
XSpRES: Robust and Effective XML Signatures for Web Services

Christian Mainka1, Meiko Jensen1, Luigi Lo Iacono2, and Jörg Schwenk1

1Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
2Institute of Media and Imaging Technology, Cologne University of Applied Sciences, Germany

fChristian.Mainka, Meiko.Jensen, Joerg.Schwenkg@rub.de, luigi.lo iacono@fh-koeln.de

Keywords: XML Signature : XML Signature Wrapping : Web Services : WS-Security : SOA : Cloud

Abstract: XML Encryption and XML Signature are fundamental security standards forming the core for many applica-
tions which require to process XML-based data. Due to the increased usage of XML in distributed systems
and platforms such as in SOA and Cloud settings, the demand for robust and effective security mechanisms
increased as well. Recent research work discovered, however, substantial vulnerabilities in these standards as
well as in the vast majority of the available implementations. Amongst them, the so-called XML Signature
Wrapping attack belongs to the most relevant ones. With the many possible instances of this attack type, it is
feasible to annul security systems relying on XML Signature and to gain access to protected resources as has
been successfully demonstrated lately for various Cloud infrastructures and services.
This paper contributes a comprehensive approach to robust and effective XML Signatures for SOAP-based
Web Services. An architecture is proposed, which integrates the required enhancements to ensure a fail-safe
and robust signature generation and verification. Following this architecture, a hardened XML Signature li-
brary has been implemented. The obtained evaluation results show that the developed concept and library
provide the targeted robustness against all kinds of known XML Signature Wrapping attacks. Furthermore the
empirical results underline, that these security merits are obtained at low efficiency and performance costs as
well as remain compliant with the underlying standards.

1 INTRODUCTION

XML is a dominant standard for encoding documents
or messages. The range of XML applications is broad.
It can be roughly divided into file formats for data at
rest such as Docbook, Open Office and WordML for
documents or SVG for images and messages for data
in transit such as SOAP, XML-RPC or ebXML. The
ability of being platform-independent made XML a
driving force especially in terms of systems integra-
tion. Here resides one important reason why XML is
widely used in distributed system and platform con-
texts such as SOA and Cloud.

With the increased adoption of SOA and Cloud
in sensitive application domains, the demands for se-
curity increase as well. The use of message-oriented
security for business information based on standards
such as Universal Business Language (UBL)1, eX-
tensible Business Reporting Language (XBRL)2 and
Bank Internet Payment System (BIPS)3 is one exam-

1http://ubl.xml.org/
2http://www.xbrl.org/
3http://www.bits.org/

ple. Others can be found in the e-government do-
main where in Europe, e.g., the digital agenda explic-
itly includes SOA concepts as one building block for
establishing ICT for public services. Based on pan-
European interoperable e-signatures and e-IDs, SOA
is recognized as the enabler for cross-border inter-
operability of e-government systems (Ticau, 2010).
Many pilots build upon these foundations such as the
e-PRIOR platform for e-procurement, which key de-
sign principles include standardized XML documents
and SOAP Web Services4.

XML Encryption (Imamura et al., 2002) and XML
Signature (Bartel et al., 2008) are the core security
standards to protect XML data. Recent research re-
sults show, however, that these upmost important se-
curity mechanisms include serious flaws. Amongst
them, the so-called XML Signature Wrapping attack
is the most relevant one. As described in detail in
Section 2, this attack bypasses security means based
on digital signatures. Thus, from the XML Signature
Wrapping attack arises a serious security threat which
is of practical relevance especially in scenarios as the

4http://www.osor.eu/projects/openeprior

ones depicted above. Therefore, the XML Signature
Wrapping attack needs to be carefully considered and
treated in these environments.

The proposed countermeasures—if effective at
all—usually provide protection only in very specific
settings. No comprehensive approach is available
yet. This paper contributes such a holistic and in-
tegrated approach—named XML Spoofing Resistant
Electronic Signature (XSpRES)—by providing an ar-
chitecture and an open-source implementation of an
XML Signature library that enables the standard-
compliant, robust and effective protection of XML
data.

Although the emphasize of the developments has
been on protecting SOAP-based Web Services and
the paper will remain focused on this, still the gen-
eral protection strategies can be applied to other XML
messages or documents to form equivalent solutions.

The rest of the paper is structured and organized
as follows. The next section provides a brief review
of the technologies necessary for understanding the
paper. It introduces the required background and dis-
cusses the available countermeasures in particular. It
concludes by motivating the lack of a comprehensive
defense approach which is effective and in confor-
mance with current standardization. Section 3 then
introduces an architecture that describes such a com-
prehensive approach named XSpRES. It integrates
and combines relevant components out of the already
available work with newly developed ones which are
deployed on the client as well as on the server side.
An in-depth description of the components and their
implementation is part of Section 4 and 5. Section 6
analyzes the developments in terms of effectiveness
and efficiency. The paper concludes with future work
in Section 7.

2 XML SIGNATURE WRAPPING
ATTACK FOUNDATIONS

To build the foundations for this paper, the basics be-
hind XML Signature Wrapping attacks are described
in the following accomplished with an analysis of
available countermeasures.

