1 Components Implementation

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference #1

ds:Reference #2

ds:Reference #3

soap:Body

ns:Operation

SOAP Request

Signaturemanager

ds:Reference #1 PayloadElement #1

SignedElement #1

XPath #1

ds:Reference #2 PayloadElement #2

SignedElement #2

XPath #2

ds:Reference #3 PayloadElement #3

SignedElement #3

XPath #3

Figure 26: Task overview of the signature manager (simplified). A signed SOAP mes-
sage can have multiple signed elements. Each one is accessed by a specified
referencing mechanism, e.g. an XPath, and needs a payload for the attack
message.

The signature manager takes a SOAP message as input. It searches for the Signature

element and identifies its Reference elements. Additionally, it saves a payload element
which corresponds to the signed element. It is initialized by a copy of the signed element,
but can later be configured by the user.

Note that Figure 26 gives a slightly simplified structure of the signature manager. A
Reference element of an XML Signature can select more than one signed element by
using XPath expressions, especially when combining them with set-operations as shown
in Section 2.6.3. In such cases, the signature manager will identify all of them and
offer one payload for each. If the signed element is referenced by an ID attribute, the
signature manager can transform it into an XPath expression as shown in Section 4.3.

5.1.2 XPath Parser

An essential part for analyzing XPath expressions is to be able to access all specific parts
of it. Therefore, a parser has been built which gets an XPath string as an input and
processes it, so that an object hierarchy as show in Figure 27 is available.

52/ 82

5.1 Components Implementation

AbsoluteLocationPath

RelativeLocationPath

Step

AxisSpecifier

AxisName NodeType NodeName

Predicate

OrExpression

AndExpression

1
1

1
n

1
1

1
1

1
0. . . 1

1
0. . . 1

1
n

1
n

1
n

Figure 27: Splitting an XPath into its parts.

An XPath expression consists of various parts. They are associated in different relations.
Some are one to one, others are one or zero to many. In such cases, they are accessible
as a list.

An additional important aspect for parsing XPaths is, that some function can be ab-
breviated. The descendant−or−self axis, e.g. can be shortened by //, an attribute is
accessible by attribute :: name or @name. This is the task of the XPath parser.

5.1.3 XPath Analyzer

The XPath analyzer is a bundle of concrete implementations for creating XSW messages.
The algorithms presented in Section 4 are used for attacking XPath attribute expressions
(Section 4.6.1), the descendant-* axis selection (Section 4.6.2) and creating namespace
injection messages (Section 3.5).

As shown in Section 4.2, the complexity of creating XSW messages is very high, even
for small messages. Thus, it is very important to be able to create one specific XSW
message out of a huge number. This is realized by a two phases approach:

1. During the analysis phase, the input message is processed and for every decision,
a counter is introduced.

2. When it comes to the apply phase, index parameters are used to determine which
decision should be used.

53/ 82

5.1 Components Implementation

The analysis phase does the main work. The message is completely processed, but
instead of creating a real XSW message, this phase just has to identify which possibilities
are available. Consider that the wrapper element should be placed somewhere below an
element E . Let element E have n = 3 child elements. Then there are n+ 1 = 4 possible
positions for placing the wrapper element. There are also some static possibilities, e.g. for
the attribute weakness, the attribute in the payload post part element can be untouched,
changed or completely removed – so there are always three possibilities.

All these counters can be combined to compute the total number of possibilities. Ev-
ery weakness implementation (attribute weakness, descendant weakness, namespace in-
jection weakness) and the XPath analyzer implementation itself has a method named
getNumberOfPossibilites() which returns this total number. In interaction with this pro-
cedure, the apply method abuseWeakness(int i) can then be used to create one specified
XSW message.

The final penetration test tool will have to use all of these possibilities and send them
to the server. By using the two phases approach, the creation of XSW messages is very
fast, as the action consists only in walking down a decision tree and applying them.

5.1.4 Wrapping Oracle

The XPath analyzer has the task to wrap one signed part to another location and put the
corresponding payload within the message. The wrapping oracle is the implementation
of the high level Algorithm 7. It can be seen as an oracle, which gets a signed SOAP
message as input and outputs one possible XSW message, so it relocates each signed
element and places one payload for it.

54/ 82

5.2 Integration in the WS-Attacker Penetration Test Framework Implementation

Demultiplexer
i

XPath Anaylzer for Signed Element #1

XPath Anaylzer for Signed Element #2

...

XPath Anaylzer for Signed Element #n

j

k

l

Wrapping Oracle

Signed SOAP Message

Signature Manager

Index i

The i-th XSW Message

Figure 28: The wrapping oracle.

As an additional parameter, the wrapping oracle needs a reference to the signature
manager. This is essential, as the signature manager holds the payload elements. The
last parameter specifies the index, which XSW message should be created. Internally,
the index parameter is split to many indexes by a demultiplexer and forwarded to the
single XPath analyzer instances as shown in Figure 28. Consequently, the wrapping
oracle also has a method getNumberOfPossibilites() which returns the total number of
possible XSW messages.

5.2 Integration in the WS-Attacker Penetration Test Framework

WS-Attacker is a modular framework for web services penetration testing (9). It is open
source and the code is available on sourceforge6, a free web-based code repository.

5.2.1 WS-Attacker Overview

The basic workflow of the WS-Attacker framework can be seen in Figure 29.

6http://sourceforge.net/projects/ws-attacker/

55/ 82

http://sourceforge.net/projects/ws-attacker/

5.2 Integration in the WS-Attacker Penetration Test Framework Implementation

Load a WSDL

Select an Operation

Generate Request Content

Submit a Test Request

Configure Attacks

Start Attacks

Present Results

Attack Plugin 1

Attack Plugin 2

Attack Plugin n

Holds n Plugins

Framework Plugin Architecture

WS-Attacker

Figure 29: WS-Attacker general overview.

