
On the Insecurity of XML Security

Juraj Somorovsky

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs
der Fakultät für Elektrotechnik und Informationstechnik

an der Ruhr-Universität Bochum

Bochum, July 2013





Abstract

XML Encryption and XML Signature describe how to apply encryption and
signing algorithms to XML documents. These specifications are implemented
in XML frameworks of major commercial and open source organizations like
Apache, IBM, Microsoft, or SAP. They are employed in a large number of
major web applications, ranging from business communications, eCommerce,
and financial services over healthcare applications to governmental and military
infrastructures.
This thesis analyzes the security of these specifications and presents several

practical and highly critical attacks. First, it describes different classical and
novel XML Signature Wrapping (XSW) attack techniques, which allow to break
integrity of signed XML documents. The attacks exploit weak interfaces between
XML Signature validation and XML processing modules deployed in different
frameworks. Their criticality is confirmed by applications to cloud and Single
Sign-On interfaces: an attacker was able to use them to gain control over victim’s
Amazon and Eucalyptus cloud instances, or log in as an arbitrary user in Single
Sign-On domains of Salesforce and IBM products.
Second, the thesis describes several practical attacks on XML Encryption.

The attacks break confidentiality of RSA PKCS#1 v1.5 encrypted ciphertexts
(used for key transport) and CBC encrypted symmetric ciphertexts (used for
data encryption). An attacker can decrypt such ciphertexts by sending related
ciphertexts to a server processing encrypted messages. He can recover the whole
ciphertext by issuing a few hundreds or several thousands of requests, depending
on the considered scenario.
The work described in this thesis influenced many XML frameworks and sys-

tems, as well as the W3C XML Encryption recommendation. These were up-
dated to prevent the attacks. The thesis summarizes best practices to counter
all the described attacks in different practical scenarios that were developed in
collaboration with developers and members of standardization groups.
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1 Introduction

XML [BPSM+08] is a widely deployed, platform-independent data format. It
is used in office applications, configuration files, cloud applications, databases,
or in Web Services. The wide adoption of XML has resulted in an emergence
of numerous extension specifications. Over the last 15 years, OASIS and W3C
have established a large family of XML-related standards and recommendations.
Those allow for selection [CD99] and transformation [Cla99] of XML contents,
remote procedure invocations [MBF+04], Single Sign-On [CKPM05], or access
control [Mos05].
Miscellaneous network applications and complex communication standards

applying XML have quickly raised security demands. In distributed systems, the
most common technology to provide security over a network is Secure Sockets
Layer (SSL) / Transport Layer Security (TLS) [DR08]. SSL/TLS protects the
transport layer between two communication partners. It secures confidentiality,
integrity, and authenticity of all data exchanged on this layer. Even though this
technology is widely adopted, it becomes insufficient in some complex scenarios
where:

• Only specific message parts have to be encrypted (e.g., credit card numbers
or passwords): SSL/TLS encrypts all data transfered using the established
channel.

• The data has to be transfered over untrusted third parties: SSL/TLS
establishes a secure channel only between two communication partners,
i.e. offers point-to-point security. If a client sends data to a server over
a third party (proxy), two SSL/TLS channels are used. The data is first
sent over the first encrypted channel to the third party. The third party
decrypts it and sends it over the second encrypted channel to the server.
Thus, the third party can see all transfered data.

XML Security. The additional security demands are addressed by two
further XML standards belonging to the XML Security family: XML Signa-
ture [ERS+08] and XML Encryption [ERI+02]. These standards define means
to secure integrity, authenticity, and confidentiality of XML messages. To this
end, they apply cryptographic algorithms directly on message level. They allow
to secure arbitrary elements within the processed document or even external
data. They can secure messages that are stored in untrusted cloud databases or
distributed over insecure networks. An attacker cannot modify the signed ele-
ments without breaking the signature scheme, and he cannot decrypt it without
the corresponding decryption key. Encrypted XML data can be decrypted only
by a receiver who is in possession of a decryption key and can be signed only by

1



1 Introduction

a sender with a trustworthy signing key. This way XML Signature and XML
Encryption ensure end-to-end security and message-level security.
Nowadays, XML Signature and XML Encryption are implemented in a wide

range of systems and frameworks processing sensitive data, including bank-
ing [EBI11, Dan10], eGovernment [HS11, Kan10, VS12], eCommerce, military,
and eHealth infrastructures [Cen08, Com10]. The increasing adoption of XML
Security in these scenarios is confirmed by a large number of commercially
available XML Security Gateways [IBM13, Lay13, Ora11], or cloud applica-
tions [AWS13, Euc13] and enterprise software [JBo13, SAP13] supporting these
standards. These highly critical scenarios clearly motivate for deep analysis of
new security threats.

Contribution. This thesis investigates the security of XML Signature and
XML Encryption. First, it analyzes various XML frameworks and systems and
their vulnerability to XML Signature Wrapping (XSW) attacks. These attacks
allow an attacker to insert new unauthenticated elements in a signed XML mes-
sage and force the receiver to process them. Thus, an attacker can execute
arbitrary content on behalf of the message signer. The practicality and criti-
cality of these attacks are confirmed by attacks on cloud interfaces of Amazon
Web Services [AWS13] and Eucalyptus [Euc13], and by attacks on various Sin-
gle Sign-On frameworks used in governmental or enterprise infrastructures. In
these scenarios, a single signed XML message is sufficient to get full control over
the victim’s cloud machines or log in as an arbitrary user on a system support-
ing Single Sign-On. In general, the attacks exploit differences in XML parsing
mechanisms to break integrity of signed messages. They show the necessity for
clear interfaces between the XML Signature validation and the XML processing
modules deployed in XML Security frameworks. This thesis summarizes such
approaches, and presents countermeasures that are practically applicable in var-
ious scenarios. In addition, it presents an XSW library for automatic detection
of these attacks.
The main results on the XSW attacks were described in the following papers:

• All Your Clouds are Belong to us – Security Analysis of Cloud Manage-
ment Interfaces published at ACM CCSW’11 [SHJ+11], and

• On Breaking SAML: Be Whoever You Want to Be published at USENIX
Security’12 [SMS+12].

Second, the thesis investigates the security of XML Encryption and its vul-
nerabilities to adaptive chosen-ciphertext attacks (see Section 4.2 for details on
these attacks). In an adaptive chosen-ciphertext attack scenario, the attacker’s
goal is to decrypt a ciphertext without having a decryption key. To this end,
he iteratively creates ciphertexts, which are somehow related to the original
ciphertext. He sends the ciphertexts to a receiver and observes its responses.
With each response he learns some plaintext information. This helps him to
break security of the original ciphertext. This thesis shows how to apply these
attacks on servers utilizing XML Encryption. It shows:

1. An attack on symmetric CBC-ciphertexts: This attack generalizes the
idea behind Vaudenay’s padding oracle attacks [Vau02]. It exploits XML
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parsing mechanisms and character encodings to perform a highly efficient
attack. Using this attack, it is possible to decrypt one byte by issuing 14
server queries on average. The attack is described in Section 4.4.

2. An attack on RSA-PKCS#1 v1.5 encrypted messages: This attack com-
pletely breaks confidentiality of the exchanged symmetric keys encrypted
with RSA-PKCS#1 v1.5 [Kal98]. It shows how to adapt Bleichenbacher’s
algorithm [Ble98] to attack seemingly secure systems. To this end, the
attack exploits timing side-channels, or combination of the PKCS#1 v1.5
and CBC mechanisms. The attack is described in Section 4.5.

3. Backwards Compatibility attacks: These attacks show how an attacker can
break security properties of secure encryption schemes in XML Encryption
(such as RSA-OAEP [KS98] or AES-GCM [Dwo07]), if the server supports
legacy encryption schemes (such as RSA-PKCS#1 v1.5 or AES-CBC). The
attacks are described in Section 4.6.

In contrast to the XML Signature Wrapping attacks, these attacks work in-
dependently of a processing framework. Thus, as a result of these attacks, the
newest version of the XML Encryption recommendation was extended [ERH+13]
to explicitly describe countermeasures against them.
The main results on these attacks were described in the following papers:

• How to Break XML Encryption published at ACM CCS’11 [JS11],

• Bleichenbacher’s Attack Strikes Again: Breaking PKCS#1 v1.5 in XML
Encryption published at ESORICS’12 [JSS12], and

• One Bad Apple: Backwards Compatibility Attacks on State-of-the-Art
Cryptography published at NDSS’13 [JPS13].

The attacks described in this thesis are of general importance. It is likely
that they are applicable to other standards as well. One example of another
attack target is JSON Object Signing and Encryption [jWG], which specifies
application of cryptographic mechanisms to JSON messages. Our attacks on
XML Encryption were directly applicable to JSON Web Encryption [JRH12].

Thesis Outline. Chapter 2 gives an overview of the XML technology and
related specifications. Chapter 3 introduces general XSW attacks and practical
attacks on cloud and Single Sign-On interfaces. It presents practical counter-
measures, and our XSW library which is capable of automatic XSW vector gen-
eration. Chapter 4 gives background on encryption mechanisms and introduces
adaptive chosen-ciphertext attacks. Then, our attacks on XML Encryption and
practical countermeasures are presented. The thesis concludes with future re-
search directives in Chapter 5.
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2 XML and Web Services – Basics

In the following, we introduce the concepts behind XML, XML Security, and
Web Services. They are relevant to this thesis. Readers familiar with these
standards and specifications can safely skip this chapter.

2.1 XML

The Extensible Markup Language (XML) [BPSM+08] is a platform-independent
language to define new data formats. It has been designed by the W3C Working
Group to fulfill the following main goals:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML documents shall be easy to create and process within applications.

• XML shall be human-readable and machine-readable.

Nowadays, XML is used to define various structures for storage (ODF or
XHTML), transmission (Web Services), or metadata (XML policies and con-
figuration files).

XML Structure. An XML document consists of characters. Legal characters
are tab (\t), carriage return (\r), line feed (\n), and the legal characters of
Unicode [Kwa95] and ISO/IEC 10646 [Oht95].
Typically, when processing an XML document (or by processing other tree-

based formats such as HTML or XHTML), the document is first represented
as a DOM (Document Object Model) [BHH+04]. According to the DOM, the
XML document structure consists of the following elements (consider the XML
document in Figure 2.1):

• Document represents the entire XML document. It provides the primary
access to the document’s data.

<lib:library xmlns:lib="lib-uri">
<book Id="1">
<author>Douglas Adams</author>
<title>The Hitchhiker’s Guide to the Galaxy</title>
<year>1979</year>

</book>
</lib:library>

Figure 2.1: XML document example.
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• Element is a node, which either begins with a start-tag (e.g. <tag>)
and ends with a matching end-tag (e.g. </tag>) or consists only of an
empty-element tag (e.g. <tag/>). An element can contain a text content
or further child elements. In our example, we see that the root element
library has one child element book. The book element contains three
child elements.

• Attribute is a name-value pair belonging to a specific element. It is placed
inside of the start-tag. An example gives the Id="1" attribute inside the
book element.

• Text (character data) node represents the textual content of an element or
attribute. In our document, we see for example the Douglas Adams text
content within the author element.

• Entity : In order to display special characters such as brackets (<,>) or
ampersands (&) in character data, XML specifies entities. Some of the
special entities are provided directly by the XML specification, e.g. &lt;
(<), &amp; (&), and &gt; (>). Additional entities can be defined directly
in the XML document using a Document Type Definition (DTD).

Additionally, XML includes different node types such as processing instruc-
tions, document type declarations, comments, or CDATA sections. Please see
the XML [BPSM+08] and DOM [BHH+04] specifications for more details about
these node types.

XML Well-Formedness. The XML specification summarizes a series of
rules that define well-formed XML documents. A well-formed XML document
contains one or more elements. It has a correct XML syntax. It contains
exactly one root element (also called the document element). Start-tags and
end-tags in the document are properly nested. Each of the parsed entities
(referenced directly or indirectly within the document) is well-formed. See the
XML specification for more details [BPSM+08].

Document Type Definition (DTD). DTD defines the XML document struc-
ture with a list of elements and their attributes. DTD is placed directly in the
XML document, before the first element.
Figure 2.2 defines the structure of the book element used in Figure 2.1. This el-

ement has three elements containing character data (author, title, and year),
and an Id attribute. The Id attribute is of the type ID. The ID attribute type
ensures that the book element can be uniquely referenced by Id. Because of this,
no two book elements can contain the same Id value. Otherwise, the document
would become invalid.

XML Namespaces. XML namespaces provide unique names for elements
and attributes by binding them to a specific URI (Uniformed Resource Iden-
tifier) [BLFM98]. Thereby, they allow to prevent conflicts in element and
attribute names when working with different XML documents from different
sources.
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2.2 XML Schema

<!DOCTYPE library [
<!ELEMENT book (author,title,year)>
<!ATTLIST book Id ID>

<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>

]>

Figure 2.2: Document Type Definition defining the structure of a book ele-
ment from Figure 2.1: the book element contains an ID type attribute and three
elements.

Each XML document has a default namespace. It is possible to define addi-
tional prefixed namespaces. In Figure 2.1, we have a namespace with a prefix
lib defined by xmlns:lib="lib-uri". As the namespace is defined in the root
element, each element and attribute could apply the lib prefix. In our example,
the library element comes from the lib namespace. The book elements and
its children are bound to the default namespace.

2.2 XML Schema

The W3C recommendation XML Schema [WF04] is a language to describe the
syntax of an XML document. It is a successor of DTD. XML Schema is defined
in an external XML document and gives the developer more flexibility than
DTD. A document is valid with respect to a certain schema, if its syntax is
compliant with this schema. A schema consists of a content model, a vocabulary,
and data types. The content model describes the document structure and the
relationship of the items.

Text Definitions. Attribute and element values can be constrained using
data types. The specification provides 19 primitive data types to define the
content of elements and attributes, e.g. string, boolean, double, or base64Binary.
These primitive data types can be used to build derived types (e.g. ID or
positiveInteger).

Simple and Complex Type Definition Components. Type definitions
restrict document elements and their structures.
The simple type defines elements or attributes containing text values. A

simple type element contains no sub-elements. A definition of the year element
from the previous example is described in Figure 2.3. The value of this element
must be higher than 1900.
The content of an element – including its element and text children – can

be defined using complex types. A complex type typically includes a sequence
of different element types (achieved by a sequence indicator) and attribute
definitions. The example in Figure 2.4 shows the definition of the book element.
This element contains a sequence of elements author, title and year, and an
attribute of type ID.

7



2 XML and Web Services – Basics

<element name="yearType" xmlns="http://www.w3.org/2001/XMLSchema">
<simpleType>
<restriction base="integer" >
<minInclusive value="1900"/>

</restriction>
</simpleType>

</element>

Figure 2.3: Simple type definition of a year element.

<element name="book" xmlns="http://www.w3.org/2001/XMLSchema">
<complexType>
<sequence>
<element name="author" type="string"/>
<element name="title" type="string"/>
<element name="year" type="yearType"/>
<any minOccurs="0" processContents="skip"/>

</sequence>
</complexType>
<attribute name="Id" type="ID"/>

</element>

Figure 2.4: Complex type definition of a book element.