2.1 XML Signature
XML Signature (Bartel et al., 2008) is the standard
protection means for XML data. It specifies how to
digitally sign XML fragments for ensuring integrity
and proofing authenticity. The XML Signature ele-
ment has the following (slightly simplified) structure:

<S i g n a t u r e>
<S i g n e d I n f o>
<C a n o n i c a l i z a t i o n M e t h o d Algo r i t hm = ” . . . ” / >
<S i g n a t u r e M e t h o d Algo r i t hm = ” . . . ” / >
<R e f e r e n c e URI = ” . . . ” >
<Diges tMethod Algo r i t hm =” . . . ”>
<Diges tVa lue > . . .< / D iges tVa lue>

</ Re fe rence>
</ S i g n e d I n f o>
<S i g n a t u r e V a l u e > . . .< / S i g n a t u r e V a l u e>

</ S i g n a t u r e>

The signing process undertakes the following
flow: for each document part to be signed, a
Reference element is created and the corresponding
part is canonicalized and hashed. The resulting di-
gest is added into the DigestValue element and a
reference to the signed message part is inserted into
the URI attribute. Finally the SignedInfo element is
canonicalized and signed. The result of the signing
operation is placed in the SignatureValue element.

2.2 XML Signature Wrapping Attack
The so-called XML Signature Wrapping attack intro-
duced in 2005 by McIntosh and Austel (McIntosh
and Austel, 2005) illustrates that the naive use of
XML Signature may result in signed XML documents
remaining vulnerable to undetectable modifications.
Thus, with the typical usage of XML Signature an ad-
versary may be able to alter valid documents in order
to gain unauthorized access to protected resources.

In general, the attack injects unauthorized data
into a signed XML document alongside with a pos-
sible reconstruction of that document so that the in-
tegrity and authenticity is still verified but untruly ver-
ified. The consequence is that the undetected mod-
ifications are treated as authorized input during any
further processing steps.

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference URI="#body"

soap:Body

DescribeImages

wsu:Id="body"

Figure 1: Signed SOAP Message.

To illustrate this attack, let’s assume that an at-
tacker intercepts an XML-based SOAP message. The
slightly simplified structure and content of the ob-
tained SOAP message is shown in Figure 1. The mes-
sage addresses a Web Service interface for a particular
Cloud service, that allows controlling the Cloud re-
sources via such a SOAP-based API. In this example,
the intercepted message has been issued by the legiti-
mate user in order to get an overview of the available

virtual machine images. The attacker needs to trans-
form the operation in the SOAP body in order to reach
the attack goals.

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference URI="#body"

soap:Body

DescribeImages

wsu:Id="body"

soap:Body

CreateKeyPair

wsu:Id="attack"

Wrapper

Figure 2: XML Signature Wrapped SOAP Message.

One possible result of a modified SOAP message
based on XML Signature Wrapping is shown in Fig-
ure 2. The original SOAP body element is moved to
a newly added bogus wrapper element in the SOAP
security header. Note that the moved body is still ref-
erenced by the signature using its identifier at-
tribute Id="body". The signature is still cryptograph-
ically valid, as the body element in question has not
been modified (but simply relocated). Subsequently,
in order to make the modified message again compli-
ant to the XML Schema of SOAP messages, the at-
tacker changes the identifier of the cogently placed
SOAP body (in this example the Id="attack" is
used). In this newly added and still empty SOAP body
the attacker can now enter any of the operations de-
fined by Cloud control API. In the given example, the
adversary initiates a key generation process on behalf
of the legitimate user being attacked.

2.3 Related Countermeasures
Since the discovery of XML Signature Wrapping at-
tacks by McIntosh and Austel, several countermea-
sures against them have been proposed and inten-
sively discussed in the last years. In fact, McIntosh
and Austel themselves discussed in their original pa-
per on XML Signature Wrapping attacks what re-
quirements a server-side security policy must contain
in order to uncover the attack. The final policy in-
cluded assertions such as:
� a signature must be present in the security header
� the element specified by /soap:Envelope/
soap:Body must be referenced from the signature

� the element matching /soap:Envelope/
soap:Header/wsse:Security/wsu:Timestamp
must be referenced from the signature

� the signature verification key must be provided by
an X.509 certificate issued by a trusted CA
In 2009 Gruschka and Lo Iacono showed with the

first practical XML Signature Wrapping attack that
the proposed checks by McIntosh and Austel are not

sufficient to effectively detect XML Signature Wrap-
ping attacks (Gruschka and Lo Iacono, 2009).