Its task is to load a WSDL. Afterwards, the user selects the operation to attack and the
framework generates the basic request content, which has to be adjusted by the user, e.g.
by setting the correct request parameters. Then, the user sends a test request to the web
service and the response is saved to determine the normal state of the server. Hereafter,
the user selects and configures the attack plugins. Each attack plugin represents one
attack on a web service. Currently, there are two plugins maintained with the framework
– one for SOAPAction Spoofing7 and one for WS-Addressing Spoofing8. After selecting
the attacks, the framework can run them one after another. Each attack will generate
different outputs, e.g. log entries, and display whether the attack was successful. This
is indicated by two facts:

1. A boolean value is used to show if the attack was successful in general.
2. An integer rating indicates the impact of the attack. Consider, e.g., a denial of

service attack. The attacked server could be unavailable for just some minutes, or
completely with the need to reboot.

7http://clawslab.nds.rub.de/wiki/index.php/SOAPAction_Spoofing
8http://clawslab.nds.rub.de/wiki/index.php/WS-Addressing_spoofing

56/ 82

http://clawslab.nds.rub.de/wiki/index.php/SOAPAction_Spoofing
http://clawslab.nds.rub.de/wiki/index.php/WS-Addressing_spoofing

5.2 Integration in the WS-Attacker Penetration Test Framework Implementation

5.2.2 Concrete Integration: Building the XSW Plugin

The main work for building an XSW plugin is done by the wrapping oracle, see Sec-
tion 5.1.4. The oracle is able to use a signed SOAP request for creating the attack
messages. It also has a method which returns the maximum number of possible attack
messages. Those must be sent consecutively to the web service and the response has to
be inspected for a successful attack. The basic idea for this can be seen in Figure 30.

WS-Attacker

XSW Plugin

Wrapping Oracle

Web Service

Signed SOAP Message

ask for i-th XSW Message give i-th XSW Message

Send first XSW Request

Response

Successful?
No

...

Send i-th XSW Request

Response

Successful?
Yes

Figure 30: Integration of the XSW plugin.

An unanswered question is: How does the plugin come to know if the request is accepted
by the application logic? At first glance, this seems to be very easy. The response of
the web service must only not contain a SOAP error. However, when dealing with XSW
messages, there is an additional problem. Every request sent to the server contains two
payloads. The first one is the originally signed element, the other one is the payload
element defined by the attacker/framework user. The plugin must be able to distinguish,
which of them is used by the application logic. If the plugin would consider every non
SOAP error response to be a successful attack, the web service could execute the original
signed element and ignore the attacker’s payload. Obviously, this is not a successful
attack. To solve this problem, the user can simply define a characteristic string, which

57/ 82

5.2 Integration in the WS-Attacker Penetration Test Framework Implementation

must be contained in the SOAP response. Only in such cases, the attack is counted as
successful.

Furthermore, the WS-Attacker requires an attack plugin to rate its impact. This is
implemented as follows:

0% : The web service uses transformed prefix-free FastXPath.

10% : The web service uses FastXPaths.
20% : There are multiple reasons for this:

. The web service uses XPaths, but could not be successfully attacked.

. The web service uses both, ID References and XPaths.

. The web service uses ID References but could not be successfully attacked.
100% : The web service could be successfully attacked.

Although the attack is only assessed to be successful if 100% are reached, the other
ratings are used to give a general overview on the usage and integration of XML Signature
into the web service.

The best rating from the view of a web service can only be reached if the signature uses
prefix-free XPath expressions as described in Section 3.5. This is the only referencing
method for which no attacks are currently published. 10% is given if the server uses
FastXPath expressions. The only known attack for this is the namespace injection
attack, which is also implemented into the XSW plugin. Note that a FastXPath is not
vulnerable in general, see the prerequisites in Section 4.6.3. The rating of 20% is used to
indicate interesting facts to the user if the attack was not successful. One example for
this are complicated XPath expressions. The XSW plugin does not cover all functions
of the XPath grammar – only the most important ones are handled. If the contained
expression uses such functions, the automatic plugin might not be able to attack the web
service although it could be vulnerable by a clever manual penetration tester. The plugin
also notifies the user if the signature uses ID references. In general, they are attackable,
unless there are no other security enforcements, e.g. a special WS-SecurityPolicy or an
XML Schema parser. So if IDs are used, but the plugin could not successfully attack
the web service, the user might be interested in this fact.

58/ 82

Evaluation

6 Evaluation

The evaluation for the automatic creation of XSW messages is split into two parts. At
first, the general implementation of the wrapping oracle is used in Section 6.1 to build
some XSW messages and validate them with standard Java methods. Secondly, the
WS-Attacker XSW plugin is used for attacking three different web service framework
implementations in Section 6.2.

6.1 Practical Evaluation of the Implementation Correctness

For the practical evaluation of the implementation correctness, JUnit9 tests are used.
The general setup for a test is the following:

1. Generate a test SOAP request.
2. Sign the test request

. . . . using ID references.

. . . . using one or more XPath expressions.

. . . . using a combination of both.
3. Use the signature manager to set the payloads.
4. Create a wrapping oracle.
5. For each possible XSW message.

. Check if the signature is still valid.
Abort with success if this is true.

6. Abort with failure.

As an example, a simple SOAP request is signed. It is signed by the following XPath
expressions, which are applied by an XPathFilter2:

. //wsu:Timestamp[1]

. //ns1:payloadBody[@wsu:Id=’bodyToSign’]/ns1:signedElement[1]

The wrapping oracle will automatically detect the signed Timestamp element and update
it. One output XSW message is shown in Listing 11.