Regarding to this thesis there is one important element definition in XML
Schema. The any element allows the usage of any well-formed XML document
in a declared content type. When an XML processor validates an element de-
fined by an any element, the processContents attribute specifies the level of
flexibility. The value lax instructs the schema validator to check against the
given namespace. If no schema information is available, the content is consid-
ered valid. In the case of processContents="skip" the XML processor does
not validate the element at all. Considering the example from Figure 2.4, the
book element could contain an arbitrary element from an arbitrary namespace
behind the year element.

2.3 XPath

XML Path Language (XPath) [CD99] describes paths to traverse XML trees.
It is extended with a set of basic arithmetic and string processing functions.
Evaluation of an XPath expression can start from an arbitrary element and
returns a node set or character data.
XPath defines several axes to move within the document tree, see Figure 2.5.

It is possible to select

• sibling elements of the context node using the following-sibling and
preceding-sibling axes,

• child and descendant elements of the context node using the child and
descendant axes, or

8
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selfself

parent

child

ancestor

descendant

following
sibling

preceding 
sibling

Figure 2.5: A context node with its ancestor, sibling, and descendant elements.

• parent and ancestor elements of the context node using the parent and
ancestor axes.

Consider the document in Figure 2.1. The following XPath expressions ap-
plied on this document would lead to the following results:

• /descendant::*/child::book[position()=1] starts its search from the
document root. It searches for a descendant element with an arbitrary
name (indicated by *) and selects its first book element. The result of this
expression returns the book element.

• /descendant::author[parent::book]/child::text() searches for all
the author elements in the document, which have a book parent ele-
ment. Then, it selects the text values of the found elements. The result
is Douglas Adams.

• /descendant::book[position()=2]/attribute::* searches for the sec-
ond book element in the document and selects all its attributes. As the
document contains only one book element, the result is an empty set of
nodes.

• /*[local-name()="library" and namespace-uri()="lib-uri"] starts
its search from the document root. It searches for a library element
from a lib-uri namespace. It returns the whole library element.

For more details and examples, see the XPath specification [CD99].
XPath is a general construct for selecting data. It is used in different specifi-

cations, such as XPointer [MMGW03], XQuery [FFB+09], or XSLT [Cla99].

2.4 XML Processing

Two different programming approaches exist for working with XML documents:
tree-based (or also called DOM-based) and streaming-based (or event-based).
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library

book ID=“1“

author

title

year

Douglas Adams

The Hitchhiker's Guide
 to the Galaxy

1979

StartDocument
StartElement: library

StartElement: book, ID=”1”

StartElement: author
Characters: Douglas Addams

StartElement: title
Characters: The Hitchhiker's ...

StartElement: year
Characters: 1979

EndDocument

EndElement: author

EndElement: title

EndElement: year

EndElement: book
EndElement: library

Figure 2.6: A simplified description of differences between the DOM-based and
streaming-based parsing: A developer using the DOM-based approach has access
to all the document elements after parsing is complete (left). On the other hand,
a developer using the streaming-based approach has only access to specific events
while parsing is performed (right).

DOM-based Processing. An example of a tree-based approach gives the
DOM (Document Object Model) [BHH+04]. DOM provides maximum flexibil-
ity for developers as they can dynamically access and change every node in a
DOM tree. But before doing this, the whole document has to be read and stored
in the memory. All the document elements, their relations and properties are
mapped into newly instantiated objects. The memory consumption by such a
processing is few times higher than the parsed XML document. This leads to
a big disadvantage of DOM – high memory consumption when processing large
XML documents.

Streaming-based Processing. Streaming-based paradigms – such as the
Simple API for XML (SAX) [Mor02] or the Streaming API
for XML (StAX) [CC09] – process XML documents in real time. They do
not store any data about the processed elements. They can generate output
immediately or interrupt parsing. This is much more efficient and thus prefer-
able for high performance applications. On the other hand, each document is
processed only once and there is no possibility to go back during parsing. The
developer has only access to a list of XML events, which are generated while
parsing the XML document tree.

In comparison to the tree-based approach, a developer applying the streaming-
based approach uses a totally different code for accessing specific elements in
the XML document (see Figure 2.6).
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2.5 XML Security

2.5 XML Security

The need for secure message exchange between different XML applications
lead to the development of two XML Security specifications: XML Signa-
ture [ERS+08] and XML Encryption [ERI+02]. In comparison to
SSL/TLS [DR08] or IPsec [VM05] – which secure data only during the trans-
port – the XML Security specifications apply security algorithms directly on
the message-level. XML Security is rather similar to S/MIME [RT10] and
OpenPGP [CDF+07] message formats. In comparison to these two specifica-
tions, it offers much more flexibility as it allows to secure arbitrary document
contents.

2.5.1 XML Signature

The XML Signature specification [ERS+08] defines the syntax and processing
rules for creating, representing, and verifying XML-based digital signatures. It
allows to protect integrity and authenticity of the XML messages. The specifi-
cation is very flexible and allows to sign any type of digital data. It is possible
to sign a whole XML tree, specific elements, parts of elements, or even arbi-
trary multiple parts of the XML tree. One XML Signature can cover several
local or global resources. Basic structure of an XML Signature is depicted in
Figure 2.7.1

<Signature ID?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*

</Signature>

Figure 2.7: XML Signature data structure taken from [ERS+08] (“?” denotes
zero or one occurrence, “+” denotes one or more occurrences, and “*” denotes
zero or more occurrences).

An XML Signature is represented by the Signature element. XML Signa-
tures are two-pass signatures: The hash value of the resource (DigestValue)
along with the used hash algorithm (DigestMethod) and the URI reference to
the resource are stored in the Reference element. Additionally, the Transforms

1For simplicity, namespace declarations and namespace prefixes are omitted in most of the
figures. They are explicitly included only when they are important for the attack descrip-
tions.
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element specifies the processing steps, which are applied prior to resource hash-
ing. Each signed resource is represented by one Reference element in the
SignedInfo element. Therefore, SignedInfo is a collection of hash values
and URIs. The SignedInfo element itself is protected by the signature. The
CanonicalizationMethod and the SignatureMethod element specify the algo-
rithms used for canonicalization and signature creation, and are also embedded
in SignedInfo. The Base64-encoded value of the computed signature is de-
posited in the SignatureValue element. In addition, the KeyInfo element facil-
itates the transport of signature relevant key management information. Object
is an optional element that may contain any data.

2.5.1.1 XML Canonicalization

Two XML documents containing semantically identical data can differ in their
physical byte representation. They can contain different entity structures, char-
acter encodings, attribute orderings, or number of whitespaces in the element
tags. Computing hash values over such XML documents brings different re-
sults. Therefore, before creating or validating XML Signatures, the XML doc-
uments (or their signed parts) have to be converted to the canonical form with
an appropriate canonicalization method. XML Canonicalization ensures that
semantically identical XML documents give identical hash values.
The major changes done by converting to the canonical form are listed below:

• The document is encoded in UTF-8.

• Line breaks are normalized to line feeds (\n).

• Empty elements are converted to start-end tag pairs.

• Namespaces and attributes are lexicographically ordered.

• Special characters are encoded as character references.

There are two types of XML Canonicalization: Inclusive [Boy01] and Ex-
clusive [RrB02]. Inclusive XML Canonicalization declares all namespaces used
in ancestor elements in the root element of the canonicalized XML fraction.
Exclusive XML Canonicalization declares a namespace in an element only if:

1. the element visibly utilizes this namespace (the element or its attribute
uses the namespace prefix)

2. and this namespace was not already declared by any ancestor element
(that is also canonicalized).

Figure 2.8 shows application of the Inclusive and Exclusive XML Canonical-
ization methods on the book element from Figure 2.1. Inclusive XML Canon-
icalization declares the lib namespace in the book element. Exclusive XML
Canonicalization omits the lib declaration as this namespace is not needed in
the canonicalized part.
The Inclusive XML Canonicalization method presents one disadvantage. An

XML processor can namely easily destroy a signature over an element, if it
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<book xmlns:lib="lib-uri" Id="1">
<author>Douglas Adams</author>
<title>The Hitchhiker’s ...</title>
<year>1979</year>

</book>

<book Id="1">
<author>Douglas Adams</author>
<title>The Hitchhiker’s ...</title>
<year>1979</year>

</book>

Figure 2.8: Application of the Inclusive (left) and Exclusive (right) XML
Canonicalization method on the book element from Figure 2.1.

declares a new namespace in one of its ancestors (this would namely lead to
inclusion of this namespace in the signed element during the canonicalization
process). Thus, Exclusive XML Canonicalization is the preferred method for
canonicalizing secure XML documents [RrB02, MGMB07].

2.5.1.2 XML Signature Processing

The construction of an XML Signature proceeds as follows. First, the Reference
elements are created. To this end, each data object to be signed is trans-
formed by the applied transformation algorithms (e.g., by canonicalization or
XPath). This transformed data object is used as input for the hash com-
putation and the calculated digest is stored in DigestValue. The URI at-
tribute, DigestValue, DigestMethod, and the Transforms element are taken to-
gether to create a Reference element. The Reference elements, combined with
CanonicalizationMethod and SignatureMethod, are put into the SignedInfo
element. The whole SignedInfo element is then canonicalized using the algo-
rithm from CanonicalizationMethod. The resulting octets are signed using the
signature algorithm given by SignatureMethod. Finally, the Base64-encoded
signature value is stored inside the SignatureValue element.
An XML Signature is validated in two steps. First, the references are val-

idated.2 Thereby, the referenced content of each Reference element is re-
trieved, transformed, and hashed with the specified methods. The calculated
hash values are compared with the content of the DigestValue elements. Sec-
ond, the SignedInfo element is canonicalized with the specified algorithm from
CanonicalizationMethod. The output of the canonicalization is used for the
signature verification by application of the algorithm specified in Signature-
Method (which includes all cryptographic functions involved in the signature
operation, e.g. hashing, public key algorithms, HMACs [KBC97], or padding).
For this purpose, the verifier uses the key retrieved from the KeyInfo element
or by other means.

2.5.1.3 XML Signature Types

The Signature element can be placed at an arbitrary position in the XML tree.
According to the relationship between the position of the Signature element

2This processing order is recommended by W3C and can be exploited by an XSLT command
injection [Hil07]. The author recommends to disable XSLT processing, or to invert the
order of signature and reference validation if XSLT processing cannot be disabled.
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Root element

Object

Id=“123“

Signature

SignedInfo

Reference URI=“#123“

Signed

       ...

Root element

Id=“123“

Signature

SignedInfo

Reference URI=“#123“

Signed

       ...

Root element

Id=“123“

Signature

SignedInfo

Reference URI=“#123“

Signed

       ...

Figure 2.9: Detached, Enveloping, and Enveloped XML Signature types. The
hatched area represents the signed content.

and the position of the signed data, we differentiate between three types of XML
Signatures (see Figure 2.9):

• Detached XML Signature protects an element (or an external document)
that is neither inside nor a parent of the Signature element. A typical
application of this signature type finds place in SOAP-based Web Services
(see Section 2.6.2).

• Enveloping XML Signature protects an element placed inside of the Signa-
ture element. More concretely, the signed content is placed in the signa-
ture’s Object element.

• Enveloped XML Signature protects a Signature’s ancestor element (this
can also be the document’s root element). This specific XML Signature
type requires application of an enveloped transformation, which excludes
the whole Signature element from the Reference hash value computa-
tion. Thus, even if the root XML element is signed, the document still
contains unsigned data within the Signature element. This signature
type is typically used in SAML messages (see Section 2.7).

2.5.2 XML Encryption

XML Encryption [ERI+02] specifies methods to encrypt XML-based data struc-
tures. It specifies two public-key encryption schemes (PKCS#1 in versions
1.5 [Kal98] and 2.0 [KS98]), two symmetric key wrapping schemes (3DES Key
Wrap and AES Key Wrap [NIS01a]), and two symmetric ciphers for data en-
cryption (3DES-CBC and AES-CBC [MvV96]). All are mandatory.3

XML Encryption defines two basic data structures (see Figure 2.10):

• EncryptedKey: This element typically stores an encrypted symmetric
key. It can contain up to four components. The EncryptionMethod and
KeyInfo elements provide an information about the encryption method

3In addition to these cryptographic primitives, the W3C Working Group included AES-
GCM in the latest specification version [ERH+13] in order to prevent a recent attack on
CBC-based XML Encryption [JS11], which is described later in this thesis. AES-CBC and
3DES-CBC are still included in the specification, for backwards compatibility reasons.
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<EncryptedKey ID?>
<EncryptionMethod/>?
<KeyInfo/>?
<CipherData>
<CipherValue>?

</CipherData>
(<ReferenceList>
<DataReference URI/>*

</ReferenceList>)?
</EncryptedKey>

<EncryptedData ID?>
<EncryptionMethod/>?
<KeyInfo/>?
<CipherData>
<CipherValue>?
<CipherReference URI?>?

</CipherData>
</EncryptedData>

Figure 2.10: Structure of data encrypted with XML Encryption taken
from [ERI+02] (“?” denotes zero or one occurrence, “+” denotes one or more
occurrences, and “*” denotes zero or more occurrences).

and the (public or symmetric) key used for the encryption process. The
CipherData element contains the encrypted symmetric key k. Reference-
List contains references to all EncryptedData elements that can be de-
crypted with the encapsulated symmetric key.

• EncryptedData: This element stores a symmetrically encrypted XML pay-
load. It typically consists of three elements. The EncryptionMethod
element gives an information about the symmetric encryption method.
The KeyInfo element stores information about the symmetric encryption
key used for payload decryption. This can be a key encapsulated in the
EncryptedKey element or a reference to a different available key. The
encrypted payload is stored in the CipherData element.

Since XML is a text data format, all binary data is converted to text data by
applying Base64 [Jos06] encoding.

2.5.2.1 XML Encryption Processing

In order to encrypt XML data in common applications, usually hybrid encryption
is used. That is, encryption proceeds in two steps:

1. The sender chooses a session key k. This key is encrypted with a public-
key encryption scheme, under the receiver’s public-key. The resulting
ciphertext is stored in the EncryptedKey element.

2. The actual payload data is then encrypted with a symmetric encryption
algorithm using the key k. This yields a ciphertext, which is stored in the
EncryptedData element.

The message decryptor reverses this process in an obvious way. It first de-
crypts the session key k. Then, it uses k to decrypt the encrypted payload.
Finally, the payload data is parsed with an XML parser.
The combination of public-key and symmetric-key encryption schemes is often

used in practice. Public-key encryption schemes ensure that two parties can
exchange a secret symmetric key without sharing a common secret. However,
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such schemes are often more inefficient than typical symmetric-key encryption
schemes. The combination of these two schemes provides a system with an
efficient data encryption without previous key distribution.
More information on XML Encryption and its decryption processing steps

can be found later in Section 4.3.

2.6 Web Services

Web Services are a method for interprocess interactions over networks between
different software applications. A Web Service can be implemented using differ-
ent technologies. Most Web Services apply the REST [FT02] and
SOAP [MBF+04] technologies.
In this thesis we consider SOAP-based Web Services. While considering a

SOAP-based technology, a Web Service is a general term for a family of stan-
dards maintained by W3C and OASIS. These standards extend the basic Web
Services idea to provide message-level security, definition of policies, or authen-
tication and authorization mechanisms.