Bhargavan, Fournet and Gordon also used secu-
rity policies for fending XML Signature Wrapping
attacks. They developed a formal model for pol-
icy verification (Bhargavan et al., 2005a) and derived
from these results a policy adviser (Bhargavan et al.,
2005b) for testing and generating security policies.
They use an abstract policy language for proofing se-
curity properties and map between this proprietary
language and WS-SecurityPolicy (Kaler and Nadalin,
2005). The policy adviser proposes the following se-
curity assertions:
� Mandatory elements: wsa:To, wsa:Action,
soap:Body

� Signed elements: all mandatory, wsa:MessageID,
wsu:Timestamp

� Recommended: use of X.509 certificates for au-
thentication
The security requirements for an incoming mes-

sage to the Amazon EC25 service are not stated as a
formal security policy but in a human readable form.
These requirements are:
� Mandatory elements: wsu:Timestamp,
soap:Body, wsse:BinarySecurityToken
containing X.509 certificate

� Signed elements: wsu:Timestamp, soap:Body
One can see that the Amazon security policy ful-

fills the requirement from Bhargavan et al. except
for the WS-Addressing (Gudgin et al., 2006) require-
ment, which have no influence on this attack (as AWS
does not honor WS-Addressing headers). But despite
the fact that these requirements were formally proven,
obviously such a pure policy-driven approach is not
sufficient for mitigating signature wrapping attacks.
The gap between the formal policy requirement and
a real-world policy checking application can still be
misused for attacks. A further problem with the pol-
icy adviser approach is that strong restrictions to the
security policy are made. For example a lot of el-
ements are claimed as mandatory and the signature
of the body is absolutely required which reduces the
flexibility of SOAP security mechanisms. However,
this is supposably not a restriction for most practical
applications.

Most XML Signature Wrapping attacks modify
the structure of the original message from the legit-
imate sender in some way. In the example attack
described in Section 2.2 a second SOAP body is in-
serted by the attacker while the original one is be-
ing relocated into the SOAP header. Therefore, Ra-
haman, Schaad and Rits introduced a method—called
inline approach—to protect some key properties of

5http://aws.amazon.com/ec2

the SOAP message structure (Rahaman et al., 2006).
In this system some characteristic information are col-
lected over the SOAP message and inserted into a new
element called SOAP Account. This element is added
to the SOAP header and additionally signed by the
sender. The protected properties are:
� Number of child elements of soap:Envelope
� Number of child elements of soap:Header
� Number of references in each signature
� Successor and predecessor of each signed object

If an attacker changes the structure of the mes-
sage in a way that one of these properties are mod-
ified the attack can be uncovered. This is for exam-
ple true for the example attack given in Section 2.2.
The number of child elements of the SOAP header is
changed from one to two. Thus the usage of the inline
approach would have detected this attack. Nonethe-
less, this protection method has some disadvantages.
First, the introduced SOAP Account element as well
as the verification of this element is not standardized.
Thus, it can for example not be claimed by a WS-
SecurityPolicy (Lawrence and Kaler, 2007). Second
and more importantly, this method does not generally
protect from XML Signature Wrapping attacks. If an
attacker is able to modify the message structure while
keeping the structure properties the inline approach
can be circumvented as has been shown by Gajek,
Liao and Schwenk in (Gajek et al., 2007). They im-
prove the above discussed inline approach, but for this
improved version the just mentioned disadvantages—
especially the standardization issue— still remain.

The authors of (Gajek et al., 2007) give in their
paper some more solution ideas for fending XML
Signature Wrapping attacks. The main idea is us-
ing the verification component as a filter. In contrast
to common methods where the signature verification
just returns a boolean value, here the result of the
transformation and canonicalization step is returned.
This ensures that the following processing entities in-
side the Web Service framework operate truly on the
message that was originally signed. One problem of
this approach—as already remarked by the authors—
is that the Web Service cannot operate on the SOAP
envelope as a single well-formed message document
but only on parts of the message which may also be
divided into a forest of message trees. This problem
can be solved by passing the signed elements together
with its parent nodes as a spanning DOM tree to the
business logic part of the Web Service. This works
only, if the signature transformation does not change
the content of the elements. But even this improved
version is inadequate if the Web Service operates on
signed as well as on unsigned parts of the SOAP mes-
sage. In this case the signature component cannot op-

erate as a filter.
Until 2009 this research work was mainly treated

as theoretical, due to the rare usage of WS-Security
in sensitive applications and the absence of a real-life
XML Signature Wrapping attack. In 2009 it was dis-
covered, that Amazon’s Cloud services were vulner-
able to XML Signature Wrapping attacks (Gruschka
and Lo Iacono, 2009). Using a variation of the attack
example presented in Section 2.2 an attacker was able
to perform arbitrary operations in the Cloud on behalf
of a legitimate user. A number of related results have
been published in the following, leading to the dis-
covery of novel attack instances (Somorovsky et al.,
2011).

Along with these developments, novel defense
techniques have been proposed. In (Gajek et al.,
2009) the authors turn toward a major characteris-
tic of the XML Signature Wrapping attack, which is
the missing confidence of location information when
using ID-based references to link the XML Signa-
ture metadata to its signed content. Since the ID at-
tribute does not provide any details on the signed con-
tent’s location in the document (and sometimes not
even on its property of uniqueness), the default refer-
encing scheme possess major challenges with respect
to XML Signature Wrapping attacks. Hence, the
use of a location-aware referencing scheme is favor-
able. With XML Signature, this can be achieved us-
ing XPath expressions for referencing. For instance,
an XPath of /soap:Envelope/soap:Header/wsse:
Security/wsu:Timestamp leaves little doubt on
which part of the XML document is intended to be
protected by a digital signature. Furthermore, an at-
tacker can only trick this reference in an XML Signa-
ture Wrapping attack if he manages to trick the XPath
evaluation into mapping to another XML subtree than
anticipated—a way more challenging task as com-
pared to moving an ID-equipped subtree to an arbi-
trary location within the XML document tree as has
been used in the above example.