9http://www.junit.org/

59/ 82

http://www.junit.org/

6.1 Practical Evaluation of the Implementation Correctness Evaluation

1 <soap:Envelope xmlns:soap=" . . . ">
2 <soap:Header>
3 <!−− Timestamp used by Signature Verification Logic −−>
4 <wsu:Timestamp xmlns:wsu=" . . . ">
5 <wsu:Created>2011−11−28T21:01:12.100Z</wsu:Created>
6 <wsu:Expires>2011−11−28T21:06:12.100Z</wsu:Expires>
7 </wsu:Timestamp>
8 <ws s e : S e cu r i t y xmlns:wsse=" . . . ">
9 <!−− Attackers Payload for Timestamp Element:
10 It is just updated −−>
11 <wsu:Timestamp>
12 <wsu:Created>2012−04−30T13:29:42.826Z</wsu:Created>
13 <wsu:Expires>2012−04−30T13:34:42.826Z</wsu:Expires>
14 </wsu:Timestamp>
15 <ds :S i gna tu r e xmlns:ds=" . . . ">
16 <ds :S i gned In f o> . . .</ ds : S i gned In f o>
17 <ds :S ignatureVa lue> . . .</ ds :S ignatureVa lue>
18 <ds :KeyInfo> . . .</ ds :KeyInfo>
19 <!−− The Object Element is created by
20 analyzing the XML Schema −−>
21 <ds:Object>
22 <!−− Signed Body Element Wrapper −−>
23 <wsatk:wrapper xmlns:wsatk=" . . . ">
24 <ns1:payloadBody xmlns:ns1=" . . . ">
25 <ns1:signedElement>Original Content</ y

ns1:signedElement>
26 </ns1:payloadBody>
27 </wsatk:wrapper>
28 </ds:Object>
29 </ ds :S i gna tu r e>
30 </ws s e : S e cu r i t y>
31 </ soap:Header>
32 <soap:Body>
33 <ns1:payloadBody xmlns:ns1=" . . . ">
34 <!−− Attackers Payload is placed here −−>
35 <ns1:signedElement>ATTACKERCONTENT</ns1:signedElement>
36 </ns1:payloadBody>
37 </soap:Body>
38 </ soap:Envelope>

Listing 11: One output of the wrapping oracle.

In this message, the Timestamp wrapper element is placed as the first child of the
Header element. The signed body element is relocated in the Object element within the

60/ 82

6.2 Real World Scenarios Evaluation

Signature element. Note that the Object element was not part of the input message –
it is created by analyzing the XML Signature Schema.

The implementation contains a lot of more JUnit tests, which ensure the functionality of
all implemented algorithms, e.g. for the attribute weakness and the namespace injection
attack. They can be regarded in the source code.

6.2 Real World Scenarios

In this section, the XSW WS-Attacker plugin will be used for attacking Apache Axis2
in Section 6.2.1, the XSpRES library in Section 6.2.2 and the IBM DataPower XI50 in
Section 6.2.3.

6.2.1 Attacking Apache Axis2

As a first real-world scenario, the WS-Attacker penetration test framework uses the XSW
plugin to attack an Apache Axis2 web service. For ensuring integrity and authenticity,
the web service uses the Rampart security module (35, 36). The setup is based on the
sample02 10 distributed with Rampart and uses the simplified WS-SecurityPolicy given
by Listing 12.

1 <wsp:Po l i cy wsu:Id="SigOnly" xmlns:wsu=" . . . " xmlns:wsp=" . . . ">
2 <wsp:ExactlyOne>
3 <wsp:Al l>
4 <sp:AsymmetricBinding xmlns:sp=" . . . ">
5 <wsp:Po l i cy>
6 <sp : I n i t i a t o rToken> . . . </ sp : I n i t i a t o rToken>
7 <sp:Rec ip ientToken> . . . </ sp:Rec ip ientToken>
8 <sp :Algor i thmSui te> . . . </ sp :Algor i thmSui te>
9 <sp:IncludeTimestamp/>
10 <sp:OnlySignEntireHeadersAndBody/>
11 </wsp :Po l i cy>
12 </ sp:AsymmetricBinding>
13 <sp:Wss10 xmlns:sp=" . . . "> . . . </sp:Wss10>
14 <sp:SignedParts xmlns:sp=" . . . ">
15 <sp:Body/>
16 </sp:SignedParts>

10https://axis.apache.org/axis2/java/rampart/samples.html

61/ 82

https://axis.apache.org/axis2/java/rampart/samples.html

6.2 Real World Scenarios Evaluation

17 </wsp:Al l>
18 </wsp:ExactlyOne>
19 </wsp :Po l i cy>

Listing 12: WS-SecurityPolicy used for the evaluation of the XSW WS-Attacker plugin
for attacking Apache Axis2. The structure of the policy file is shortened to
the most important parts.

The policy requires the SOAP request to have the following security assertions:

1. It must have a valid Timestamp element.
2. The whole Body and the Timestamp element must be signed.

If such a message successfully bypasses the Rampart security module, the application
logic will use the element located in the Body and execute the corresponding operation,
which is a simple echo operation in this case.

Figure 31: Configuration of the XSW plugin within the WS-Attacker framework.

62/ 82

6.2 Real World Scenarios Evaluation

Figure 31 shows how to configure the plugin. There is an option for changing the SOA-
PAction parameter. This is useful if the attacker’s payload shall execute an operation
which is different to the basic request. The abort option allows the plugin to stop after
the first XSW message is accepted by the server. In this setup, the option is turned of
to get the total number of working attack messages. Furthermore, it is possible to select
XML Schema file for the Schema analyzer module. If the user does not upload any file,
the plugin uses the Schemas for SOAP, WS-Addressing, XML Signature, WS-Security
as default. It is also possible to not use any XML Schemas. This will lead to much more
possible XSW messages, as each wrapper element can be placed at arbitrary positions,
even at those where they are not allowed. The search option enables to specify a string
which must be contained in the response as described before. In this case, it is set to
the value specified in the payload element. There is also a Payload #2 element, which
can be selected by the drop-down box. It is automatically detected to be a Timestamp

element and will be updated during the attack (not visible on the screenshot).