2.6.1 SOAP

SOAP (originally defined as Simple Object Access Protocol) is a W3C specifica-
tion defining structure of XML messages and a protocol to achieve a machine-
to-machine communication [GHM+03]. The communicating applications use
SOAP messages. SOAP messages generally consist of header and body. The
Header element includes message-specific data (e.g. timestamp, user informa-
tion, or security tokens). The Body element contains function invocation and
response data, which are mainly addressed to the business logic processors.
An example of a SOAP message is given in Figure 2.11. A server receiving this

SOAP message proceeds as follows. First, it searches for a function name, which
is defined in the Body element (the Body element contains a CreditCardPayment
function). Afterwards, it invokes the function and responds to the requester.

<Envelope>
<Header/>
<Body>
<CreditCardPayment>
<Name>John Smith</Name>
<Number>1234 5678 9000 1234</Number>
<Issuer>Example Bank</Issuer>

</CreditCardPayment>
</Body>

</Envelope>

Figure 2.11: SOAP message example.
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2.6.2 WS-Security

Web Services Security [NKMHB06] – or WS-Security for short – is an OASIS
standard defining the application of security primitives to SOAP-based Web
Services. In particular, this includes usage of XML Signature, XML Encryp-
tion and different security tokens (username token, timestamp, or X.509 certifi-
cates [CSF+08]) in XML-based SOAP messages.
A simplified structure of an XML Signature applied to a SOAP message ac-

cording to WS-Security gives Figure 2.12. The depicted SOAP message includes
a function invocation DeleteUser defined in the SOAP body. The authenticity
and integrity of the SOAP body is ensured by the XML Signature defined in
the SOAP header. The signature contains an Id-reference pointing to the SOAP
body, which secures integrity of the whole Body element.

Signed

Processed

Envelope

Header

Signature

SignedInfo

Reference URI=“#123“

Body

DeleteUser

Id=“123“

Eve

Security

Figure 2.12: Example of XML Signature applied on the SOAP body.

The recipient processes such a message as follows. He first searches for the
referenced element given in SignedInfo. He computes the digest value over
this element and compares it to the value given in the DigestValue element.
Afterwards, he verifies the signature value over SignedInfo. If the verification
succeeds, he can execute the function defined in the SOAP body.

2.6.3 Web Services Policy

A Web Service endpoint can have different requirements, capabilities, or be-
haviors (e.g. encryption and signature algorithms, usage of security tokens, or
specific transport mechanisms). The Web Services Policy (WS-Policy) frame-
work [YHV+07] defines a general construct to specify such Web Service proper-
ties and requirements. In WS-Policy, each Web Service property is defined as a
policy assertion. WS-Policy provides a core set of constructs to combine general
policy assertions and describe policies for arbitrary Web Services environments.
Policy assertions are grouped into policy alternatives. A set of policy alterna-

tives gives a WS-Policy definition. For grouping policy assertions two XML tags
are used: All and ExactlyOne. All is a logical AND and indicates that all child
node assertions have to be fulfilled. ExactlyOne indicates a logical XOR and it
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<Policy>
<ExactlyOne>
<All>
<EncryptedParts><Body/></EncryptedParts>
<SignedParts><Body/></SignedParts>

</All>
<All>
<EncryptedParts><Body/></EncryptedParts>
<SignedParts><Header Name="Timestamp"/></SignedParts>

</All>
</ExactlyOne>

</Policy>

Figure 2.13: WS-Security Policy with two policy alternatives. It defines that
the SOAP body must be encrypted. Additionally, either the SOAP body or the
Timestamp element must be signed.

contains assertions, from which exactly one has to be fulfilled.4 An example of
a WS-Policy document with two policy alternatives is shown in Figure 2.13.
A WS-Policy can for example be published as a part of a WSDL (Web Services

Description Language) [CCMW01] file.

2.6.4 Web Services Security Policy

Web Services Security Policy (WS-Security Policy) is an OASIS
framework [LK07]. It defines a set of security-specific policy assertions. The
assertions are used together with the WS-Policy specification to express Web
Services security constraints and requirements.
An example of a WS-Security Policy document is given in Figure 2.13. This

policy definition would enforce the server to process only SOAP messages that
contain an encrypted SOAP body. In addition, it is necessary to sign either the
Timestamp element or the SOAP body element.

2.7 SAML

Security Assertion Markup Language (SAML) is an XML standard for exchang-
ing authentication and authorization statements about Subjects [CKPM05] main-
tained by OASIS. It is typically used in Single Sign-On (SSO) deployments (see
Section 3.3).
SAML subjects are described in XML-based assertions. The structure of

a SAML assertion is depicted in Figure 2.14. The SAML assertion consists
of the following elements. The Issuer element specifies the SAML authority
that is making the claim(s) in the assertion. The assertion’s Subject defines
the principal about whom all statements within the assertion are made. The
*Statement elements are used to specify user-defined statements relevant for
the context of the SAML assertion.

4However, many Web Services implementations handle ExactlyOne as a logical OR and thus
also accept messages with more assertions fulfilled.
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<Assertion Version ID IssueInstant>
<Issuer>
<Signature>?
<Subject>?
<Conditions>?
<Advice>?
<AuthnStatement>*
<AuthzDecisionStatement>*
<AttributeStatement>*

</Assertion>

Figure 2.14: SAML assertion structure.

To protect the integrity of the security claims made by the Issuer, the whole
Assertion element must be protected with a digital signature following the
XML Signature specification. Therefore, the SAML specification [CKPM05] re-
quires that either the Assertion element or an ancestor element must be refer-
enced by the Signature element, with an enveloped XML Signature ([CKPM05],
Section 5.4.1). Furthermore, Id-based referencing must be used ([CKPM05],
Section 5.4.2).

Usage of the SAML assertions in various XML messages is described in the
SAML Bindings specification [Sco05]. In REST-based frameworks, the SAML
assertion is typically put into an enveloping Response element (described by
the POST binding). Frameworks applying SOAP insert the SAML assertions
into the SOAP header (or the Security element inside of the SOAP header).
For clarification purposes, consider that the SAML assertions are signed using
enveloped XML Signatures and are put into some binding root element R. These
two prevalent SAML bindings are depicted in Figure 2.15.

Signed

Processed

Envelope

Assertion

Header

Id=“123“

Signature

SignedInfo

Reference URI=“#123“

Response

Assertion

Signature

SignedInfo

Reference URI=“#123“

Id=“123“

Body

Binding root element R

Figure 2.15: SAML SOAP and HTTP POST Binding: The SAML assertion
is put into a binding root element R and signed using an enveloped signature.
When signing the SOAP body, an additional detached signature must be used.
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2.8 A Typical Message Flow in a Web Service
Framework

A typical Web Service framework supports building Web Service clients as well
as deploying robust Web Service server applications. Both client and server
should provide a large amount of different functionalities, which result from
various Web Service specifications. For example, the framework has to support
WS-Security [NKMHB06], WS-Security Policy [LK07], WS-Secure Conversa-
tion [NGG+09], or WS-Addressing [GHR06]. These specifications are typically
implemented in different independent modules to support a fine-grained message
processing.

Business
Logic

...Transport WS­Security
Policy

WS­Security

...Transport WS­Security WS­Security
Policy

Figure 2.16: SOAP message flow in a typical Web Service framework.

The modules are engaged in a message flow. A flow is a collection of modules,
where each module takes the incoming SOAP message context, processes it, and
passes it to the next module. An exemplary message flow deployed on a Web
Service server is depicted in Figure 2.16. By processing an incoming SOAP
message inside of this flow, the server first handles transport specific issues
(it includes e.g. processing HTTP headers). Afterwards, the SOAP message
context is checked against the WS-Security Policy file. The module verifies, if the
message contains all the security specific properties. The security module then
processes the security elements in the message. It validates the username token,
timestamp, and/or XML Signature. The encrypted elements are decrypted and
parsed by an XML parser in order to update the SOAP message context. The
decrypted and validated content of the security module is sent to the following
modules. At the end, the message is forwarded to the business logic, which
executes the function represented by this service. The generated function output
is again wrapped in a SOAPmessage. It is sent through a similar message output
flow as a SOAP response, back to the client.
There are two important facts about such a message flow processing, which

are important to this thesis:

1. Handlers in the message flow and the business logic can be implemented
by different developers and can use completely different parsing mecha-
nisms or even programming languages. It is e.g. common to implement
a Web Service logic and place it behind a Web Service Gateway, which
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solely processes XML Security elements. It is also common that – due to
the complexity of XML Signature and XML Encryption – XML Security
modules apply DOM-based XML parsers. On the other hand, business
logic processing is simple and can be implemented using streaming-based
parsers. These different processing mechanisms can result in different
views of an XML document while processing it within the message flow.

2. Each module in the flow and business logic can stop the SOAP message
processing if an error in the message occurs. In that case the message
flow through the modules is terminated and the framework responds with
an appropriate SOAP fault. The SOAP fault introduces a generalized
exception thrown by a module. It does not contain any confidential in-
formation. However, after sending an invalid SOAP message to the Web
Service server, one can still detect in which of the handlers the exception
was generated, by evaluating the returned SOAP fault.

2.9 Analyzed Systems and Frameworks

This thesis evaluates various Web Services, SAML, and XML Security inter-
faces. These interfaces can be a part of different SOAP and SAML libraries or
frameworks, XML Security Gateways, or be deployed on real-world Web appli-
cations to process authentication and secure Web Services invocations. In the
following, the analyzed systems and frameworks are briefly described.

2.9.1 Web Services Frameworks and Gateways

The interfaces described below present frameworks and appliances with WS-*
capabilities. They allow to build and run secure SOAP-based Web Services
providing XML Security as well as SAML functionalities.

Apache Axis2 [Apa13a] is one of the most popular open source Web Services
frameworks. It supports building Web Services clients as well as deploying ro-
bust Web Services server applications, and provides the Web Services architects
with modules which include many features and functionalities. XML Encryp-
tion and XML Signature within this framework are processed in the Rampart
module [Apa12a] using the Apache WSS4J library [Apa12b].

Apache CXF [Apa13b] is an open source framework allowing to run Web
Services by applying different technologies such as SOAP, XML, or REST.
XML Encryption and XML Signature are processed using the Apache WSS4J
library [Apa12b].

IBM Datapower XS40 [IBM13] is an XML Security Gateway typically ap-
plied in enterprise architectures. It processes the incoming XML messages using
a hardware-accelerated XSLT processor [Cla99].

JBossWS [JBo13] is a framework supporting Web Services communication. Its
XML Security processing works on the top of the Apache WSS4J
library [Apa12b].
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2.9.2 SAML Frameworks

In the following, we give an overview of SAML frameworks. These can be
for example applied in various Web Services or Web interfaces supporting only
SAML HTTP bindings.5

Guanxi [gua13] is an open source Java implementation of the SAML specifica-
tion.

Higgins 1.x [Hig] is an open source Java implementation supporting SAML-
based SSO.

Java Open Single Sign-On (JOSSO) [JOS13] is an open source Java imple-
mentation of SAML-based SSO. According to JOSSO’s website, this framework
is for example used by Motorola, NEC, and Redhat.

OIOSAML [OIO13] is an open source Java SAML framework used for exam-
ple in Danish public sector federations (e.g. eGovernment business and citizen
portals).

OpenAM [Ope13a] (formerly known as SUN OpenSSO) is an identity and
access management middleware used in major enterprises.

OneLogin [One13] is an open source SAML framework implemented in Ruby,
Python, Java, .NET, and PHP. This framework can be used to integrate SAML
into various popular open source web applications like Wordpress, Joomla, Dru-
pal, or SugarCRM. Moreover, it is applied by many OneLogin customers (e.g.
Zendesk, SAManage, KnowledgeTree, and Yammer) to enable SAML-based
SSO.

OpenAthens [Edu13] is a suite of services designed for companies and orga-
nizations to establish SSO scenarios. OpenAthens provides the developers a
SAML framework implemented in Java and C++. This framework is for exam-
ple applied in the UK Access Management Federation6.

OpenSAML [Ope13b] is one of the most widely used SAML libraries. Its
source code is open, and the library is implemented in Java and C++. It is for
example adopted in Shibboleth [Shi13] and in the SDK of the electronic identity
card of Switzerland (SuisseID).

SimpleSAMLphp [Sim13] is a PHP framework implementing SAML and other
identity protocols. It is applied for example by Danish eID Federation and
different universities.

Microsoft Windows Identity Foundation [Mic13] is a .NET framework
providing developers classes for development of identity-based scenarios. This
framework is for example used in Microsoft Sharepoint 2010.

5Even though some of these frameworks support SOAP bindings and different WS-* scenar-
ios, their primary goal is to support a (SAML-based) identity management.

6www.eduserv.org.uk
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2.9.3 Web Applications

Our work also analyzes real-world Web applications.

Amazon Web Services (AWS) [AWS13] is one of the first cloud services
offering its customers virtual machines, cloud storage and many other services.
A customer can access these services using different interfaces, including SOAP-
based Web Services.

Eucalyptus [Euc13] is a framework designed to run a private cloud on arbitrary
servers. Similarly to Amazon Web Services, Eucalyptus also offers its users
different interfaces for controlling the cloud machines, including a SOAP-based
Web Services interface.

Ping Identity [Ide13] is an identity management solution provider supporting
SAML-based SSO [CKPM05]. It provides their customers with products such
as PingFederate that can play the role of an Identity Provider or a Service
Provider.

Salesforce [Sal13] provides cloud-based customer relationship management
(CRM) software. It allows its customers to login using SAML tokens.

SAP NetWeaver [SAP13] is a platform, which supports the composition and
management of different (SAP as well as non-SAP) applications across hetero-
geneous software environments. This platform uses WS-* and SAML specifica-
tions.

WSO2 [WSO13] offers their customers many open source products supporting
WS-* and SAML specification. In this work, we describe attacks on the SAML
implementation applied in WSO2 products. This implementation is for example
applied in the WSO2 Stratos cloud or in the WSO2 Enterprise Service Bus.

2.10 Beyond XML Security – JSON Object Signing
and Encryption

JavaScript Object Notation (JSON) [Cro06] is a lightweight text-based standard
for description and exchange of arbitrary data. JSON structures are typically
used in browser-based applications or JSON Web Services. Purposes of the pro-
tocols used on the top of JSON are in many cases similar to the XML protocols.
Thus, it has been realized that the JSON-formats need standardized security
mechanisms. The needs for the security mechanisms fostered standardization of
two new security standards. The JSON Web Encryption (JWE) [JRH12] and
JSONWeb Signature (JWS) [JBS12] standards are maintained by the Javascript
Object Signing and Encryption (jose) Working Group. The standards are quite
recent, with the first public draft dating to January 2012.
Beyond XML Security, this thesis investigates attacks against these newly

developed standards. These attacks are presented in Sections 4.5 and 4.6.