A critical issue with respect to XPath-based ref-
erencing is the robustness of the actual XPath ex-
pression. For instance, an XPath expression of
//*[@ID="foo"] is a valid XPath expression, but
is equivalent to an ID-based reference with respect
to XML Signature Wrapping attempts. As analyzed
in (Gajek et al., 2009), the most favorable subset of
XPath when it comes to XML Signature Wrapping
robustness is the subset called FastXPath, which pro-
hibits the use of several potentially vulnerable XPath
properties. For instance, the use of so-called wildcard
axes such as descendant:: are prohibited, since they
allow an attacker to move the referenced XML frag-
ment arbitrarily within the range of that XPath loca-

tion step. Analogously, the use of position indica-
tor predicates is mandatory in FastXPath. An XPath
of /soap:Envelope[1]/soap:Body[1] clearly se-
lects exactly one—the first—child element of match-
ing name, thereby fending XML Signature Wrapping
attacks that use element duplication (as e.g. used
against Amazon EC2 in (Gruschka and Lo Iacono,
2009)).

In (Jensen et al., 2011) the authors introduce
and evaluate the possibility of hardening the XML
Schema in conjunction with XML Schema validation
to construct an effective protection against XML Sig-
nature Wrapping attacks. The authors identified the
following weak definitions in the SOAP Schema:

� Element: xs:any allows an element to have any
kind of child elements, which are not defined by
any schema. The main idea of this is to have an
extensible layout, e.g. the SOAP Header can have
any not yet defined child elements (reserved for
future use).

� Attribute: processContents="lax" instructs
the validator to only process the content if an
XML Schema for it is present, otherwise just
leave it out. A more drastically direction is
processContents="skip" which causes simply
no validation.

� Attribute: namespace="##any" and
namespace="##other" allows the usage of
elements from any, respectively from any but its
parents namespace.

Each of these nodes allows an attacker to inject
own elements, e.g. to place a XML Signature Wrap-
ping element. To eliminate this leakage, each in-
struction is removed from the hardened Schema by
substituting it directly with the needed Schema parts
(e.g. WS-Security). This constricts the whole docu-
ment to deny any user-defined elements. It has been
shown that XML Schema validation with a hardened
XML Schema is capable of fending XML Signature
Wrapping attacks, but bears some pitfalls and disad-
vantages amongst which the increased resource con-
sumption is the biggest obstacle.

This analysis of the related work can be concluded
by noting the fact, that the XML Signature Wrapping
attack has been moved from a hypothetical to a practi-
cal security threat which needs to be urgently targeted
and that there is no comprehensive approach avail-
able which provides the required protection against
this attack in a standard-compliant and effective man-
ner. This lack is targeted by XSpRES as will be intro-
duced in the following.

3 THE XSPRES APPROACH AND
ARCHITECTURE

As can be seen from the discussions on available
countermeasures, several proposals for fending the
XML Signature Wrapping attack threat exist. Unfor-
tunately, each countermeasure has shown to become
ineffective at some point for certain XML Signature
Wrapping attack variations. Hence, in order to estab-
lish a robust protection, it is necessary to combine a
suitable subset of these countermeasures to come up
with a holistic, integrated approach.

3.1 Attack Model
An initial step for the development of such a holistic
defense architecture against XML Signature Wrap-
ping attacks consists in the definition of a formalized
model for the attack scenario. Based on the existing
previous work presented in (Gajek et al., 2009; Jensen
et al., 2009), and derived from the semi-formal Web
Services Attacker Model described in (Jensen, 2011),
the scenario model for the XML Signature Wrapping
attack consists of three main entities: (1) a Web Ser-
vice client, (2) a Web Service server (3) and an exter-
nal attacker (cf. Figure 4). The attacker is assumed to
be able to access and alter XML messages exchanged
between the Web Service client and the Web Service
server, but is not able to interfere with the client-side
or server-side implementations of the Web Services
software stack directly.

Web
Service
Client

Web
Service
Server

Attacker

Figure 4: Attack Model for XML Signature Wrapping.

Based on this abstract yet formal scenario model,
the XSpRES approach derives the ability to extend the
Web Service stacks at both Web Service client and
Web Service server arbitrarily, as long as these ex-
tensions remain within the particular trusted domain
and outside of the scope of the attacker. Thus, the
XSpRES architecture introduces two new entities to
the scenario: a client-side extension and a server-side
extension. Depending on the real-world instantiation
of this model, these extensions can be realized as ad-
ditional modules in the particular Web Services soft-
ware stack or as external gateways interlinked to the
network connection between client and server. For
the proof-of-concept implementation of the XSpRES
approach (which is discussed in detail in Sections 4, 5
and 6) the realization as gateways has been chosen, as
shown in Figure 3.