63/ 82

6.2 Real World Scenarios Evaluation

Figure 32: Results of the XSW plugin.

The results of the final attack can be seen in Figure 32. The plugin detected that both
elements are referenced by ID attributes (this is not visible on the screenshot). The
server can be attacked, e.g. if the attacker moves the signed Body element to the Object
element within the Signature element and furthermore, he has to move the Timestamp
element to a custom wrapper element located in the updated, new Timestamp element.
The server response is not visible on this screenshot, but the user can change the logging
level to tracing by using the slider located on the top right to display it. In total, the
plugin detected that 1428 of 8317 attack messages were successful and each of them can
be inspected in detail in WS-Attacker’s attack overview window.

As an additional feature, the plugin offers the view button, which can be used to inspect
all possible XSW messages without sending them to the server.

64/ 82

6.2 Real World Scenarios Evaluation

Figure 33: Viewing all possible XSW messages.

Figure 33 shows this feature. It can be seen, that there are 8317 possible XSW messages.
This number has drastically been decreased by using the Schema analyzer. If the plugin
does not use it, there are 32401 possibilities. Although this number is much higher,
the 8317 messages created with respect to XML Schema is not a subset of the 32401
possibilities created without the Schema analyzer. The message shown in Figure 33
places a wrapper in the Object element, which is not contained in the input document,
thus, it can only be created when using the XML Schema analyzer.

The idea of this slider is to give the penetration tester the ability to create custom XSW
messages for manually attacking a web service. Note that if an attack was successful, the
possibility number can be seen on the info logging level. As this number is deterministic,
the slider can be used to create this message for a deeper, manual analysis.

65/ 82

6.2 Real World Scenarios Evaluation

6.2.2 Attacking XSpRES

XSpRES is a library for XML spoofing resistant electronic signatures (33). The authors’
goal was to create a module for Apache Axis2 which is able to create and verify XML
Signatures securely. It is built to resist all known attacks, including the attribute weak-
ness (see Section 4.6.1), the descendant weakness (see Section 4.6.2) and the namespace
injection attack (see Section 4.6.3).

The results of the attack can be seen in Figure 34.

Figure 34: Results of the XSpRES attack.

The attack was not successful – the XSW plugin did not even find a single wrapping
possibility. Since the authors use transformed prefix-free FastXPath expressions for
selecting the signed elements, the SOAP message is not attackable by the namespace
injection attack – the XPath does not use any prefix. It also denies the use of the
descendant-* axis, as the basis for the transformed XPath is a FastXPath.

This XML Signature implementation clarifies, that the web service is not attackable
by the currently known attack techniques, if the XPath expressions are used carefully
and the signature verification- and the application logic are enforced to use the same
elements.

66/ 82

6.2 Real World Scenarios Evaluation

6.2.3 Attacking IBM DataPower XI50

In the last scenario, the XSW plugin will be used for attacking the IBM DataPower
XI5011. The XI50 is an XML Security gateway which is able to sign and verify XML
Signatures using XPath expressions. However, it creates the signatures in a unconven-
tional way. Instead of saving the XPath expressions in the corresponding element as a
part of an XPathFilter, the DataPower uses ID references in the SOAP messages. The
concrete XPaths for creating and verifying XML Signatures are only used in the back-
end, so that the SOAP message itself does not contain them. It looks like a standard
signed SOAP message which uses ID references. Furthermore, the XI50 could not be
successfully attacked if the Timestamp element is signed. The validation logic always
detected, that there are two Timestamp elements within the message and throws a SOAP
fault.

The setup uses the XPath shown in Listing 13 for signing the message given by Fig-
ure 35.

//∗[namespace-uri()=’http://microsoft.com/webservices/’ and y
local-name()=’GetPrimeNumbers ’]/∗[namespace-uri()=’http:// y
microsoft.com/webservices/’ and local-name()=’max’][1]

Listing 13: Used XPath for attacking IBM DataPower XI50.

soap:Envelope

soap:Header

wsse:Security

ds:Signature

soap:Body

web:GetPrimeNumbers

web:max

911

Figure 35: Example message used as the input for the WS-Attacker framework. The
signed element max is selected by an XPath.

Semantically, the XPath selects a GetPrimeNumbers element that has has a max child
element. This one will be signed. The GetPrimeNumbers element can be any descendant
11https://www-01.ibm.com/software/integration/datapower/xi50/

67/ 82

https://www-01.ibm.com/software/integration/datapower/xi50/

6.2 Real World Scenarios Evaluation

(or self) of the document root.

As the message itself does not contain any XPath expression, the tool is extended for
this attack scenario as follows:

Commonly, the XSW tool would convert the ID reference into an XPath expression of
the form //∗[wsu:Id=’x’]. As this is not the XPath used internally by the XI50, the
framework user has to set it manually as shown in Figure 36.

Figure 36: XSW plugin configuration for attacking IBM DataPower XI50.

The tool will then analyze the custom XPath, which is the same one as the server-side
uses for the verification logic. Without this setting, the XSW tool would only try to
relocate the max element, but for a successful attack, it must have a parent element
named GetPrimeNumber. This can only be achieved by setting the XPath manually.

The results for the attack can be seen in Figure 37. The attack was successful and each
of the 22 wrapping possibilities was accepted.