23



2 XML and Web Services – Basics

2.10.1 JSON Web Encryption

JSON Web Encryption (JWE) specifies how to apply encryption schemes to
JSON data structures. JWE supports different methods for data encryption,
using symmetric and public-key encryption algorithms. The current draft 06
of the JWE standard includes the algorithms AES-CBC with HMAC [KBC97],
AES-GCM [Dwo07], and AES Key Wrap [NIS01a] as mandatory symmetric ci-
phers. The mandatory public-key encryption schemes are PKCS#1 v1.5 [Kal98]
and v2.0 [KS98] encryption.
A JSON Web Encryption message consists of two components. The body seg-

ment contains a ciphertext encrypting the payload data. The header segment
contains information about the algorithms used to encrypt this ciphertext con-
tained in the body. An example of a JWE header segment is given in Figure 2.17.
Similarly to XML Encryption, the encryption algorithms are transported in the
message. In this example RSA-PKCS#1 v1.5 is used to encapsulate a symmetric
key. The actual payload data is encrypted under this key using AES-GCM.

{"alg":"RSA1_5",
"enc":"A256GCM",
"iv":"__79_Pv6-fg",
"jku":"https://example.com/p_key.jwk"}

Figure 2.17: JSON Web Encryption header segment example specifying en-
cryption algorithms.

2.10.2 JSON Web Signature

Different methods to secure integrity and authenticity of JSON messages are
provided by the JSON Web Signature (JWS) [JBS12] standard. In order to de-
scribe our attacks it is sufficient to know that the JSON Web Signature standard
includes the RSA-PKCS#1 v1.5 signature scheme.

24



3 How to Break XML Signature

XML Signature Wrapping (XSW) attacks are a new class of attacks introduced
by McIntosh and Austel in 2005 [MA05]. An attacker executing this attack
forces an XML application to process newly inserted bogus contents within a
signed XML message. Although XSW attacks are very dangerous because they
completely circumvent the integrity protection of XML Security, even seven
years after their publication only few practical examples of these attacks [GL09]
and incomplete analyses existed [MA05, RMS06]. These facts and the rising
popularity of XML Security mechanisms in the real-world applications moti-
vated us to evaluate XML Signature interfaces of various providers and frame-
works.
In the following, we first introduce the basic XSW attacks described in the

original paper. Afterwards, we present our attacks on SOAP and SAML inter-
faces, and demonstrate that these attacks are practical and of enormous impor-
tance, given the scenarios in which they are executed. Thereby, we also found
new and more sophisticated XSW attack types. We discuss countermeasures
against XSW attacks. The found attacks motivated us to develop a penetration
testing tool for XML Signature interfaces. It is described in the last section.

3.1 XML Signature Wrapping Attacks – Basics

As described in Section 2.5.1, XML Signature validation is a complex process.
It involves URI-based dereferencing, XML canonicalization, two-step hash value
computation, and evaluation of a cryptographic function. On the other hand,
a search for a specific XML element (e.g., an element in the SOAP body) can
easily be executed by application of a simple XML parser. This leads to the fact
that XML documents containing XML Signatures are typically processed in two
independent steps: (1) signature validation and (2) function invocation (business
logic). The signature validation logic is implemented as an independent XML
Security library or an independent XML firewall. The verified document is
processed by a custom business logic concentrating on specific parts in the XML
document (e.g., the SOAP body in a SOAP message).
If an application processes signed XML documents using different modules

having different views on the document, a new class of attacks named XML
Signature Wrapping (XSW) [MA05] can appear. In these attacks the attacker
modifies the message structure by injecting forged elements, which do not inval-
idate the XML Signature. The goal of this alteration is to change the message in
such a way that the application logic and the signature verification module use
different parts of the message: The receiver should successfully verify the XML
Signature, but the application logic should process the bogus element. The at-
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3 How to Break XML Signature

tacker thus circumvents the integrity protection and the origin authentication
of the XML Signature and can inject arbitrary content.
For explanation purposes, assume that user Bob communicates with a Web

Service using signed SOAP messages. Attacker Eve eavesdrops one of Bob’s
messages, which executes the function DeleteUser. Her goal is to modify this
message to execute the function AddAdmin with parameter Eve. Figure 3.1
shows a simple XSW attack example on the eavesdropped SOAP message exe-
cuted by Eve. In this example, Eve moves the original SOAP body containing
DeleteUser element to a Wrapper element in the SOAP header. Afterwards,
she creates a SOAP body with a new Id="attack" and defines a new function
AddAdmin. A vulnerable Web Service processes this message as follows. First, it
attempts to verify the signature over an element with the Id="123". The signa-
ture verification module can successfully find a referenced Body element in the
Wrapper element. As the Id of the referenced Body element stays the same and
as it is not altered, the signature can be successfully verified. The business logic
searches for the Body element placed directly in the Envelope root element (this
is a typical proceeding in the Web Services implementations). Thus, it finds the
newly created SOAP body and invokes the newly inserted function AddAdmin.
We refer to this attack as a classical XSW attack.

Signed

Processed

Envelope

Wrapper

Header

Id=“123“

Signature

SignedInfo

Reference URI=“#123“

Body

Body

AddAdmin

DeleteUser

Id=“attack“

Eve

Eve

Signature 
Verification

Business
Logic

Id = “123“ /Envelope/Body

Figure 3.1: A simple XSW attack: The attacker moves the original signed
content to a newly created Wrapper element. Afterwards, she creates an arbitrary
content with a different Id, which is invoked by the business logic.

Remark: In the following sections, suppose that the Id attributes are of type
ID (see Section 2.1 for more details on ID type attributes).

Attack Prerequisites. XSW attacks can be executed by an attacker with
far fewer resources than the classical network based attacker from cryptography:
The attacker can succeed even if he does not control the network. He does not
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need realtime eavesdropping capabilities. The prerequisites to execute an XSW
attack are:

1. The attacker needs access to the receiving endpoint. XML Signatures are
typically applied to secure Web Services and SAML applications. Inter-
faces of these applications are typically public.

2. The attacker needs one signed message valid for the attacked domain or
interface. He can gain this message by different means: He can eavesdrop
it, find it on the Internet (e.g. in a forum), or he can register as a valid
user on the domain and use XSW to impersonate a different user. We
describe these scenarios in the following sections.

In general, the XSW attack is possible due to separation of security processing
and business logic. This prerequisite is given in most of the practical systems
and frameworks applying XML Signatures. On the one hand, the developers
apply libraries and frameworks to process complex XML Security processing
steps. On the other hand, they implement a simple business logic evaluation on
their own.

3.2 All Your Clouds Are Belong to Us – Security
Analysis of Cloud Management Interfaces

The cloud computing paradigm offers users cost-effective storage resources and
computational services. The users can take advantage of “unlimited” computa-
tion power and on-demand reserve new storages or virtual machines. The cloud
services can be managed using different interfaces, e.g. Web interfaces, XML
or JSON Web Services. These interfaces allow to execute the whole communi-
cation between the user and the cloud provider (e.g. start, stop or upload new
virtual machines, or upload and download stored data). Thus, a vulnerability
in a cloud interface could be sufficient to compromise a customer’s account.
In this section, we present XSW attacks on the authentication mechanisms

used in Amazon EC2 and Eucalyptus SOAP control interfaces. We demonstrate
that these control interfaces were highly vulnerable to several new and classical
variants of XSW attacks. For these attacks, knowledge of a single signed SOAP
message is sufficient to attain a complete compromise of the security within
the customer’s account. The reason for this easiness is that one can generate
arbitrary SOAP messages accepted by this interface from only one valid sig-
nature. To make things even worse, in one attack variant, knowledge of the
(public) X.509 certificate alone enabled a successful execution of an arbitrary
cloud control operation on behalf of the certificate owner.

Contribution. The contribution of this section can be enumerated in the
following main points:

1. We propose to view the Cloud control interface security as an important
and challenging research topic, additionally marked by its high impact
factor.
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2. We show that XSW attacks are a serious threat, as they are yet to be
resolved or understood.

3. We devise a methodology of investigating “black box” Web Services imple-
mentations by making claims as to how SOAP message verification works
in the Amazon EC2 cloud.

Responsible disclosure. All the vulnerabilities found throughout our re-
search were reported to the Amazon and Eucalyptus security teams. We worked
closely with both security teams and put forward the solutions for fixing the is-
sues that we identified. Subsequently, we monitored the countermeasures as
they were being implemented.

Paper. This section is based on the paper All Your Clouds Are Belong to Us –
Security Analysis of Cloud Management Interfaces published at the ACM Cloud
Computing Security Workshop [SHJ+11]. In addition to the analysis of XSW
attack possibilities, Mario Heiderich managed to mount different XSS attacks
on the Amazon and Eucalyptus cloud interfaces. These attacks are out of scope
of this thesis and can be found in [SHJ+11].
My contribution to this research lay in the XSW attacks’ development, their

practical execution on Amazon EC2 cloud interfaces and their analysis. More-
over, I supervised a thesis by Xiaofeng Lou [Xia11], who investigated XSW
attacks on Eucalyptus cloud interfaces.

3.2.1 Cloud Security – Related Work

Cloud security is an emerging research topic, already addressed in many aca-
demic and research-based publications. A good overview of cloud security issues
is given by Molnar and Schechter who investigated advantages and disadvan-
tages of storing and processing data by the public cloud provider with regards
to security [MS10]. The authors detail the new kinds of technological, organi-
zational, and jurisdictional threats resulting from the cloud usage, as they also
provide a selection of countermeasures.
Ristenpart et al. analyzed the physical placement of new allocated virtual

machines in Amazon EC2 [RTSS09]. They showed that an attacker can itera-
tively allocate new instances until one is placed on the same physical machine
as the victim’s instance. Afterwards, the attacker can exploit data from the vic-
tim’s running instance using cross-VM side-channel attacks. In this regard, the
authors propose the usage of blinding techniques to make cross-VM side-channel
attacks unfeasible.
XSW attacks were first described in 2005 [MA05]. However, until the year of

our publication, only one research paper analyzed the practical impact of XSW
attacks on real-world applications. In 2009, Gruschka and Lo Iacono examined
the security of the Amazon EC2 cloud’s interfaces [GL09]. They showed how
XSW attacks can be performed to attack Amazon’s EC2 service. They presented
a vulnerability that enabled an attacker in possession of a signed control message
from a legitimate user to execute any operation on the cloud control interface.
However, the authors did not apply their attack on the Timestamp elements
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included in control messages. Thus, the attack only worked with fresh messages
not older than five minutes.

3.2.2 Cloud Control Interfaces

From a conceptual standpoint, cloud services need some form of cloud control
which enables users to manage and configure the service, whilst also preserving
access to the stored data. In IaaS (Infrastructure As A Service) clouds, the
control interface allows to instantiate machines, as well as to start, pause, or
stop them. Machine images can be created or modified, and the links to persis-
tent storage devices must be configured. It is therefore quite undebatable that
the security of a cloud service highly depends on robust and effective security
mechanisms for the cloud control interfaces.

3.2.2.1 Amazon EC2 and Eucalyptus Cloud Control Interfaces

One of the most prominent cloud computing platforms is Amazon Web Services
(AWS) [AWS13]. It furnishes an array of products, e.g. computation services,
content delivery, databases, messaging, payments, storage, and others, all made
available to arbitrary companies and end-users.
Amazon EC2 is a service that provides users with scalable computation capac-

ity. Across a certain time period, the users can run their own virtual instances
with customizable (virtual) hardware and operating system properties. Upon
starting an instance using the EC2 cloud control, the user can for example ac-
cess the instance over SSH (for Linux/Unix machines). Cryptographic keys for
the SSH login may be similarly generated via the EC2 cloud control.
Two main interfaces are primarily responsible for EC2 services’ control. The

first one is a browser-based web application (AWS Management Console). Using
this interface, the user can check the status of the instances, run new instances,
generate keys for communication with the running instances over SSH, or gener-
ate keys and certificates for controlling the cloud over SOAP- and REST-based
Web Services. The web application control interface is not intended for cus-
tomers who own a huge number of machines that are dynamically started and
stopped according to the computation power and storage needs. For this reason,
AWS offers a complementary Web Services interface that allows users to control
their cloud over SOAP and REST-based services. Communication with both
interfaces can be automated.
The SOAP interface provides users with the same functionality as the AWS

Management Console. The structure of a SOAP message used for the commu-
nication with the EC2 SOAP interface is depicted in Figure 3.2. As can be seen,
the depicted SOAPmessage contains an XML Signature applied according to the
WS-Security specification. The Timestamp element includes the message expira-
tion date and thereby ensures its freshness. BinarySecurityToken [HBKMN07]
includes a Base64 encoded X.509 certificate that identifies the user. The
Signature element contains an XML Signature [ERS+08] authenticating the
message issuer and protecting the integrity of the Timestamp and Body ele-
ments. The MonitorInstances element indicates the (sample) operation to be
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Figure 3.2: SOAP request sent to the EC2 interface.

called on the AWS interface. This operation is used to gather status information
on the user’s EC2 virtual machine instances.

In addition to the EC2 SOAP interface described above, AWS provides three
other types of Web Services interfaces: S3 SOAP Web Services interface with
custom signature validation, AWS REST-based Web Services interface, and
AWS XQuery Web Services interface. We exclude them from the discussion in
this thesis as they are not involved in the attacks we are covering.

While Amazon Web Services operates as a public cloud provider, the need
for private cloud environments fostered the development of freely available open
source implementations of cloud systems. Among other advancements, the Eu-
calyptus cloud implementation [Euc13] gained a lot of public attention and made
its way into the well-known Ubuntu operating system (Ubuntu Server Edition).

As far as functionality is concerned, the cloud management interfaces of Eu-
calyptus were designed to copy the Amazon cloud control interface in order
to support a switch from the prominent pre-existent Amazon EC2 cloud to a
Eucalyptus cloud. Every Eucalyptus installation by default provides almost
the exact same interfaces as the Amazon EC2 cloud. Nevertheless, it must
be stressed that the functionality and security mechanisms were implemented
independently.
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3.2.3 AWS SOAP Interface Attacks

Within the scope of our security analysis of Amazon’s EC2 cloud control in-
terfaces (performed at the end of 2010), we carried out an investigation of the
SOAP message processing of the cloud control with respect to the applicability
of XSW attacks.

3.2.3.1 Vulnerability Analysis

We found out that the overall structure of incoming SOAP messages – defined
by the XML Schema [WF04] – was not checked at all. Therefore, it became
possible to add, remove, duplicate, nest, or move arbitrary XML fragments
within the SOAP request message, without the message’s validity being affected.
We performed a set of SOAP requests that exploited this flexibility in SOAP
message design. Since the Amazon EC2 SOAP interface replied with quite
meaningful SOAP fault messages in case of an error, we were able to easily test
the Amazon EC2 SOAP interface for its XSW resistance.

3.2.3.1.1 AWS Duplicated-Id XSW Attack Variant Type 1. The starting
point for our security analysis was derived from the previous work done by
Gruschka and Lo Iacono in 2009 [GL09]. Their attack used a forged SOAP re-
quest with a duplication of the signed SOAP body. Likewise, we duplicated the
SOAP body of the MonitorInstances message, changing the operation in the
first SOAP body to CreateKeyPair. We sent the forged message to the EC2
SOAP interface for verification. The message was successfully validated, and a
new key pair for SSH access to an EC2 instance was created. Conclusively, the
EC2 SOAP interface validated the XML Signature only for the second SOAP
body (which was not modified and hence verified successfully), but it used the
first SOAP body for determining operation and parameter values. Supplemen-
tary tests with other operation names indicated that an attacker could use this
technique to trigger arbitrary operations. Still, all attacks had to be performed
within the five minute time frame enforced by the timestamp.
A slight attack variant circumvents the timestamp verification, and therefore

extends the attack to be independent of the time passing. Having duplicated
the Timestamp element in the security header – the same approach used for the
SOAP body before – we observed a similar behavior of the verification com-
ponent: The first timestamp was compared to the current time, the second
timestamp was verified for integrity. To sum up, this attack variant (shown in
Figure 3.3) could be performed using arbitrary signed SOAP messages, even
when their timestamp had already expired. The variant described above clearly
breaks the timing constraints mechanism used in the EC2 SOAP interface, prov-
ing its potential for being used for execution of arbitrary operation invocation.
It is important to mention that the Id attributes of both, wrapped and exe-

cuted, elements needed to be identical as otherwise the message was rejected.
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Figure 3.3: Duplicated-Id XSW attack type 1.