Web
Service
Client

Web
Service
Server

ht
tp
:/
/s
er
ve
r

XSpRES
Client
Gateway

ht
tp
:/
/g
at
ew
ay

SOAP

XSpRES
Server
Gateway

ht
tp
:/
/g
at
ew
ay

SOAPSOAP

Figure 3: XSpRES Architecture overview.

Either way, the two new entities are responsible
for performing a set of additional processing and ver-
ification steps in relation to the creation and verifica-
tion of signed XML messages.

3.2 Client-side Approach
Though XML Signature Wrapping attacks commonly
only affect the Web Service server operations, there
nevertheless exists the need to consider also the Web
Service client-side to improve the overall robustness
of the secured XML-based communication. The goal
of the XSpRES client-side processing is to bind the
XML Signature in the course of signature creation
as uniquely and strongly as possible to its referring
content. This is achieved by chaining a set of sep-
arate modules, which seamlessly integrate into the
client-side Web Service processing flow. The devel-
oped modules deal with Referencing Verification, Pre-
fix Transformation and the Signature Creation itself
(cf. Figure 5). Each of these components is described
in detail in Section 4.

3.3 Server-side Approach
In correspondence with the client-side approach, the
server-side Web Service processing flow is extended
using an integrated architecture of five modules that
protect the server-side implementation from being
compromised by a XML Signature Wrapping attack.
The goal of the XSpRES server-side processing is to
extend the verification steps to include checks on the
message structure and to evaluate the strict and unique
binding enforced by the client-side modules. The de-
veloped modules deal with the tasks of Denial of Ser-
vice Detection, XML Schema Validation, Referencing
Verification, Prefix Transformation and the XML Sig-
nature Verification itself (cf. Figure 6). Each of these
modules is described in detail in Section 5.

3.4 Backwards Compatibility and
Standards Compliance

An important characteristic of the XSpRES archi-
tecture is the backward compatibility, meaning that
all parts of the XSpRES architecture are able to
handle communication not originating from another

XSpRES-instrumented client or server. More pre-
cisely, the server-side XSpRES extension is able to
process arbitrary types of XML Signatures, even if
they originate from a different XML Signature cre-
ation framework than the XSpRES client-side mod-
ules. Vice versa, the XML Signatures generated by
the XSpRES client-side modules remain fully com-
pliant to the XML Signature specification, hence can
also be verified by any other XML Signature verifi-
cation implementation, even if it is not following the
XSpRES approach.

However, obviously, the effectiveness of the
XSpRES defense against the XML Signature Wrap-
ping attack is reduced drastically by using non-
XSpRES components at either side, since this breaks
the comprehensiveness of XSpRES falling back to the
present state of the art.

4 THE XSPRES CLIENT-SIDE
MODULES

The XSpRES client-side modules ensure the creation
of secure signatures. Figure 5 illustrates the process
flow. At first, the WS-SecurityPolicy is verified to
only use FastXPath expressions. Afterwards, those
expressions are transformed to their prefix-free equiv-
alent. Finally, the document is signed using standard
mechanisms but building on the previous processing
steps.

4.1 Referencing Verification
As discussed in Section 2.3, when sticking to the
FastXPath subset defined in (Gajek et al., 2009), the
robustness of the resulting XML Signatures against
XML Signature Wrapping is improved significantly.
XSpRES integrates FastXPath-based referencing on
the client-side for binding the XML Signature meta-
data more tightly to its signed contents.

The Referencing Verification module of the
XSpRES client-side is not directly accessing the
SOAP messages, but is merely used to preprocess the
WS-SecurityPolicy file that defines which parts of the
bypassing SOAP messages are to be signed. Com-
monly, the WS-SecurityPolicy document is created

SOAP

XSpRES Client Gateway

ht
tp
:/
/g
at
ew
ay

SOAP

Referencing
Verification

Signature
Creation

Prefix
Transformation

Figure 5: The XSpRES client-side modules and message processing flow.

and provided by the Web Service server, describing
its expectations with respect to signed parts in SOAP
messages it is targeted with. Hence, it acts as a basis
for determining the parts-to-be-signed at the client-
side. However, if the XPath expressions given in the
WS-SecurityPolicy file are not following the FastX-
Path grammar as discussed above, their effectiveness
in terms of fending XML Signature Wrapping attacks
are reduced. Thus, this module’s task is to preprocess
all XPath expressions given in the server-provided
WS-SecurityPolicy document, verifying that all of
the contained XPath expressions strictly stick to the
FastXPath grammar. If the WS-SecurityPolicy file
fulfills this requirement, it is used in the FastXPath-
based referencing module introduced previously, sim-
ply by using the FastXPath expressions from the WS-
SecurityPolicy document as the reference in the XML
Signatures created. Otherwise, the module throws an
error and stops the client gateway.

4.2 Prefix Transformation
As pointed out in (Jensen et al., 2009), the use of
XPath in conjunction with XML namespaces has its
issues, potentially leading to an exploitable XML Sig-
nature Wrapping vulnerability despite the existence
of a strict XPath expression for referencing. By bind-
ing the same namespace prefix to different namespace
URIs at different locations within a signed SOAP
message document, the server-side processing stack
can be misled into a XML Signature Wrapping attack,
even when using a strict FastXPath expression.