68/ 82

6.2 Real World Scenarios Evaluation

Figure 37: XSW plugin results after attacking IBM DataPower XI50.

69/ 82

Conclusion

7 Conclusion

The scenario of XSW is no longer of theoretical nature. Recent attacks on the Ama-
zon EC2 SOAP and the Eucalyptus Cloud web service interfaces have underlined the
importance of the weakness.

This thesis presented a tool for the automatic creation of XSW messages, which is
integrated into the web services penetration testing framework WS-Attacker. The goal
was to build a tool which is able to test a web service implementation against all known
XSW variants. To reach this, the attack techniques were analyzed and generic algorithms
to apply them were derived. This includes the XPath attribute weakness, the XPath
descendant-* axis weakness and the namespace injection attack technique. The program
is able to operate with ID based XML Signatures by converting the referencing method to
an XPath equivalent and can also handle signatures which use XPathFilter2. By creating
Schema valid messages by means of an XML Schema analyzer, the number of possible
attack messages can be kept as minimal as possible and additionally, hidden wrapper
positions, which are not directly contained in the input message, can be detected.

The tool has been used to attack different web service implementations. Firstly, the
Apache Axis2 web service framework which uses the wide-spread Rampart security mod-
ule was analyzed. Rampart was configured with a default WS-SecurityPolicy which uses
ID based XML Signatures and could be successfully attacked. Furthermore, the XSpRES
library, which uses prefix-free transformed FastXPaths, was attacked. As the design goal
of this library was to prevent all known XSW techniques, it was not very surprising that
no XSW weakness could be detected. So, its security could be successfully validated.
Lastly, the IBM DataPower XI50, a web service security gateway, was analyzed. The
attacks on it turned out to be successful only in specific scenarios, namely if no times-
tamps are used. The XI50 allowed to use an arbitrary XPath for selecting the signed
element, meaning that when the used XPath had a weakness, e.g. it used the descendant
axis, it could be successfully attacked.

In a future work, the tool could be extended for attacking XML Signatures which use
XPathFilter1 and XPointer. It would also be possible to expand the attack vectors by
changing the SOAP version from 1.2 to 1.1, as in this version the Envelope element is
allowed to have any child element. The current implemented version also only supports
one type of ID references: the wsu:Id which is specified by the WS-Security standard.

70/ 82

Conclusion

Other XML Signature applications, e.g. a custom developed signature logic which uses
different spelled ID attribute, are not supported but can be easily integrated.

The modular structure of the implementation also offers the possibility to create XSW
messages apart from the SOAP context, because the creation of such messages basi-
cally uses an arbitrary XML document. Thus, the operative range of the tool could
be extended to any applications which use XML documents and XML Signatures, e.g.
SAML, Microsoft Word documents or XML based databases which use XML Signatures
for integrity protection.

71/ 82

Appendix

Appendix

References

[1] Michael McIntosh and Paula Austel. XML signature element wrapping attacks and
countermeasures. In SWS ’05: Proceedings of the 2005 Workshop on Secure Web
Services, pages 20–27, New York, NY, USA, 2005. ACM Press.

[2] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka,
and Luigi Lo Iacono. All Your Clouds are Belong to us – Security Analysis of
Cloud Management Interfaces. In The ACM Cloud Computing Security Workshop
(CCSW), October 2011.

[3] Mohammad Ashiqur Rahaman, Andreas Schaad, and Maarten Rits. Towards secure
soap message exchange in a soa. In Proceedings of the 3rd ACM workshop on Secure
web services, SWS ’06, pages 77–84, New York, NY, USA, 2006. ACM. ISBN 1-
59593-546-0. doi: 10.1145/1180367.1180382. URL http://doi.acm.org/10.1145/

1180367.1180382.

[4] Karthikeyan Bhargavan, Cedric Fournet, Andrew D. Gordon, and Greg O’Shea. An
advisor for Web Services Security policies. In SWS ’05: Proceedings of the 2005
Workshop on Secure Web Services, pages 1–9, New York, NY, USA, 2005. ACM
Press.

[5] Mohammad Ashiqur Rahaman, Rits Marten, and Andreas Schaad. An inline ap-
proach for secure soap requests and early validation. OWASP AppSec Europe,
2006.

[6] Lijun Liao, Meiko Jensen, Florian Kohlar, and Nils Gruschka. On interoperability
failures in ws-security: The xml signature wrapping attack. Electronic Business
Interoperability: Concepts, Opportunities and Challenges, Information Science Ref-
erence, 2011.

[7] Sebastian Gajek, Meiko Jensen, Lijun Liao, and Jörg Schwenk. Analysis of signature
wrapping attacks and countermeasures. In ICWS, pages 575–582. IEEE, 2009.

[8] Meiko Jensen, Lijun Liao, and Jörg Schwenk. The curse of namespaces in the
domain of xml signature. In Ernesto Damiani, Seth Proctor, and Anoop Singhal,
editors, SWS, pages 29–36. ACM, 2009. ISBN 978-1-60558-789-9.

72/ 82

http://doi.acm.org/10.1145/1180367.1180382
http://doi.acm.org/10.1145/1180367.1180382

Appendix

[9] Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. Penetration Testing Tool
for Web Services Security. In IEEE 2012 Services Workshop on Security and Privacy
Engineering (SPE2012), June 2012.

[10] Tim Bray, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-McQueen.
Extensible markup language (XML) 1.0 (fifth edition). W3C recommendation,
W3C, November 2008. URL http://www.w3.org/TR/2008/REC-xml-20081126/.

[11] Tim Bray, Richard Tobin, Henry S. Thompson, Dave Hollander, and Andrew Lay-
man. Namespaces in XML 1.0 (third edition). W3C recommendation, W3C, De-
cember 2009. URL http://www.w3.org/TR/2009/REC-xml-names-20091208/.