3.2.3.1.2 AWS Duplicated-Id XSW Attack Variant Type 2. After reporting
the first variant to the AWS security team, we were informed about the provi-
sion of a fix that disallowed duplications of the timestamp element. From this
point forward, all the SOAP messages with duplicated timestamps in the SOAP
message’s security header were refused. However, it was still possible to have
several Body elements with the same Id attribute value within one SOAP mes-
sage. For this reason, we continued our analysis focusing on moving the signed
timestamp element to other positions within the document tree.

Figure 3.4 illustrates the first adapted XSW attack on the EC2 SOAP in-
terface. As it was no longer possible to duplicate the timestamp within the
security header, we created three different Body elements, and moved the orig-
inally signed timestamp element into the second body. Sending this forged
SOAP message to the EC2 SOAP interface revealed that this attack technique
indeed worked. The timestamp in the second body and the whole third body
were checked by the signature verification component. The timestamp in the
security header was attested for expiration, and the first body was interpreted
as determining the operation and parameter value.

We also exposed other attack variants. For example, it was possible to du-
plicate the full SOAP security header. The first header included the timestamp
that would be validated for its recency, and the timestamp in the second secu-
rity header was verified by the signature validation component. Again, the first
Body element was executed, and the last one was verified for integrity. When
compared to the type 1 vulnerabilities, the same prerequisites and the same
impact characterized the type 2 class.
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Figure 3.4: Duplicated-Id XSW attack type 2.

3.2.3.1.3 AWS Signature Exclusion Bug. The prerequisite for the above de-
scribed XSW attacks is that an attacker manages to obtain (e.g., eavesdrop,
copy from a log file, etc.) a SOAP message with a valid XML Signature. Al-
though this seems like a rather small obstacle (see also Section 3.2.3.2), we
detected another vulnerability with even less prerequisites: In the absence of
an XML Signature, the signature verification component did not monitor any
XML Signature at all, but nevertheless treated the message as validly signed.
The task of user identification and authorization took place in other components
relying solely on the X.509 certificate data from the BinarySecurityToken el-
ement, which can be present even if there is no signature. Hence, that SOAP
request message was authorized to trigger operations on behalf of the owner of
the X.509 certificate. For completeness, the message is depicted in Figure 3.5.

To conclude, while performing an arbitrary SOAP request for any of the EC2
SOAP interface operations, an attacker needs only the public X.509 certificate
of the victim. Since X.509 certificates are by definition considered to constitute
public data, harvesting them from the Internet is not a major challenge for an
attacker. Moreover, Mario Heiderich described in our original paper [SHJ+11]
a download link XSS vulnerability that could have allowed us to gather valid
certificates.

33



3 How to Break XML Signature

Envelope

Header

Security

Timestamp

Expires

Id=“ts“

2013-09-25T12:00

Body

CreateKeyPair

Id=“body“

BinarySecurityToken

Figure 3.5: Signature Exclusion bug in the AWS control interface allowed us
to execute an arbitrary function on behalf of our victim, by knowing only the
victim’s public certificate.

3.2.3.2 Attack Preparation

Based on the attack techniques highlighted so far, we continued our security
analysis of the EC2 cloud control SOAP interface by surveying the degree of
difficulty it takes for an attacker to get to the point where he can perform a
successful XSW attack.
Knowledge of a single validly signed SOAP request message remains the only

prerequisite for an XSW attack. Gathering such a SOAP message turned out
to be quite an easy endeavor: Many AWS developers seeking assistance post
their SOAP requests on the AWS forums, which turned out to be a conve-
nient source for signed SOAP messages. During the first attempt, we imme-
diately recovered about 20 SOAP requests from multiple users of solutions.
amazonwebservices.com and developer.amazonwebservices.com. A slightly
more sophisticated search would very likely lead to even more results.
In addition, it turned out that an attacker could also execute Man-in-the-

Middle attacks by claiming himself as being the AWS control interface. This
could have been possible since the AWS developer framework did not correctly
check SSL certificates. This observation was made one year after our publication
by Georgiev et al. [GIJ+12], who investigated validation of SSL certificates in a
large number of non-browser applications, including the AWS framework.

3.2.3.3 Analysis of the AWS Security Framework

Based on the attack findings described above, we performed an extensive security
analysis of the Amazon EC2 cloud control SOAP Interface. By sending SOAP
messages with different types of errors for different processing components of the
AWS framework, we tried to determine the general architecture that Amazon
uses for its SOAP interface services. Relying on publicly known best practices,
we assumed the AWS interface consisted of a set of modules that perform specific
tasks for every SOAP message received at the service interface. The order of
these modules, and the amount of verification performed therein usually is an
important parameter of whether and how a typical Web Service specific attack
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can be accomplished. Our goal was to gain as much information on this internal
topology as possible, for a full view on the EC2 SOAP interface implementation.
Through sending hand-crafted SOAP messages to the EC2 interface, we ef-

fectuated a series of SOAP-based tests. Each of these SOAP messages was
carrying a different type of fault, causing the SOAP server implementation to
raise diverse errors and respond with different types of SOAP fault messages.
For instance, upon processing a SOAP message that contained a basic syntac-
tical fault in the SOAP message’s XML structure (e.g. a missing ’>’ character
in the XML syntax) we received a SOAP fault message with a general XML
structure as illustrated in Figure 3.6 (left). Please note the way the XML tag
names are equipped with prefixes (e.g. "SOAP-ENV"). Though usually there is no
semantic relevance for the choice of these namespace prefixes, they nevertheless
tend to change for different XML frameworks, hence allowing differentiation of
a SOAP fault message’s origin.
A second test was performed with the use of SOAP messages with correct

XML syntax but faults on the semantic level. As a result, the EC2 SOAP
interface responded with a SOAP fault message as well, but this time there was a
remarkable difference in the way the XML data was serialized. Figure 3.6 (right)
shows an example of such a SOAP fault, received in reply to a SOAP request
with an expired timestamp. Note the differences in how the XML namespaces
are chosen (here: "soapenv"). Hence, it is reasonable to assume that both SOAP
fault messages were generated by different SOAP modules or frameworks.

<SOAP-ENV:Envelope
   xmlns:SOAP-ENV="http://www.w3.org/2003/05/..."
   xmlns:aws="http://webservices.amazon.com/AWSFault/...">
   <SOAP-ENV:Body>
      <SOAP-ENV:Fault>
         <SOAP-ENV:Code>
            <SOAP-ENV:Value>
               SOAP-ENV:Sender
            </SOAP-ENV:Value>
            <SOAP-ENV:Subcode>
               <SOAP-ENV:Value>
                  aws:InvalidSOAPRequest
               </SOAP-ENV:Value>
            </SOAP-ENV:Subcode>
         </SOAP-ENV:Code>
         <SOAP-ENV:Reason>
            <SOAP-ENV:Text xml:lang="en-US">
               Invalid SOAP request. Could not parse XML
            </SOAP-ENV:Text>
         </SOAP-ENV:Reason>
         ...
      </SOAP-ENV:Fault>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

<soapenv:Envelope
   xmlns:soapenv="http://schemas.xmlsoap.org/soap/..."
   xmlns:aws="http://webservices.amazon.com/AWSFault/...">
   <soapenv:Body>
      <soapenv:Fault>
         <faultcode>aws:Client.InvalidSecurity</faultcode>
         <faultstring>Request has expired</faultstring>
         <detail>
            <aws:RequestId>
               83264d5a-699d-48c3-83c1-c7eed8a38023
            </aws:RequestId>
         </detail>
      </soapenv:Fault>
   </soapenv:Body>
</soapenv:Envelope>

SOAP­ENV:Envelope soapenv:Envelope

Figure 3.6: SOAP fault messages for a SOAP request with a syntactical (left)
and semantic fault (right).

Similarly, we used SOAP messages containing other types of faults, such as
data type violations in operation parameters, invalid XML Signatures, or un-
trusted X.509 certificates. We also performed tests with SOAP messages that
contained two or more of these faults at the same time, in order to see which
fault the EC2 SOAP interface complained about first. This way, we managed to
identify the order in which the particular tasks were performed, and the ways
in which they accessed the XML data from the SOAP messages.
The results of this analysis are depicted in Figure 3.7. As can be seen, the

AWS SOAP interface processes the incoming SOAP messages in (at least) four
separate logical steps, implemented by separate modules.
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Figure 3.7: Amazon EC2 SOAP message processing architecture consists of
four separate logical steps.

XML Syntax Check. In a first step, the XML parser performs an XML
syntax check for well-formedness. If even a single one of the XML tags is not
properly closed or a namespace declaration is missing, the interface returns a
SOAP fault. This step is most probably done by an independent XML parser,
as the namespaces and the XML structure in the SOAP responses differed from
the SOAP responses that were returned after processing of well-formed SOAP
requests (see above).

Operation Interpretation and Time Constraints. In a second step, the
XML processor reads and interprets the content of the SOAP request. First, it
validates the time given within the Timestamp element. Then, it reads the Body
element, validating the contained operation name (e.g. MonitorInstances)
and the number of its parameters. In all probability, this is obtained by us-
ing a streaming XML parser (such as SAX or StAX), since on duplication of
the Timestamp or Body elements only the first occurrence of that element is
interpreted. This can be deemed as typical behavior for implementations that
use streaming-based XML processing approaches, since these tend to interrupt
message parsing immediately after having processed the first occurrence of the
particularly interesting XML element.
As can be seen by all the XSW variants, the Id attributes of the wrapped

and executed elements needed to stay equal. Therefore, we assume that the Ids
of processed elements are extracted and passed to the further XML Signature
verification step.

User Identification and Authorization. A third step attempts to identify
the user by processing the X.509 certificate contained in the BinarySecurity-
Token element. The certificate determines the customer account of the AWS
user, thus performing solely the SOAP request’s authorization task.

XML Signature Verification. The last step before the operation in the
SOAP message is executed, comprises of XML Signature verification. The URI
attributes of the XML Signature are dereferenced, i.e. the XML processor
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searches for XML elements that contain an Id attribute with the same iden-
tifier string value as indicated in the URI attribute of the Reference element.
Hence, for regular SOAP requests, this search returns the Timestamp and Body
elements as determined within the second processing step. Then, hash value
calculation and signature verification are performed for those elements. If this
task fails, the SOAP message gets rejected, otherwise the operation determined
in the step two component is performed on the Amazon EC2 cloud system for
the user identified in step three.
In addition to accommodating verification of signature and digest values, this

step checks if the elements being validated include the same Id attributes as
the elements being processed in step two. This grants the approval for the
communication between the modules for Operation interpretation and Signa-
ture validation, which were there to attempt prevention of the XSW attacks.
However, allowing for multiple equal Id attributes in the SOAP message has
opened possibilities for new variants of XSW attacks.
For the XML processing model of the last step we suppose that the URI

dereferencing and processing the signed elements is embedded in a tree-based
XML Parser. Tree-based parsers are typically applied by validating complex
XML Signatures. We suppose that this processing step was performed at the end
due to the inefficient memory model behind the tree-based XML parsers. Thus,
invalid SOAP requests could have been filtered out by an efficient streaming-
based XML parser in the preceding steps.

3.2.4 Eucalyptus SOAP Interface Attacks

To analyze the Cloud control interface of Eucalyptus, we used a default cloud
installation of the Ubuntu Server Edition, which provides an extended version
of the original Eucalyptus framework [Euc13].

3.2.4.1 Vulnerability Analysis

During our investigation, we determined that XSW attack techniques could
be successfully applied to Eucalyptus. However, the techniques applied in the
Amazon case were not functional, since Eucalyptus detected multiple identi-
cal Id attribute values, and rejected such SOAP messages. More precisely, in
our analysis we discovered that an attacker could use a slightly modified clas-
sical XSW attack technique to execute an arbitrary function without a time
limitation. We give an example of a SOAP message of that sort in Figure 3.8.
As the Eucalyptus SOAP interface validated the format of incoming SOAP

messages against an XML Schema, the attacker could not duplicate the SOAP
Body element or copy the signed elements directly to the SOAP header. For
the attack to be feasibly executed, signed elements had to be copied to a newly
created deeper-nested element. For this purpose, we chose a duplicated security
header element that does not violate the SOAP message XML Schema. Through
this process, the attacker could move the signed body and the timestamp ele-
ments to this newly allocated place.
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Figure 3.8: Successful XSW attack on the Eucalyptus SOAP interface.

Remark: This should be seen as a proof that XML Schema validation alone
does not protect against XSW attacks.
In addition to the SOAP message structure, the Eucalyptus validation frame-

work checked for duplicated Id attribute values in the XML document. Con-
versely, it did not check if the processed data items have the same Id values as
the signed data. Therefore, it was possible to use different Id attributes for the
executed Body and Timestamp elements, which then had a potential to convey
arbitrary content.

3.2.4.2 Attack Prerequisites

To execute an attack on Eucalyptus, an attacker had to be in possession of a
single validly signed SOAP message of the victim. It must be stressed once again
that SSL does not prevent such attacks, since the SOAP messages in question
can be retrieved in many different ways besides the network sniffing, see our
considerations in Section 3.2.3.2.

3.2.4.3 Analysis of the Eucalyptus Security Framework

Eucalyptus Framework is an open source private cloud provider. Therefore,
there was no need for an extensive ”black box” analysis. After analyzing the
source code we found out that Eucalyptus uses Apache Rampart [Apa12a] –
the security module of a widely used Apache Axis2 Web Services Framework.
Further tests of the Rampart module using various deployment properties proved
its vulnerability to XSW attacks.

38



3.3 On Breaking SAML: Be Whoever You Want to Be

3.3 On Breaking SAML:
Be Whoever You Want to Be

Typical Internet users have many identities for different websites and web ser-
vices. This leads to the fact that users choose weak passwords for their au-
thentication, forget their passwords, or even their identities. To overcome this
problem, Single Sign-On (SSO) was developed. In this approach, the users
authenticate only once to a trustworthy Identity Provider (IdP ). After a suc-
cessful login, the IdP issues security tokens on demand. These tokens are used
to authenticate to Relying Parties (RP ).
A simplified SSO scenario is depicted in Figure 3.9. In this setting, a user

logged-in by the IdP first visits the desired RP (1). The RP issues a token
request (2). This token is sent to the user (3), who forwards it to the IdP
(4). The IdP issues a token response for the user including several claims (e.g.
his access rights or expiration time). In order to protect the authenticity and
integrity of the claims, the token is signed (5). Subsequently, the token is sent
to the user (6), who forwards it to the RP (7). The RP validates the signature
and afterwards grants access to the protected service or resource, if the user
is authorized (8). This access control decision is based on the claims in the
validated token.
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Figure 3.9: A typical Single Sign-On (SSO) scenario: The user visits the RP ,
which generates a request token. He redirects this token to the IdP . The issued
token is sent to the user and forwarded to the RP . Even though the channel is
secured by SSL/TLS, the user still can see the token.