The Prefix Transformation module trans-
forms the FastXPath expressions from the server-
provided WS-SecurityPolicy into an equivalent,
but prefix-free variant. The FastXPath expression
of /soap:Envelope[1] gets e.g. transformed
into the semantically equivalent XPath expres-
sion of /*[local-name()="Envelope" and
namespace-uri()="http://www.w3.org/2003/05/
soap-envelope"][1]. As can be seen, the prob-
lematic use of the soap: prefix is resolved into an
equivalent representation holding the full namespace
URI of the SOAP specification. Hence, binding the
soap: prefix to another namespace URI does no
longer affect the result of the transformed XPath
expression, protecting against the XML Signature
Wrapping threat of Namespace Injection as described

in (Jensen et al., 2009).
In principle, it would be a valid approach to use

the transformed version of the FastXPath expressions
already within the WS-SecurityPolicy document it-
self, however, due to limited readability and consid-
erations in respect to available tools, the XSpRES
prototype sticks to the presented XPath transforma-
tion approach. This implies, that after the success-
ful FastXPath compliance verification of each XPath
expression extracted from the server-provided WS-
SecurityPolicy, this expression is transformed into the
prefix-free notation, and then used directly within the
created XML Signature as XPath Filter2 referenc-
ing expression. Thereby, it can be guaranteed that
a location change of a signed XML subtree within
a SOAP message automatically causes an invalida-
tion of the respective XML Signature. Even with-
out a server-side defense mechanism, this approach
provides already an effective protection against nu-
merous XML Signature Wrapping attack variations.
However, since the server-side application logic itself
might not be implemented in a way that recognizes
and uses the same fixed position as input for its oper-
ations, XML Signature Wrapping attacks remain pos-
sible even with using the prefix-free FastXPath ref-
erencing as outlined here. Thus, a strong server-side
defense is still required in addition, in order to further
reduce possible sources of errors and to decouple the
verification processes from the application logic pro-
cesses as much as possible.

4.3 Signature Creation
The Signature Creation module then creates the XML
Signature for the to be signed document parts. The
signature creation is in conformance with the corre-
sponding standards. To reach the targeted goal of a
more unique and strict binding of the signature to its
content all references are given as prefix-free FastX-
Path expressions.

5 THE XSPRES SERVER-SIDE
MODULES

The XSpRES server-modules use a modular chain of
detectors to identify an attack as early as possible.

Figure 6 illustrates the processing flow. First, the in-
coming message is processed by the DoS Protector
module to ensure that the XML document is of finite
length. The XML Schema Validator module uses a
hardened XML Schema to guarantee that there are
no unexpected elements. The Referencing Verifica-
tion module and the Prefix Transformation module as-
sure that the signed parts are accessed by the correct
FastXPath expression and the XML Signature Verifi-
cation module finally verifies the signature.

5.1 DoS Detection
The DoS Detection module is not a required compo-
nent from the XML Signature Wrapping perspective,
but is a general must have protection. Such a DoS
detector ensures that the XML document is of finite
length and henceforth prevents the overflooding of the
machine’s memory – especially in the case in which a
DOM based parser is used, since each element in the
XML message is instantiated as an object in memory.

The XSpRES system includes a DoS detector and
uses it to also check on the appearance of ID at-
tributes. If an ID attribute occurs twice, the process-
ing of the message on the server-side is aborted. This
addition to the DoS Detector suppresses basic XML
Signature Wrapping attacks, in which the signed mes-
sage part is duplicated or moved (including the ID at-
tribute), in an very early processing stage.

5.2 XML Schema Validation
The XML Schema Validation module uses a hard-
ened XML Schema to validate the incoming SOAP
messages. This schema overrides the default XML
Schema for SOAP messages by removing any possi-
bility for placing arbitrary elements in the document
as described in (Jensen et al., 2011) and pointed out
in Section 2. The drawback of this approach is that
the schema validation of a hardened XML Schema is
slower compared to the standard one, as each element
must be validated. Therefore, the XSpRES imple-
mentation merges as few schemas as possible to min-
imize the total schema size. The considered schemas
include WS-Security, WS-Utilities, XML Signature,
XPathFilter2 and WS-Addressing (whereas the latter
might also be negligible depending on the require-
ments of the underlying application scenario).

Note, that the server gateway schema must be ad-
justed to the document structure of each to be pro-
tected Web Service, since the SOAP body element
does no longer allow xs:any child elements.

5.3 Referencing Verification
The Referencing Verification module verifies the se-
curity policy. Therefore, it extracts the XPath ex-

pressions from a local policy file and, analogue to its
client-side complement, validates if these are valid
FastXPath expressions. This ensures that the hori-
zontal and vertical position of the signed fragments
is fixed.

5.4 Prefix Transformation
Afterwards, the Prefix Transformation module trans-
forms the FastXPath expressions to their namespace-
free equivalents to prevent namespace injection at-
tacks.