[12] Richard Tobin, Andrew Layman, Tim Bray, and Dave Hollander. Namespaces
in XML 1.1 (second edition). W3C recommendation, W3C, August 2006. URL
http://www.w3.org/TR/2006/REC-xml-names11-20060816.

[13] C. M. Sperberg-McQueen, Henry S. Thompson, Murray Maloney, Henry S. Thomp-
son, David Beech, Noah Mendelsohn, and Shudi (Sandy) Gao. W3C xml schema
definition language (XSD) 1.1 part 1: Structures. Last call WD, W3C, December
2009. URL http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/.

[14] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1, 2000. URL
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[15] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik F.
Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2 part 1: Messaging
framework (second edition). Technical report, April 2007. URL http://www.w3.

org/TR/soap12-part1/.

[16] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-
scription language (WSDL) 1.1. W3c note, World Wide Web Consortium, March
2001. URL http://www.w3.org/TR/wsdl.

[17] Jean J. Moreau, Roberto Chinnici, Arthur Ryman, and Sanjiva Weerawarana. Web
services description language (WSDL) version 2.0 part 1: Core language. Candidate
recommendation, W3C, March 2006.

[18] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1. Technical re-
port, January 1999. URL ftp://ftp.internic.net/rfc/rfc2246.txt. Status:
PROPOSED STANDARD.

73/ 82

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2006/REC-xml-names11-20060816
http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
ftp://ftp.internic.net/rfc/rfc2246.txt

Appendix

[19] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker. Web
Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Stan-
dard, 2006.

[20] Donald Eastlake, Joseph Reagle, Takeshi Imamura, Blair Dillaway, and Ed Simon.
XML Encryption Syntax and Processing. W3C Recommendation, 2002.

[21] Chris Kaler and Anthony Nadalin. Web Services Security Policy Language (WS-
SecurityPolicy) 1.1. 2005.

[22] Asir S. Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Ümit Yalçinalp. Web services policy 1.5 - framework.
Technical report, September 2007. URL http://www.w3.org/TR/ws-policy/.

[23] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Xml path language (xpath) version 1.0. Technical report, World Wide Web Con-
sortium, 1999. URL http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[24] Michael Kay, Don Chamberlin, Jonathan Robie, Mary F. Fernández, Jérôme
Siméon, Scott Boag, and Anders Berglund. XML path language (XPath) 2.0.
W3C recommendation, W3C, January 2007. URL http://www.w3.org/TR/2007/

REC-xpath20-20070123/.

[25] Donald Eastlake, David Solo, and Joseph Reagle. XML-signature syntax and pro-
cessing. first edition of a recommendation, W3C, February 2002. URL http:

//www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[26] Frederick Hirsch, David Solo, Joseph Reagle, Donald Eastlake, and Thomas
Roessler. XML signature syntax and processing (second edition). W3C
recommendation, W3C, June 2008. URL http://www.w3.org/TR/2008/

REC-xmldsig-core-20080610/.

[27] John Boyer. Canonical XML version 1.0. W3C recommendation, W3C, March
2001. URL http://www.w3.org/TR/2001/REC-xml-c14n-20010315.

[28] Joseph Reagle, Donald E. Eastlake 3rd, and John Boyer. Exclusive XML canon-
icalization version 1.0. W3C recommendation, W3C, July 2002. URL http:

//www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/.

74/ 82

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Appendix

[29] James Clark and Steven DeRose. XML path language (XPath) version 1.0. W3C
recommendation, W3C, November 1999. URL http://www.w3.org/TR/1999/

REC-xpath-19991116.

[30] Joseph Reagle, John Boyer, and Merlin Hughes. XML-signature XPath filter
2.0. W3C recommendation, W3C, November 2002. URL http://www.w3.org/

TR/2002/REC-xmldsig-filter2-20021108/.

[31] Nils Gruschka and Luigi Lo Iacono. Vulnerable Cloud: SOAP Message Security Val-
idation Revisited. In ICWS ’09: Proceedings of the IEEE International Conference
on Web Services, Los Angeles, USA, 2009. IEEE.

[32] Sebastian Gajek, Lijun Liao, and Jörg Schwenk. Breaking and fixing the inline
approach. In Proceedings of the 2007 ACM Workshop on Secure Web Services
(SWS’07), pages 37–42, Fairfax, Virginia, USA, November 2007. Association for
Computing Machinery.

[33] Christian Mainka, Meiko Jensen, Luigi Lo Iacono, and Jörg Schwenk. XSpRES:
Robust and Effective XML Signatures for Web Services. In Closer 2012: 2nd
International Conference on Cloud Computing and Services Science, April 2012.

[34] M. Jensen, C. Meyer, J. Somorovsky, and J. Schwenk. On the effectiveness of
xml schema validation for countering xml signature wrapping attacks. In Securing
Services on the Cloud (IWSSC), 2011 1st International Workshop on, pages 7 –13,
September 2011. doi: 10.1109/IWSSCloud.2011.6049019.

[35] The Apache Software Foundation. Apache Axis2 - Next Generation Web Services,
. URL http://ws.apache.org/axis2/.

[36] The Apache Software Foundation. Apache Rampart - Axis2 Security Module, .
URL https://axis.apache.org/axis2/java/rampart/.

[37] Christian Mainka, Meiko Jensen, Juraj Somorovsky, and Jörg Schwenk. Ws-
attacker. URL http://sourceforge.net/projects/ws-attacker/.