SAML Providers and Frameworks. The above described authentication
process can be applied and is implemented in different scenarios, e.g. in Web
Services or browser-based SSO. One of the standards used for definitions of
tokens in these scenarios has become the XML standard SAML [CKPM05].
Protection of authenticity and integrity in the SAML assertions is realized by
application of XML Signatures [ERS+08]. Therefore, breaking the XML Signa-
ture application leads also to breaking the token’s integrity.
In this section, we show the results of our practical XML Signature application

analysis in SAML executed on frameworks and systems summarized in Table 3.1.
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Framework Language Application
Apache Axis2 Java WSO2 Web Services
Guanxi Java Sakai Project (www.sakaiproject.org)
Higgins 1.x Java Identity project
IBM XS40 XSLT Enterprise XML Security Gateway
JOSSO Java Motorola, NEC, Redhat
WIF .NET Microsoft Sharepoint 2010
OIOSAML Java, .NET Danish eGovernment (e.g. www.virk.dk)
OpenAM Java Enterprise-Class Open Source SSO
OneLogin Java, PHP, Ruby, Python Joomla, Wordpress, SugarCRM, Drupal
OpenAthens Java, C++ UK Federation (www.eduserv.org.uk)
OpenSAML Java, C++ Shibboleth, SuisseID
Salesforce — Cloud Computing and CRM
SimpleSAMLphp PHP Danish eID Federation (www.wayf.dk)
WSO2 Java WSO2 products (Carbon, ESB, . . . )

Table 3.1: Analyzed SAML frameworks and providers: The columns give in-
formation about programming language (if known) and application in concrete
products or frameworks.

See Section 2.9 for more details on these frameworks and systems.

Contribution. In this section, we present an in-depth analysis of 14 SAML
frameworks and systems. During this analysis, we found critical XSW vul-
nerabilities in eleven of these frameworks. This result is alarming given the
importance of SAML in practice. Our attacks present new classes of XSW at-
tack. We show that these attacks could also be applied if the whole document
is signed or if specific countermeasures are applied.
Second, these vulnerabilities are exploitable by an attacker with far fewer re-

sources than the classical network based attacker from cryptography: A single
signed SAML assertion is sufficient to completely compromise a SAML issuer/I-
dentity Provider. Using SSL/TLS to encrypt SAML assertions, and thus to pre-
vent adversaries from learning assertions by intercepting network traffic, does
not help either: The attacker may e.g. register as a regular customer at the
SAML issuer, and may use his own assertion to impersonate other customers.
Last, our results confirm that XSW vulnerabilities constitute an important

and broad class of attack vectors. There is no easy defense against XSW at-
tacks: Contrary to common belief, even signing the whole document does not
necessarily protect against them.

Responsible Disclosure. All vulnerabilities found during our analysis were
reported to the responsible security teams. Accordingly, in many cases, we
closely collaborated with them in order to patch the found issues.

Paper. This section is based on the paper On Breaking SAML: Be Whoever
You Want to Be presented at the USENIX Security Symposium [SMS+12].
The original idea of attacking SAML-based frameworks stemmed from Meiko

Jensen. My responsibility lay in a practical analysis of the following SAML
frameworks: Apache Axis2, Guanxi, OpenAthens, OpenSAML1, Salesforce, and
WSO2. Moreover, I supervised theses written by Marco Kampmann [Mar11a,

1The analysis was performed in an email communication between the OpenSAML developer
Scott Cantor and me.
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Mar11b], who investigated security of IBM XS40 and JOSSO, and developed
the first version of our XSW penetration testing tool, which was used to reeval-
uate security of WSO2 and Salesforce SAML interfaces. Analysis of IBM XS40
was supervised by Meiko Jensen. The remaining frameworks were analyzed by
Andreas Mayer. Jörg Schwenk formally analyzed countermeasures against XSW
attacks (see our original paper for this analysis).

3.3.1 SAML and Single Sign-On – Related Work

Since SAML offers very flexible mechanisms to make claims about identities,
there is a large body of research on how SAML can be used to improve identity
management (e.g. [HJK08, YsJ10]), and other identity-related processes like
payment on the Internet [LS10, TFP+06]. In all these applications, the security
of all SAML standards is assumed.
In 2003, T. Groß initiated the security analysis of SAML [Gro03] from a Dolev-

Yao point of view, which was formalized in [BG05]. He found, together with
B. Pfitzmann [GP06], deficiencies in the information flow between the SAML
entities. Their work influenced a revision of the standard.
In 2008, Armando et al. [ACC+08] built a formal model of the SAML 2.0

Web Browser SSO protocol and analyzed it with the model checker SATMC.
By introducing a malicious RP they found a practical attack on the SAML
implementation of Google Apps. Another attack on the SAML-based SSO of
Google Apps was found in 2011 [ACC+11]. Again, a malicious RP was used
to force a user’s web browser to access a resource without approval. Thereby,
the malicious RP injected malicious content in the initial unintended request to
the attacked RP . After successful authentication on the IdP this content was
executed in the context of the user’s authenticated session.
The fact that SAML protocols consist of multiple layers was pointed out

in [Cha06]. In this paper, the Weakest Link Attack enabled adversaries to suc-
ceed at all levels of authentication by breaking only at the weakest one.
In recent years, many researches pointed out the importance of SSO proto-

cols [WCW12, SB12, BML+13]. The authors analyzed the security quality of
commercially deployed SSO solutions applying OpenID [Fou07] or OAuth [Har12].
They showed serious logic and implementation flaws in high-profile IdP s and
RP s (such as OpenID, Facebook, or JanRain), which allowed an attacker to
sign in as the victim user. SAML-based SSO systems were not analyzed.

3.3.2 Attack Theory

In this section, we first characterize the assumed SAML threat model. Second,
we describe the basic attack principle that underlies our analysis of the 14
frameworks. In contrast to Section 3.2, in this section we first theoretically
analyze different attack permutations, which are later applied practically to the
analyzed SAML frameworks.
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3.3.2.1 Threat Model

As a prerequisite the attacker requires an arbitrary signed SAML message. This
could be a single assertion A or a whole document with an embedded assertion,
and its lifetime can be expired. After obtaining such a message, the attacker
modifies it by injecting evil payload content. We call this content evil assertion,
EA.
In our model, we assume two possibilities to get a valid signed SAML

assertion A:

1. The attacker registers as a user of an Identity Provider IdP . He then
receives, through normal interaction with IdP , a valid signed SAML as-
sertion A making claims about the attacker. The attacker now adds ad-
ditional claims EA about any other subject S, and submits the modified
document to RP .

2. The attacker retrieves SAML assertions from the Internet (similarly to
the attacker described in Section 3.2.3.2). This can be done either by
accessing transmitted data directly from unprotected networks (sniffing),
or in an “offline” manner by analyzing proxy or browser caches. Since
SAML assertions should be worthless once their lifetime expired, they
may even be posted in technical discussion boards, where the attacker
may access them.

3.3.2.2 Basic Attack Principle

As described in Section 2.7, XML Signatures can be applied to SAML assertions
in different ways and placed in different elements. The only prerequisite is that
the Assertion element or the protocol binding element (ancestor of Assertion)
is signed using an enveloped signature with Id-based referencing. In this section,
we analyze the usage of SAML assertions in different frameworks and the pos-
sibilities of inserting malicious content. Generally, SAML assertions and their
signatures are implemented as depicted in Figure 3.10:

1. The first possible usage of signatures in SAML assertions is to insert the
XML Signature S1 as a child of the SAML assertion A1 and sign only
the Assertion element A1. This type can be used independently of the
underlying binding (SOAP or HTTP POST).

2. The second type of signature application in SAML signs the whole protocol
binding element R. The XML Signature can be placed into the SAML
assertion A1 or directly into the protocol binding root element R. This
kind of signature application is used in different SAML HTTP bindings,
where the whole Response element is signed.

3. It is also possible to use more than one XML Signature. The third example
shows this kind of signature application: the inner signature S1 protects
the SAML assertion and the outer signature S additionally secures the
whole protocol message. This kind of signature application is used by the
SimpleSAMLphp framework, for example.
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A1 S1 EA

A1 S1R ER EA

A1 SR S1 ER EA

Legitimate content Injected evil content
Signed

Processed

Signing Type 1)

Signing Type 2)

Signing Type 3)

Figure 3.10: Types of signature applications on SAML assertions on the left.
The new malicious content needed to execute the attacks depicted on the right,
accordingly.

In order to apply XSW attacks to SAML assertions, the basic attack idea
stays the same: The attacker has to create new malicious elements and force the
assertion logic to process them, whereas the signature verification logic verifies
the integrity and authenticity of the original content. In applications of the first
signature type, the attacker only has to create a new evil assertion EA. In the
second and third signing types, he also has to create the whole evil root ER
element including the evil assertion.

3.3.2.3 Attack Permutations

The attacker has many different possibilities where to insert the malicious and
the original content. To this end, he has to deal with these questions:

• At which level in the XML message tree should the malicious content and
the original signed data be included?

• Which Assertion element is processed by the assertion logic?

• Which element is used for signature verification?

By answering these questions we can define different attack patterns, where
the original and the malicious elements can be permuted (Figure 3.11). We
thus get a complete list of attack vectors, which served as a guideline for our
investigations.
For the following explanations we only consider signing type 1 defined in

Figure 3.10. In this signing type only the Assertion element is referenced. The
attack permutations are depicted in Figure 3.11. In addition, we analyze their
SAML standard conformance and the signature validity:

1. Malicious assertion, original assertion, and signature are left on the same
message level: This kind of XML message can have six permutations.
None of them is SAML standard conformant, since the XML Signature
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Figure 3.11: Possible variants for XSW attacks applied on messages with one
signed SAML assertion divided according to the insertion depth of the evil as-
sertion EA, the original assertion A1 and the signature S1. The various permu-
tations are labeled according to their validity and SAML-conformance.

does not sign its parent element. The digest value over the signed elements
in all the messages can be correctly validated. We can use this type of
attack messages if the server does not check SAML conformance.

2. All the three elements are inserted at different message levels, as child ele-
ments of each other, which again results in six permutations: Messages 2-a
and 2-b show examples of SAML standard conforming and cryptograph-
ically valid messages. In both cases the signature element references its
parent – the original assertion A1. Message 2-c illustrates a message that
is not SAML standard conformant as the signature signs its child element.
Nevertheless, the message is cryptographically valid. Lastly, message 2-
d shows an example of an invalid message since the signature would be
verified over both assertions. Generally, if the signature is inserted as the
child of the root element, the message would also be either invalid or not
SAML standard conformant.

3. For the insertion of these three elements we use two message levels: Mes-
sage 3-a shows an example of a valid and SAML conformant document.
By constructing message 3-b, the signature element was moved to the new
malicious assertion. Since it references the original element, it is still valid,
but does not conform to the SAML standard.
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The analysis shown above can similarly be applied to messages with different
signing types (see Figure 3.10).

3.3.3 Practical Evaluation

We evaluated the above defined attacks on real-world systems and frameworks,
which were introduced in Table 3.1. In this section, we present the results.

3.3.3.1 Signature Exclusion Attacks

We start the presentation of our results with the simplest attack type called Sig-
nature Exclusion attack. This attack relies on poor implementation of a server’s
security logic, which checks the signature validity only if the signature is in-
cluded. If the security logic does not find the Signature element, it simply
skips the validation step. Evaluation of this attack was motivated by our pre-
vious results described in Section 3.2.3, which showed that the AWS interface
was vulnerable to Signature Exclusion attacks.
The evaluation showed that three SAML-based frameworks were vulnerable

to these attacks: Apache Axis2 Web Services Framework, JOSSO, and the Java-
based implementation of SAML 2.0 in Eduserv (other versions of SAML and
the C-implementation in Eduserv were not affected).
By applying this attack on JOSSO and Eduserv the attacker had to remove

the Signature element from the message, since if it was found, the framework
tried to validate it. On the other hand, the Apache Axis2 framework did not
validate the Signature element over the SAML assertion at all, even if it was
included in the message. Apache Axis2 validated only the signature over the
SOAP body and the Timestamp element. The signature protecting the SAML
assertion, which is included separately in the Assertion element, was completely
ignored.

3.3.3.2 Refined Signature Wrapping

Ten out of 14 systems were prone to refined XSW attacks.
Classified on the three different signature application types given in Fig-

ure 3.10, five SAML-based systems failed in validating Type 1 messages, where
only the assertion is protected by an XML Signature. Figure 3.12 depicts the
XML tree-based illustration of the found XSW variants. Higgins, Apache Axis2,
and the IBM XS 40 Security Gateway were outfoxed by two attack variants. In
the first variant it was sufficient to inject an evil assertion with a different Id
attribute in front of the original assertion. As the SAML standard allows to
have multiple assertions in one protocol element, the XML Schema validation
still succeeds by this type of message. The second attack type embedded the
original assertion as a child element into the evil assertion EA. In both cases
the XML Signature was still standard conformant, as enveloped signatures were
applied. This was broken in the case of OIOSAML by using detached signa-
tures. In this variant the original textttSignature element was moved into the
EA, which was inserted before the legitimate assertion. The last shown per-
mutation was applicable to the cloud services of Salesforce and the OpenAM
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Figure 3.12: XML tree-based illustration of refined XSW attacks found in Type
1 signature applications.

framework. In this case, the original assertion was placed into the Signature el-
ement. As both implementations apply XML Schema for validating the schema
conformance of a SAML message, this was done by injecting them into the
Object element, which allows arbitrary content. Again, this is not compliant
to the SAML standard because this mutation transforms the enveloped to an
enveloping signature. Finally, the OneLogin Toolkits were prone to all shown
attack variants as they did not apply XML Schema, validated the XML Signa-
ture independently of its semantic occurrence and used a fixed reference to the
processed SAML claims (/samlp:Response/saml:Assertion[1]).
We found three susceptible implementations, which applied Type 2 messages,

where the whole message is protected by an XML Signature. We depict the
attacks on these implementations in Figure 3.13. In the Guanxi and JOSSO
implementations the legitimate root element was inserted into the Object ele-
ment in the original Signature. The Signature node was moved into the ER
element, which also included the new evil assertion. In the case of WSO2, it was
sufficient to place the original root element into the ER object. Naturally, some-
one would expect that enforcing full document signing would eliminate XSW
completely. The both given examples demonstrate that this does not hold in
practice. Again, this highlights the vigilance required when implementing com-
plex standards such as SAML.
Finally, we did not find vulnerable frameworks that applied Type 3 messages,
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Figure 3.13: XML tree-based illustration of refined XSW attacks found in Type
2 signature applications.

where both the root and the assertion are protected by different signatures.
Indeed, one legitimate reason is that most SAML implementations do not use
Type 3 messages. In our practical evaluation, only SimpleSAMLphp applied
them by default. Nevertheless, this does not mean that XSW is not applicable
to this message type in practice.