In contrast to the corresponding client-side mod-
ule, the received message is checked in addition. An
incoming message is parsed and a lookup for a valid
Timestamp element is made. Thereafter, the ex-
pressions in the XPath element children of the sig-
nature’s Reference element are string-compared to
those transformed FastXPath expressions from the
policy file. This assures that both, the client and the
server side, use the same policy.

5.5 Signature Verification
The XML Signature Verification module simply veri-
fies the XML Signature in the document. As the WS-
SecurityPolicy modules assures that the signed ele-
ments use the correct XPath expressions, the signed
fragments are horizontally and vertically fixed, so that
no known attack moved these message parts.

6 IMPLEMENTATION AND
EVALUATION

The implementation of each single XSpRES compo-
nent is realized by only standard Java libraries. The
client gateway acts as a simple HTTP server and signs
an incoming message by using the FastXPath expres-
sions extracted from a local policy file. These expres-
sions are validated and transformed as described in
Section 3.2. The signed message is afterwards for-
warded to the server gateway.

The server gateway is based on the Apache Axis26

Web Services Framework and the XSpRES compo-
nents are integrated as an Axis2 module. Thus, by
this integration method, the XSpRES module can re-
place the signature verification of the commonly used
Apache Rampart7 security module.

Figure 7 compares the signature verification of
the Rampart module with all security features of the
XSpRES prototype. The setup uses an AMD Athlon
II X3 440 Processor with 4GB RAM.

6http://ws.apache.org/axis2/
7http://axis.apache.org/axis2/java/rampart/

SOAP

XSpRES Server Gateway

ht
tp
:/
/g
at
ew
ay

SOAP

DoS
Detection

Schema
Validation

Signature
Verification

Referencing
Verification

Prefix
Transform

Figure 6: The XSpRES server-side modules and message processing flow.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

R
u
n
ti
m

e
 (

in
 m

s
)

Document Size (in KB)

XSpRES
Rampart

Figure 7: Runtime comparison of XSpRES and Rampart.

Both, the XSpRES and the Rampart module do se-
mantically the same: They validate the timestamp in
the message header and verify the signature over the
Timestamp element as well as the SOAP body ele-
ment. The technical difference is that Rampart uses
two ID-based references, one for the timestamp and
the other for the SOAP body. XSpRES instead uses
only one reference which selects both elements with
the transformed FastXPath expressions from the pol-
icy file.

The measurement of the time required to verify
the signature starts after the HTTP request has been
received and ends just before the verified message is
forwarded to the application logic. The processing
time is then computed as the average of 1000 mes-
sages. The measurements have been conducted for
different message sizes.

As can be seen from the visualized evaluation re-
sults given in Figure 7 both modules operate approx-
imately equal in speed, but the Rampart module has
the lack of the additional security features in relation
to XML Signature Wrapping attacks. It is also no-
table, that the runtime for Rampart is the same for
any kind of invalid messages, whereas the XSpRES
module will abort the verification process in an early
stage if the message violates the schema or the policy.

Schema
Validation

DoS Detection Policy
Validation

Signature
Verification

Object
Conversation

7ms 3ms 8ms 1ms 6ms

Figure 8: Runtime analysis of single XSpRES components
for a 200KB message.

A detailed runtime analysis for each XSpRES
component is shown in Figure 8 for one common
message size. The DoS detection takes 7ms although

the StAX parser has to process the whole document.
The DOM based Schema validation needs only 3ms,
because the instantiation of the XMLSchemaFactory,
which processes the Schema files, is done once in the
startup phase and thus saves 9ms per validation. The
signature component can be divided into three parts:
The slowest part is the conversion from the Axis2 Ob-
ject Model to a Java Document Object. The policy
validation is extremely fast, as it just searches for the
transformed FastXPath expressions in the Reference
element and string-compares them to those in the lo-
cal policy file. The signature validation requires 6ms.
In its current implementation, XSpRES uses the com-
mon DOM-based processing model. In future work,
this will be replaced by a faster streaming-based sig-
nature validation (Gruschka et al., 2011; Somorovsky
et al., 2010).

It must be mentioned, that the XSpRES proto-
type implementation is focused on security and not
on efficiency in the first place. Nevertheless, Figure 7
shows that it is comparable to the Rampart security
module. One reason for this is, that XSpRES is very
light-weight, i.e., it is only capable of handling dig-
ital signatures. Rampart, in contrast, is much more
complete in the sense of standards-compliance, in-
cluding features such as encryption, username token,
which impacts on the time required for signature ver-
ification. On the other hand, the processing time of
the XSpRES modules can be improved significantly.
By aligning the object models of the various deployed
Java components, the need for the costly object con-
version would be eliminated, reducing the processing
time by one third.

7 CONCLUSIONS

The use of SOA and Cloud concepts for the construc-
tion of distributed applications handling more and
more sensitive data is on the rise. XML is playing an
important role in such applications, since it is used for
encoding data at rest as well as data in transit. The se-
curity demands coming with the processing and stor-
age of sensitive data rely on robust and effective se-
curity technologies. Recent discoveries showed that
the XML Security specifications include serious flaws
and thus can currently not fulfill the required protec-
tion levels readily.