75/ 82

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://ws.apache.org/axis2/
https://axis.apache.org/axis2/java/rampart/
http://sourceforge.net/projects/ws-attacker/

Appendix

List of Figures

1 XML tree representation. Attributes are placed horizontally with a dashed
rectangle border. Text contents have the same border but are placed be-
low the corresponding element. 8

2 An example for XML namespaces. 8
3 SOAP example. The root Envelope element has an optional Header

element and a mandatory Body element. 11
4 Security via SSL/TLS. A client wants to execute a web service operation

which is protected by an application firewall. 12
5 Example for an XPath expression. 13
6 Structure of the XML Signature element. 15
7 Signed SOAP message. Structure of the Signature element is simplified. 16
8 An XML Signature using XPathFilter2. 18
9 Creating an XSW message for an ID referencing based XML Signature.

The original signed message is shown on the left side. The XSW message
on the right side is constructed by copying the signed element to a Wrapper
element and modifying the signed content to the attackers’ needs. 21

10 Visualization of the hashed- and the protected subtree. 23
11 Comparing Depth-First and Breadth-First. 24
12 Creating an XSW message which is signed by using the XPath /soap: y

Envelope/soap:Header/ns:Signed[@ID=’signed’]. 25
13 Prerequisites for namespace injection. 28
14 Example namespace injection attack message. 29
15 Terminology of signed element, payload element and wrapper element. . . 33
16 XSW complexity overview. There are a lot of one-to-many relationships,

e.g. a Reference element can have multiple XPath expressions. This
results in a huge number of possible XSW messages for one and the same
input document. 33

17 A sample Timestamp element. 35
18 Example for the Schema analyzer algorithm. 37
19 Example message to use for the XPath of Listing 9. The payload element

is located on the right side. 39
20 Creating the payload post part. 40
21 XSW message for Figure 19 after Algorithm 4. 41

76/ 82

Appendix

22 Example message to use for the XPath /soap:Envelope//ns:Operation y
/ns:Signed. The attacker is going to include the payload element on the
right side. 42

23 Visualization of the protected parts. 43
24 Overview of XML Schema properties and their influence for creating wrap-

per elements. 44
25 Final XSW message which abuses the XPath descendant-* axis. 45
26 Task overview of the signature manager (simplified). A signed SOAP

message can have multiple signed elements. Each one is accessed by a
specified referencing mechanism, e.g. an XPath, and needs a payload for
the attack message. 52

27 Splitting an XPath into its parts. 53
28 The wrapping oracle. 55
29 WS-Attacker general overview. 56
30 Integration of the XSW plugin. 57
31 Configuration of the XSW plugin within the WS-Attacker framework. . . 62
32 Results of the XSW plugin. 64
33 Viewing all possible XSW messages. 65
34 Results of the XSpRES attack. 66
35 Example message used as the input for the WS-Attacker framework. The

signed element max is selected by an XPath. 67
36 XSW plugin configuration for attacking IBM DataPower XI50. 68
37 XSW plugin results after attacking IBM DataPower XI50. 69

Listings

1 First XML example. 7
2 An XML Schema example. 10
3 Using an XPath expression with the descendant-or-self axis. 14
4 Two semantically same elements. 16
5 The FastXPath grammar. 26
6 An example FastXPath expression. 26
7 A sample FastXPath which uses prefixes. 30
8 Prefix-free transformed FastXPath. 30
9 Example XPath which uses an attribute to select a node. 38

77/ 82

Appendix

10 Example XPath which uses the descendant-or-self axis to select a node. . 42
11 One output of the wrapping oracle. 60
12 WS-SecurityPolicy used for the evaluation of the XSW WS-Attacker plu-

gin for attacking Apache Axis2. The structure of the policy file is short-
ened to the most important parts. 61

13 Used XPath for attacking IBM DataPower XI50. 67

78/ 82

Appendix

Glossary

A

Apache Axis2 Apache eXtensible Interaction System, commonly used web service
framework created by the Apache Software Foundation (35).. 6, 61, 62, 65,
70, 78

C

Cloud Cloud Computing, using shared ressources to compute as a service rather than
a product.. 2, 5, 22, 70

E

E-Government electronic government, digital interactions between citizens and the
government.. 2, 5

I

IBM DataPower XI50 web service security gateway by IBM.. 6, 61, 66–68, 70, 77,
78

N

Namespace used to clearly identify XML elements and attributes (11, 12).. 5, 8, 9, 11,
13, 17, 21, 27–30, 44, 47, 48, 76

P

Parser A parser syntatically analyzes a text and seperates it into tokens, e.g. words.
In the context of XML, the tokens are nodes like elements, attributes and text
contents.. 9

DOM The DOM parser reads the whole XML document into memory and builds
an object for each node.. 9, 26

SAX The Simple API for XML parses an XML stream and sends an event if a new
element starts or ends.. 9, 26, 30

StAX The StAX parser is a pull parser and thus works like a cursor: the programmer
can ask for the next event, e.g. next element start.. 9, 26, 30

Penetration test method for evaluating security on computer systems.. 2, 6, 51, 54,
55, 61, 65, 70

R

Rampart Apache Axis2 security module. Can be used for securing SOAP messages
according to the WS-Security specifications (36).. 6, 61, 62, 70

S

79/ 82

Appendix

SAML Security Assertion Markup Language. 71
SOA Service Oriented Architecture, abstract model of software architecture.. 2, 5, 11
SOAP SOAP is a standard which describes message exchange with a web service (14,

15).. 2, 5, 6, 11, 12, 15, 21–23, 27, 28, 31–35, 37, 42, 43, 47, 49, 51, 52, 54, 56,
57, 59, 62, 66, 70, 71, 76, 77

W

W3C World Wide Web Consortium, organization for standards in the World Wide
Web.. 9, 14, 16