3.3.3.3 OpenSAML Vulnerability

The attack vectors described above did not work against the prevalently de-
ployed OpenSAML library. The reason was that OpenSAML compared the Id
used by the signature validation with the Id of the processed assertion. If these
identifiers were different (based on a string comparison), the signature valida-
tion failed. Additionally, XML messages including more than one element with
the same Id were rejected. Both mechanisms are handled in OpenSAML by us-
ing the Apache Xerces library and its XML Schema validation method [The13].
Nevertheless, it was possible to overcome these countermeasures with a more
sophisticated XSW attack.
As mentioned before, in OpenSAML the Apache Xerces library performs a

schema validation of every incoming XML message. Therefore, the Id of each el-
ement can be defined by using the appropriate XML Schema file. This allows the
Xerces library to identify all included Ids and to reject messages with Id values
which are not unique (e.g. duplicated). However, a bug in this library caused
XML elements defined with any content to be incorrectly processed. More con-
cretely, the content of the elements defined as <any processContents="lax">
were not checked using the defined XML Schema. Therefore, it was possible to
insert elements with arbitrary – also duplicated – Ids inside an XML message.
This created a good position for our wrapped content.
It is still the question which of the extensible elements could be used for the

execution of our attacks. This depends on two processing properties:

1. Which element is used for assertion processing?

2. Which element is validated by the security module if there are two elements
with the same Id?
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Interestingly, the two existing implementations of Apache Xerces (Java and
C++) handled element dereferencing differently. For C++, the attacker had to
ensure that the original signed assertion was copied before the evil assertion.
In the Java case, the legitimate assertion had to be placed within or after the
evil assertion. In summary, if two elements with the same Id values occurred in
an XML message, the XML security library detected only the first (for C++)
or the last (for Java) element in the message. This property gave the attacker
an opportunity to use e.g. the Extensions element for the C++ library, whose
XML Schema is defined in Figure 3.14. The Extensions element is not the only
possible position for our wrapped content. The schemas of SAML and XML
Signature allow more locations (e.g. the Object element of the Signature, or
the SubjectConfirmationData and Advice elements of the Assertion).

<element name="Extensions" type="samlp:ExtensionsType"/>
<complexType name="ExtensionsType">
<sequence>
<any namespace="##other" processContents="lax"

maxOccurs="unbounded"/>
</sequence>

</complexType>

Figure 3.14: XML Schema definition of the Extensions element.

The previously described behavior of the XML Schema validation forced
OpenSAML to use the wrapped original assertion for signature validation. In
contrast, the application logic processed the claims of the evil assertion. In Fig-
ure 3.15, we present the concrete attack messages of this novel XSW variant.
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Figure 3.15: XSW attack on OpenSAML library.

The successful attack on OpenSAML shows that countering the XSW attack
can become more complicated than expected. Even if several countermeasures
are applied, the developer should still consider vulnerabilities in the underlying
libraries. Namely, one vulnerability in the XML Schema validating library can
lead to the execution of a successful XSW attack.
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3.3.3.4 Salesforce SAML Interface Revisited

After reporting the XSW vulnerability to Salesforce, the security response team
developed a simple and promising countermeasure: The SAML interface solely
accepted messages containing one Assertion element.2

On request of the Salesforce security team, we investigated the fixed SAML
interface with handcrafted messages containing wrapped contents in different
elements. Our manual analysis did not reveal any new attack vectors. Ev-
ery message containing more than one Assertion element was automatically
rejected. Therefore, we first considered this interface to be secure.
A few months later, Marco Kampmann finished the development of his XSW

penetration test tool [Mar11b]. We decided to use this tool to verify the coun-
termeasures applied on the Salesforce interface. Surprisingly, the automated
penetration test tool revealed a new successful attack variant by inserting the
wrapped content into the Audience element – a descendant of the Conditions
element. This element typically contains a URI constraining the parties that can
consume the issued assertion. The wrapped message is depicted in Figure 3.16.
As can be seen in the figure, both Assertion elements needed to contain the
same Id attribute.

Signed
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Assertion

Assertion

Signature

SignedInfo

Reference URI=“#123“

Id=“123“

Id=“123“

Audience

saml.salesforce.com

Figure 3.16: A successful XSW attack performed against the patched Salesforce
SAML interface.

This scientifically interesting attack vector stayed unanalyzed as the Sales-
force security team did not expose any concrete information about their SAML
interface. However, it showed again how complex the development of secure
XSW countermeasures is.

3.3.3.5 Various Implementation Flaws

While reviewing the OneLogin Toolkit, we discovered another interesting flaw:
The implementation did not care about what data was actually signed. There-
fore, any content signed by the IdP was sufficient to launch an XSW attack.

2This countermeasure is not standard conformant as one message can generally contain
several assertions.
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In our case we used the metadata of the IdP 3 and created our own self-made
response message to successfully attack OneLogin.
Besides the fact that a SAML system has to check what data is signed, it is

also essential to verify by whom the signature was created. In an early version of
SimpleSAMLphp, which applied Type 3 messages, we observed that an attacker
could forge the outer signature of the response message with any arbitrary key.
In short, the SimpleSAMLphp RP did not verify if the included certificate in
the KeyInfo element is trustworthy at all. The key evaluation for the signed
assertion was correctly handled.

3.3.3.6 Secure Frameworks

In our evaluation of real-world SAML implementations we observed that Mi-
crosoft Sharepoint 2010 and SimpleSAMLphp were resistant to all applied test
cases. Based on these findings the following questions arise: How do these
systems implement signature validation? In which way do signature valida-
tion and assertion processing work together? Due to the fact that the source
code of Sharepoint 2010 is not publicly available, we were only able to analyze
SimpleSAMLphp.
According to this investigation the main signature validation and claims pro-

cessing algorithm of SimpleSAMLphp performs the following five steps to coun-
teract XSW attacks:

1. XML Schema validation: First, the whole response message is vali-
dated against the applied SAML schemas.

2. Extract assertions: All included assertions are extracted. Each asser-
tion is saved as a DOM tree in a separate variable. The following steps
are only applied on these segregated assertions.

3. Verify what is signed: SimpleSAMLphp checks, if each assertion is
protected by an enveloped signature. In short, the XML node addressed
by the URI attribute of the Reference element is compared to the root
element of the same assertion. The XML Signature in the assertion is an
enveloped signature if and only if both objects are identical.

4. Validate signature: The verification of every enveloped signature is
exclusively done on the DOM tree of each corresponding assertion.

5. Assertion processing: The subsequent assertion processing is solely
done with the extracted and successfully validated assertions.

When not considering the signature exclusion bug found in the OpenAthens
implementation and its Java-based assertions processing, this framework was
also resistant to all the described attacks. The analysis of its implementa-
tion showed that it processes SAML assertions similarly to the above described
SimpleSAMLphp framework.

3The SAML Metadata [CMPM05] describes properties of SAML entities in XML to allow
easy establishment of federations. Typically, the metadata is signed by the issuer and
publicly available.
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3.3.3.7 Summary

We evaluated 14 different SAML-based systems. We found eleven of them vul-
nerable to XSW attacks. One prevalently used framework (OpenSAML) was
vulnerable to a new, more subtle, variant of this attack vector. In addition,
three of the tested frameworks were vulnerable to Signature Exclusion attacks.
We found two implementations which were resistant against all test cases. The
results obtained from our analysis are summarized in Table 3.2.

Frameworks / Providers S
ig
n
in
g
ty
p
e

S
ig
n
at
u
re

ex
cl
u
si
on

R
efi

n
ed

X
S
W

S
op

h
is
ti
ca
te
d

X
S
W

N
ot

vu
ln
er
ab

le

Apache Axis2 1) X X
Guanxi 2) X
Higgins 1.x 1) X
IBM XS40 1) X
JOSSO 2) X X
WIF 1) X
OIOSAML 1) X
OpenAM 1) X
OneLogin 1) X
OpenAthens 1) X
OpenSAML 1) X
Salesforce 1) X
SimpleSAMLphp 3) X
WSO2 2) X

Table 3.2: Results of our practical evaluation show that a majority of the an-
alyzed frameworks were vulnerable to the refined wrapping techniques.

3.4 Further Related Work

Starting from 2005, XSW attacks have become a research topic considered in
many scientific publications. In the following, we give an overview of the ma-
jor publications. We present also two additional XSW attacks, which can be
executed even if XPath-based referencing is used.

3.4.1 Security of XML Signature

XSW attacks were first presented by McIntosh and Austel [MA05] and Bharga-
van et al. [BFG04]. McIntosh and Austel [MA05] also discussed receiver-sided
security policies. They demonstrated the complexity of the problem by showing
sophisticated XSW attacks bypassing such policies.
Rahaman, Schaad and Rits [RSR06, RMS06, RS07] refrained from policy-

driven approaches and introduced an inline approach. The authors proposed to
embed an Account element into the SOAP header. This element contains partial
information about the structure of the SOAP message and the neighborhood of
the signed element(s). The information preserves the structure of the data to
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be signed. However, Gajek et al. showed that this approach does not prevent
XSW attacks [GLS07].
Jensen et al. [JMSS11] analyzed the effectiveness of XML Schema validation in

terms of fending off XSW attacks in Web Services. Thereby, they used manually
hardened XML Schemas. The authors concluded that XML Schema validation
is capable of fending off XSW attacks, at the expense of two important disadvan-
tages: For each application, a specific hardened XML Schema without extension
points must be carefully created. Moreover, document validation according to
a hardened XML Schema entails severe performance penalties.
XML Signatures allow the application of HMAC verification

algorithm [MvV96]. The specification offers an HMACOutputLength parameter
when applying HMACs. The parameter specifies the number of HMAC output
bits that must be verified. If the receiver fully trusts the HMACOutputLength pa-
rameter, the attacker can force the receiver to verify only one HMAC bit [Roe09].
A surprisingly high number of implementations were vulnerable to this attack.
The XML Signature specification now explicitly mentions that at least 80 bits
of the HMAC output must be verified.

3.4.2 XSW Attacks on XML Signatures with XPath Referencing

XPointer [MMGW03] and XPath Filter [RBH02] are specified as referencing
mechanisms in the XML Signature specification. An example of a message
signed using the XPointer specification is shown in Figure 3.17. The signed
Body element is referenced using the /Envelope/Body XPath expression.

Envelope

Header

Signature

SignedInfo

Reference URI=“#xpointer(/Envelope/Body)“

Body

Action

Security

Figure 3.17: Example of an XPath-based XML Signature applied on the SOAP
body.

One could think that usage of XPath expressions could mitigate XSW attacks
because these expressions fix the positions of the signed elements. However,
Gajek, Jensen, Liao and Schwenk showed that the XPath expressions have to be
chosen very carefully, otherwise new XSW vulnerabilities could appear [GJLS09,
JLS09]. These attacks were not exploited practically.

3.4.2.1 Imprecise XPath Expressions

Gajek et al. [GJLS09] evaluated the effectiveness of XPath mechanisms to mit-
igate XSW attacks in the SOAP context. They showed that many imprecise
forms of XPath expressions still offer possibilities for XSW attacks.
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3.4.2.1.1 Identifier Referencing. Each Id-based reference can be trans-
formed into an XPath expression. Consider an element with Id="ts", which
is referenced using URI="#ts". This element can also be simply referenced by an
XPath expression //*[@Id="ts"], where “//” is a short form for
descendant-or-self. As the XPath expression equals to the Id-based refer-
encing, it is obvious that its application could lead to equivalent XSW attacks.
An example of such an XSW attack on the Timestamp element is depicted in
Figure 3.18.

Envelope

Header

Signature

SignedInfo

Reference URI=“#xpointer(//*[@Id="ts"])“

Body

Security

Signed

Processed

Id=“attack“

Timestamp Id=“ts“

Wrapper

Timestamp

Figure 3.18: Imprecise usage of XPath referencing could also lead to XSW
attacks.

3.4.2.1.2 Referencing with descendant-or-self (//). “//” selects the con-
text node and all its descendants. “//” can occur also in the middle of the XPath
expression. An example of such an XPath expression gives
/Envelope[1]/Header[1]//Timestamp[1]. However, this expression does not
secure the exact position of the Timestamp element. It finds namely the first
Timestamp element within the SOAP header. If we assume that the application
logic evaluates a Timestamp element in the Security SOAP header element, the
same XSW attack as depicted in Figure 3.18 could be applied.
In addition to descendant-or-self, also the usage of different axes such as

descendant, ancestor, or next-sibling could in general be exploited.

3.4.2.1.3 Proposed Countermeasures. Gajek et al. [GJLS09] proposed a light-
weight variant called FastXPath defininig usage of precise XPath expressions.
FastXPath starts its search from the root element. In each step, only one child
element is selected. It is explicitly indicated by its name and position. An exam-
ple of a FastXPath expression gives /Envelope[1]/Header[1]/Security[1]/
Timestamp[1]. See Section 3.6.3 for more details.

3.4.2.2 XML Namespace Injection

The FastXPath approach by Gajek et al. [GJLS09] tries to fix the exact position
of an element in the XML tree. However, Jensen et al. [JLS09] showed that a
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naive usage of XML namespaces in XPath expressions could result in a Names-
pace Injection attack : By clever manipulation of XML namespace declarations
within a signed document, XSW attacks could successfully be mounted even
against XPath referenced resources. The attack exploits resolution of newly
defined XML namespaces. It can be applied only if XML Signature utilizes the
Exclusive XML Canonicalization method.
In the following attack description, we will use the complete XML structure

including its namespaces.

Attack. For the description of the basic attack idea please consider Fig-
ure 3.19. This figure contains a SOAP message with an operation’s content. The
content is referenced using the XPath expression /soap:Envelope/soap:Body/
op:Operation/Content. The XPath engine searches for such an XML element
using namespace URIs (not namespace prefixes). Thus, the namespace pre-
fixes are first resolved. The XPath engine traverses the document to the top
and collects all the namespace URIs: soap="ns-soap" and op="ns-op". Af-
terwards, it searches for the element /{ns-soap}:Envelope/{ns-soap}:Body/
{ns-op}:Operation/Content.4 The Content element is then canonicalized
and signed. Note that the Exclusive XML Canonicalization method omits the
op="ns-op" namespace declaration as it is not needed in the Content element.
Thus, this namespace is not protected.

soap:Envelope

soap:Header

ds:Signature

ds:SignedInfo

ds:Reference
URI=“#xpointer

(/soap:Envelope/soap:Body/
op:Operation/Content)“

soap:Body

op:Operation

content

wsse:Security

Content

xmlns:soap=“ns-soap“  xmlns:op=“ns-op“

xmlns:wsse=“ns-wsse“

xmlns:ds=“ns-ds“

xmlns:op=“ns-op“

Namespace declaration

Namespace context

Figure 3.19: XPath-based referencing securing the content of op:Operation.