This paper contributes a comprehensive approach
to face these vulnerabilities providing an architec-
ture which compiles a set of inter-linked protec-
tion mechanisms for the client-side as well as the
server-side. The selection and composition of the
protection means have been guided by the require-
ments to realize the targeted architecture in an ef-
fective, but still standard-compliant and cost efficient
way. Based on this ground work, an open-source
XML Signature Wrapping attack protection library
has been implemented, which is robust against all
known instances of the XML Signature Wrapping at-
tack and thus provides a vehicle to generate and verify
signed XML documents and messages in a fail-safe
and standard-compliant manner. The seamless inte-
gration of the developed library into standard Web
Services frameworks has been another requirement,
enabling—amongst others—to evaluate the develop-
ments in a common SOAP setting. The obtained re-
sults emphasize that the proposed approach fulfills
the targeted goals and provides an effective protec-
tion against XML Signature Wrapping attacks at low
computational extra costs and by still being standard-
compliant.

Future work will target the publishing of the pre-
sented XML Signature Wrapping protection library
XSpRES. Additionally, a more in-depth and formal
analysis of the protection provided by XSpRES in
case of not yet known variations of the XML Signa-
ture Wrapping attack will bexy performed.

ACKNOWLEDGEMENTS

This work was funded by the Federal Office for Infor-
mation Security in Germany (BSI) under the contract
number 882/2010.

The authors would like to thank Holger Junker and
Juraj Somorovsky for many fruitful discussions and
their valuable input.

REFERENCES

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., and Simon, E.
(2008). XML Signature Syntax and Processing. W3C
Recommendation.

Bhargavan, K., Fournet, C., and Gordon, A. D. (2005a). A
semantics for Web Services authentication. Theoreti-
cal Computer Science, 340(1):102–153.

Bhargavan, K., Fournet, C., Gordon, A. D., and O’Shea, G.
(2005b). An advisor for Web Services Security poli-
cies. In SWS ’05: Proceedings of the 2005 Workshop
on Secure Web Services, pages 1–9, New York, NY,
USA. ACM Press.

Gajek, S., Jensen, M., Liao, L., and Schwenk, J. (2009).
Analysis of signature wrapping attacks and counter-
measures. In ICWS, pages 575–582.

Gajek, S., Liao, L., and Schwenk, J. (2007). Breaking and
fixing the inline approach. In Proceedings of the 2007
ACM Workshop on Secure Web Services (SWS’07),
pages 37–42, Fairfax, Virginia, USA. Association for
Computing Machinery.

Gruschka, N., Jensen, M., Lo Iacono, L., and Luttenberger,
N. (2011). Server-side streaming processing of ws-
security. IEEE T. Services Computing, 4(4):272–285.

Gruschka, N. and Lo Iacono, L. (2009). Vulnerable Cloud:
SOAP Message Security Validation Revisited. In
ICWS ’09: Proceedings of the IEEE International
Conference on Web Services, Los Angeles, USA.
IEEE.

Gudgin, M., Hadley, M., and Rogers, T. (2006). Web Ser-
vices Addressing 1.0 - SOAP Binding. W3C Recom-
mendation.

Imamura, T., Dillaway, B., and Simon, E. (2002). XML
Encryption Syntax and Processing. W3C Recommen-
dation.

Jensen, M. (2011). Analysis of Attacks and Defenses in the
Context of Web Services. PhD thesis, Ruhr-University
Bochum.

Jensen, M., Liao, L., and Schwenk, J. (2009). The curse of
namespaces in the domain of xml signature. In SWS,
pages 29–36.

Jensen, M., Meyer, C., Somorovsky, J., and Schwenk, J.
(2011). On the effectiveness of xml schema valida-
tion for countering xml signature wrapping attacks. In
First International Workshop on Securing Services on
the Cloud (IWSSC 2011).

Kaler, C. and Nadalin, A. (2005). Web Services Security
Policy Language (WS-SecurityPolicy) 1.1.

Lawrence, K. and Kaler, C. (2007). Web Services Security
Policy Language (WS-SecurityPolicy) 1.2.

McIntosh, M. and Austel, P. (2005). XML signature ele-
ment wrapping attacks and countermeasures. In SWS
’05: Proceedings of the 2005 Workshop on Secure
Web Services, pages 20–27, New York, NY, USA.
ACM Press.

Rahaman, M. A., Schaad, A., and Rits, M. (2006). Towards
secure SOAP message exchange in a SOA. In SWS
’06: Proceedings of the 3rd ACM workshop on Se-
cure Web Services, pages 77–84, New York, NY, USA.
ACM Press.

Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J.,
Gruschka, N., and Lo Iacono, L. (2011). All your
clouds are belong to us security analysis of cloud
management interfaces. In Proceedings of the ACM
Cloud Computing Security Workshop (CCSW).

Somorovsky, J., Jensen, M., and Schwenk, J. (2010).
Streaming-based verification of xml signatures in soap
messages. In Proceedings of the 2010 6th World
Congress on Services, SERVICES ’10, pages 637–
644, Washington, DC, USA. IEEE Computer Society.

Ticau, S.-A. (2010). Security – a centrail issue of the fu-
ture EU digital agenda. Service Oriented Architecture
pushed to the limit in eGovernment.