Web service concrete implementation of SOA.. 2, 5–7, 11, 12, 19, 31, 35, 46, 50, 51,
55–59, 61, 65, 66, 70, 76

WS-Attacker automatic penetration test framework (37).. 2, 6, 55, 58, 59, 61, 62, 64,
67, 70, 77, 78

WSDL Web Services Description Language, specification for creating a client’s web
service message (16, 17).. 11, 56

WS-Policy specifies how to add policies to a WSDL (22).. 13, 22
WS-Security extension for SOAP to specify security in web services (19).. 12, 15, 22,

31, 34, 48, 62, 70
WS-SecurityPolicy specifies security policy assertions for WS-Security (21).. 13, 22,

30, 58, 61, 62, 70, 78

X

XML eXtended Markup Language, textual data format to encode documents, com-
monly used for message exchange (10).. 5–9, 15–17, 65, 71, 76, 79

XML document general term for a document which uses XML as description
language, e.g. a SOAP message.. 2, 5, 7–9, 12–20, 22–26, 31–33, 35–37, 40, 42,
43, 45, 47, 49–51, 65, 67, 71, 76

XML Canonicalization Process to convert an XML document into a normalized rep-
resentation.. 5, 15, 16

Exclusive Canonicalization Canonicalization method which includes as little as
possible namespace declarations.. 17, 28, 29, 47

Inclusive Canonicalization Canonicalization method which includes all visible
namespace declarations in every element.. 17

XML Encryption standard for encryption of XML documents (20).. 12
XML Schema well-founded commendation from W3C to define the structure of an

XML document (13).. 9–11, 30, 31, 35–37, 43, 44, 58, 60, 62, 65, 70, 77
XML Security generic term for security features in XML.. 12, 35, 66
XML Signature also XML Digital Signature, standard for creating signatures in XML

documents (25, 26).. 2, 5–7, 12, 14–20, 22, 23, 25, 28, 29, 31–35, 37, 38, 42, 43,
47, 51, 52, 58, 60, 62, 65, 66, 70, 71, 76

XPath XML standard for selecting parts of XML Documents (23, 24).. 5, 9, 13, 14,
17–19, 23–28, 30, 32–34, 37–40, 42, 43, 45–47, 49, 51–55, 58, 59, 66–68, 70,
76–78

80/ 82

Appendix

FastXPath subset of the XPath grammar which only allowes forward referenc-
ing (7).. 5, 14, 26, 28, 30, 58, 66, 70, 77

PostXPath part of an XPath after a specified step, e.g. d/e in /a/b/c/d/e for
step c. 14, 39, 42, 43

PreXPath part of an XPath before a specified step, e.g. /a/b in /a/b/c/d/e for
step c. 14, 39, 42, 43

XPathFilter specification to describe how to select elements for cryptographic
primitives within an XML document (29, 30).. 5, 17–19, 23, 59, 66, 70, 76

XSpRES XML Spoofing Resistant Electronic Signatures, proof-of-concept security li-
braray for Apache Axis2 which is designd to resist all known XSW techniques (33).
6, 61, 65, 66, 70, 77

XSW XML Signature Wrapping, technique for attacking signed web services (1).. 2, 5,
6, 20–25, 28, 30, 32–35, 38–43, 45–47, 49–51, 53–59, 61–66, 68, 70, 71, 76–78

Attribute weakness XSW technique which abuses the attribute selection of an
XPath.. 38, 40, 46, 49, 54, 61, 65, 70

Descendant weakness XSW technique which abuses the descendant-* axis selec-
tion of an XPath.. 42, 45, 46, 49, 54, 65, 70

Namespace injection XSW technique which overrides namespace declarations in
XPath namespace resolution.. 5, 27, 29, 46, 47, 49, 53, 54, 58, 61, 65, 66, 70, 76

81/ 82

Appendix

Eigenständigkeitserklärung

Hiermit versichere ich, Christian Mainka (Matrikelnummer: 108007212667), dass ich die
Arbeit selbständig angefertigt, außer den im Quellen- und Literaturverzeichnis sowie in
den Anmerkungen genannten Hilfsmitteln keine weiteren benutzt und alle Stellen der
Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, unter
Angabe der Quellen als Entlehnung kenntlich gemacht habe.

Ort, Datum Christian Mainka

82/ 82

	Introduction
	Foundations
	XML
	XML Parser

	XML Schema
	SOAP based Web Services
	XML Security
	XPath
	The XPath descendant-Axis
	FastXPath
	PreXPath and PostXPath

	XML Signature
	Structure and Workflow
	XML Canonicalization
	XPathFilter
	Handling Multiple Elements to Sign
	XML Signature Verification in Software

	Attacking XML Signatures
	Attacking ID based XML Signatures
	Countermeasures for ID based XML Signatures
	Attacking XPath Based XML Signatures
	Countermeasures for XPath Based XML Signatures
	Namespace Injection Attack
	XML Schema Validation as Protection for XSW

	Algorithms
	Terminology
	Complexity
	Transforming ID References to XPath Expressions
	Handling Timestamps
	Analyzing XML Schema
	XPath Weakness Algorithms
	Attribute Weakness
	Descendant Weakness
	Namespace Injection Attack

	High Level Algorithm

	Implementation
	Components
	Signature Manager
	XPath Parser
	XPath Analyzer
	Wrapping Oracle

	Integration in the WS-Attacker Penetration Test Framework
	WS-Attacker Overview
	Concrete Integration: Building the XSW Plugin

	Evaluation
	Practical Evaluation of the Implementation Correctness
	Real World Scenarios
	Attacking Apache Axis2
	Attacking XSpRES
	Attacking IBM DataPower XI50

	Conclusion
	Appendix
	List of Figures
	List of Listings
	Glossary
	Eigenständigkeitserklärung