Figure 3.20 shows a simplified example of an XSW attack on the message
from the previous figure. The attacker proceeds by the message modification
as follows. He first declares a new xmlns:op="ns-attack" namespace in one
of the ancestors of the ds:SignedInfo element (in the figure wsse:Security is
used). Afterwards, he duplicates the op:Operation element. The first element
declares the original namespace xmlns:op="ns-op" and the second element de-
clares xmlns:op="ns-attack". The attacker inserts his content into the first
op:Operation element.
The signature verification logic processes this message as follows. It finds the

4{ns-soap}:Envelope refers to an Envelope element with the namespace URI ns-soap.
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soap:Envelope

soap:Header

ds:Signature

ds:SignedInfo

ds:Reference
URI=“#xpointer

(/soap:Envelope/soap:Body/
op:Operation/cnt:Content)“

soap:Body

op:Operation

Attacker content

wsse:Security

Content

xmlns:op=“ns-attack“

Namespace context
xmlns:op=“ns-op“

op:Operation

Original content

Content

xmlns:op=“ns-attack“

xmlns:op=“ns-attack“

Namespace declaration

Figure 3.20: XML Namespace Injection XSW technique applied on the mes-
sage from the previous figure: The signature verification logic resolves the
xmlns:op="ns-attack" namespace (injected by an attacker) and thus verifies
a wrong element.

Reference element and resolves the namespace context. As the attacker de-
clared the xmlns:op="ns-attack" namespace in the wsse:Security element,
it resolves the following URIs: soap="ns-soap" and op="ns-attack". After-
wards, it searches for /{ns-soap}:Envelope/{ns-soap}:Body/{ns-attack}:
Operation/Content. Thus, this XPath expression returns the second (original)
op:Operation element and the signature is successfully verified. The business
logic executes the first (modified) op:Operation element.

Proposed Countermeasures. Jensen et al. proposed several countermea-
sures against these attacks [JLS09]. Two of them are practically applicable
in the current XML Security frameworks. The first countermeasure includes
explicit namespaces in the SignedInfo element, which results in a hash value
computation over additionally defined namespaces. The second countermeasure
proposes a new XPath syntax. The syntax identifies each element explicitly by
its element name (by using the local-name() function) and its namespace con-
text (by using the namespace-uri() function). This ensures that the referenced
elements belong to the correct namespaces.
Both approaches are described in more detail in Section 3.6.3.

3.5 Summary of XSW Attacks

Throughout this chapter we described several XSW attacks containing various
properties. The attacks were applicable on different interfaces. In the following,
we summarize these attacks and divide them into four main categories.

Classical XSW Attack. The classical XSW attack was defined by McIntosh
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and Austel [MA05] (see Figure 3.1). A major prerequisite for executing this
attack is that the signature verification logic and the business logic do not
communicate with each other. Thus, the business logic does not know which
element was verified by the XML Signature. This allows an attacker to place the
original signed content into an arbitrary element and create a new evil element
with a different Id. As the business logic does not know which element with
which Id was verified, it processes the newly created evil element.

Duplicated-Id XSW Attack. We showed that several systems and frame-
works tried to establish communication between the business logic and the se-
curity verification modules. Amazon Web Services and OpenSAML developers
tried to achieve this by providing the business logic with the Id attribute of
the signed element. The business logic can then check if the processed element
has the same Id as the signed element. This basic countermeasure can be by-
passed by using identical Id attributes for the signed and processed evil element.
Practical attacks were executed against OpenSAML and AWS interfaces.
When executing this type of attack, the attacker has to consider the following

properties:

• XML Schema validation: XML Schema does not allow the use of two
identical Id elements in one document. The attack can thus only be
applied against an interface that (1) does not validate XML Schema (see
e.g. the attack on AWS in Section 3.2.3), or (2) applies a vulnerable parser
allowing two elements with identical Id attributes (see e.g. the attack on
OpenSAML in Section 3.3.3.3).

• Order of signed and processed elements: When an XML document con-
tains more elements with identical Id attributes referenced by an XML
Signature, the signature verification logic typically verifies the first (see
e.g. the attack on OpenSAML C++ in Section 3.3.3.3) or the last ele-
ment (see e.g. the attacks on AWS and OpenSAML Java in Sections 3.2.3
and 3.3.3.3). Thus, the attacker has to decide if he puts the original signed
element before or behind the new evil element.

Imprecise XPath Referencing. Usage of imprecise XPath expressions can
also give an attacker a possibility to attack XML Signatures with XPath-based
referencing (see Section 3.4.2.1). The imprecision of an XPath expression can
be caused by the use of an identifier referencing (e.g. //*[@Id="ts"]), or by
the use of XPath axes not correctly fixing the positions of signed elements (e.g.
descendant-or-self or ancestor).
In general, if the attacker can move the signed content without invalidating

the XPath expression, the XSW attacks are still possible.

XML Namespace Injection. The XML Namespace Injection technique of
Jensen et al. [JLS09] can basically be executed if two prerequisites are fulfilled.
First, the XPath expression does not explicitly define namespace URIs used in
the path of the signed element. Second, the Exclusive XML Canonicalization
method is used. This gives the attacker an opportunity to redefine XML names-
paces: He can, in specific messages, change the namespace context of the signed
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element without invalidating the original signature. He thus forces the signa-
ture validation logic to verify the original XML content placed in an element
with a different namespace. The business logic processes new elements from the
original namespace (see Section 3.4.2.2).

3.6 Countermeasures

In Section 3.3.3.6 we analyzed message processing of SimpleSAMLphp. This
framework was resistant against all XSW attacks. One could therefore ask the
question: Why do we need further countermeasures and why is it not appropriate
to apply the security algorithm of SimpleSAMLphp in every system?
We want to make clear that SimpleSAMLphp offers both critical function-

alities in one framework: signature validation and SAML assertion evaluation.
These two methods are implemented using the same libraries and processing
modules. After parsing a document, the elements are stored within a document
tree and can be accessed directly. This allows the security developers to conve-
niently access the same elements used in signature validation and assertion eval-
uation steps. However, there exist scenarios (e.g., in enterprise environments)
that force the developers to separate these two steps into different modules or
even different systems, for example:

• Using a signature validation library: Before evaluating the incoming
XML document, the developer uses a DOM-based signature library, which
returns true or false according to the message validity. However, the
developer does not exactly know which elements were validated. If the
business logic applies a different parsing approach (e.g. streaming-based
SAX or StAX approach) or another DOM-library, the message processing
could become error-prone.

• XML Security Gateways: XML Security Gateways can validate XML
Signatures and are configured to forward only validated XML documents.
If the developer evaluates a validated document in his application, he has
no explicit information about the position of the signed element. Synchro-
nization of signature and assertion processing components in this scenario
becomes even more complicated if the developer has no information about
the implementation of the Security Gateway (e.g. IBM XS40).

These two examples show that convenient access to the same XML elements
is not always given. We present three general countermeasures applicable in
systems that split security processing and business logic processing into different
modules.

3.6.1 See What Is Signed

A countermeasure referred to as see what is signed is constituted by the fact
that the application logic is only able to notice the XML content that was
digitally signed. This can be achieved using two techniques. First, the signature
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verification logic can forward only the signed elements. Second, the signature
verification logic returns next to a boolean value some sort of position of the
signed data. A disadvantage of the countermeasures is that they require serious
changes in XML processing modules on the recipient side. In the following, we
present these countermeasures in more detail. They were described in [GLS07]
and formally analyzed in [SMS+12].

3.6.1.1 Strict Filtering

The core idea of this countermeasure is to forward only those elements to the
business logic module that were validated by the signature verification module.
This is not trivial as extracting the unsigned elements from the message context
could make the further message processing in some scenarios impossible. There-
fore, we propose a solution that excludes only the unsigned elements, which do
not contain any signed descendants. We give an example of such a message
processing in Figure 3.21. This way, the claims and message processing logic
would get the whole message context: In case of SOAP it would see the whole
Envelope element. The main advantage of this approach is that the message
processing logic does not have to search for validated elements because it can
assume that all forwarded elements are valid.

Envelope

Assertion

Header

Id=“123“

Signature

Signature

URI=“#123“

Body

URI=“#body“

Id=“body“

UnsignedContent

Envelope

Assertion

Header

Id=“123“

Body Id=“body“

Signature 
Verification

Business
Logic

Figure 3.21: The strict filtering approach applied to SOAP message processing:
After successful signature verification, the signature verification module excludes
all the unsigned elements and forwards the message to the module processing
assertion security claims and the business logic.

This idea was already discussed by Gajek et al. [GLS07]. However, no XML
Signature framework currently implements this countermeasure. It could be
applied especially in the context of SAML HTTP POST bindings because the
unsigned elements within the SAML response do not contain any data needed
in the business logic. We consider this countermeasure in these scenarios as
appropriate because the SAML standard only allows the usage of Id-based ref-
erencing, exclusive canonicalization, and enveloped transformation. This coun-
termeasure would not work if the XML Signature were to use specific XSLT or
XPath transformations.
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3.6.1.2 Unique Identification (Tainting) of Signed Data

The second countermeasure represents another form of the see what is signed
approach. The basic idea is to uniquely identify the signed data in the signature
verification module and forward this information to the following modules. This
could be done by generating a random value r, sending it to the next processing
module (or as an attribute in the document root element), and attaching it
as a new attribute to all the signed elements. We give an example of this
countermeasure applied to a SOAP message in Figure 3.22. The main drawback
of this countermeasure is that XML Schemas do not allow the inclusion of new
attributes. Therefore, the XML Schema validation would fail. For general
application of this idea the XML Schemas need to be extended.

Envelope

Assertion

Header

Id=“123“

Signature

Signature

URI=“#123“

Body

URI=“#body“

Id=“body“

UnsignedContent

rg=“xy“

r=“xy“

Envelope

Assertion

Header

Id=“123“

Signature

Signature

URI=“#123“

Body

URI=“#body“

Id=“body“

UnsignedContent

r=“xy“

Signature 
Verification

Business
Logic

r=“xy“

Figure 3.22: Unique identification of signed data applied on a SOAP message
including two signed elements: The signature verification module uniquely iden-
tifies the signed elements with a random value r and forwards this information
along with the whole XML message.

Another possibility to implement this countermeasure is to use XML node
types that do not violate the XML Schema, but are visible to the XML proces-
sors. For example, processing instructions [BPSM+08], which are intended to
carry instructions to the application belong to this group. They can be placed
anywhere in the document without invalidating the XML Schema. Additionally,
they can be conveniently found by processing XML trees with streaming and
DOM-based parsers. Therefore, the presence of these XML nodes would help
to find the validated data and thus allows to mitigate XSW attacks.

3.6.2 See Which Id Is Signed

A simple approach to counter XSW attacks while using Id-based referencing is to
check if the processed XML content contains the same Id as the signed element.
We saw this approach in SOAP-based as well as SAML-based interfaces (see
description of Amazon and OpenSAML interfaces in Sections 3.2.3 and 3.3.3.3).
The advantage of this countermeasure is that it does not need any changes in
the XML Signature verification logic. Even though this countermeasure looks
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straightforward, its application requires careful XML parsing and processing.
As described in Section 2.1, Id or id attributes are not automatically handled

as attributes of type ID. The attributes must explicitly be defined as ID type
attributes. This can be done using different approaches:

• The developer provides the parser an XML Schema identifying attributes
of type ID.

• The developer indicates to the DOM in the code that certain attributes
are handled as ID type attributes. This can e.g. be done by invoking
setIdAttribute() method on the element containing the attribute.

• The ID attributes are defined directly in the XML message prolog using a
DTD [BPSM+08].

First, DTDs give the message sender an opportunity to define ID type attributes.
Thus, DTDs must be forbidden on the recipient side. Otherwise, they would
allow an attacker for definition of new ID type attributes and thus confuse the
signature verification and business logic modules.
Second, by applying this countermeasure, the message receiver must ensure

that the signature verification logic and the business logic process elements with
the same Id attributes. XML messages containing duplicated Id values must
be rejected. Otherwise, the attacker could apply a duplicated-Id XSW attack.
To achieve this, the developer could use one of these two approaches:

• XML Schema validation: XML Schema automatically invalidates XML
documents containing duplicated Ids. However, the developer should ver-
ify that the used XML parser is reliable and that it detects duplicated Ids.
Moreover, if the XML application consists of different modules using dif-
ferent parsers in the signature verification and business logic module, the
developer should ensure that both modules identify the same attributes
as ID type attributes.

• The XML application can carefully identify specific element attributes in
the DOM as ID type attributes. The number of the ID type attributes
must not be larger than the total amount of Reference elements within
the XML Signatures in the document. If the XML application is separated
into two distinct modules (signature verification and business logic), the
developer should check that his application identifies the same elements
and indicates their elements as ID type attributes.

If one of these two approaches is applied, the business logic module can safely
check if the processed element has the same Id as the element referenced by the
XML Signature.

3.6.3 Fixing Positions of Signed Elements

The previously described countermeasures showed how to apply secure XML
Signature processing on the receiver side. In the following, we summarize two
practical countermeasures enforcing secure XML Signature processing on the
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sender side by fixing the positions of signed XML elements. The only prereq-
uisites are that the message receiver correctly processes XPath expressions and
that the business logic module processes elements on fixed positions (e.g. a spe-
cific function in the SOAP body or a Timestamp element in the SOAP security
header). If the positions of the signed elements are fixed, the attacker cannot
move them into different document parts.
Both countermeasures can be used with XPointer [MMGW03] and XPath

Filter [RBH02] referencing mechanisms. They were investigated by Jensen et
al. [JLS09] and are based on the FastXPath grammar. This grammar prescribes
that a signed element can be referenced only by an XPath that

• starts its search from the root element,

• uses only child axes (no descendant or ancestor axes are allowed), and

• precisely defines the element name.

In order to thwart XML Namespace Injection attacks – which allow an attacker
to place the signed content into an element with a newly defined namespace (see
Section 3.4.2.2) – the FastXPath grammar is extended with precise namespace
declarations.
In the following, assume that the sender signs an op:Operation/Content

element in the SOAP body (see Figure 3.19).

Explicitly Embedding Namespaces in the Hashed XML content. The
first proposed approach is to embed the relevant namespaces into the Inclusi-
veNamespaces element. In the case of our message, the sender needs to define
soap and op namespaces (see Figure 3.23). This enforces that the hash value is
computed over the Content element as well as explicitly over the soap and op
namespaces. An attacker moving the Content element into an element from a
different namespace context would thus invalidate the message.

<Reference URI="#xpointer(
/soap:Envelope[1]/soap:Body[1]/op:Operation[1]/Content[1])">

<Transforms>
<Transform Algorithm=".../xml-exc-c14n#">
<InclusiveNamespaces PrefixList="soap op"></InclusiveNamespaces>

</Transform>
</Transforms>
<DigestMethod Algorithm=".../xmldsig#sha1"></DigestMethod>
<DigestValue>yc17yWXGca510flwlu4BzHuZ0IU=</DigestValue>

</Reference>

Figure 3.23: InclusiveNamespaces enforces that the hash value is computed
over the soap and op namespace declarations.

Prefix-free XPath. The second countermeasure approach defines names-
paces directly in the XPath expressions. The proposed XPath expressions ex-
plicitly reference elements by their names (using the local-name() function)
and namespace URIs (using the namespace-uri() function). An example of
such an XPath expression referencing the Content element gives:
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/*[local-name()="Envelope" and namespace-uri()="ns-soap"]/
*[local-name()="Body" and namespace-uri()="ns-soap"]/
*[local-name()="Operation" and namespace-uri()="ns-op"]/
*[local-name()="Content" and namespace-uri()="ns-default"]

This expression contains the namespace context of each element. Thus, if the
attacker would move the original element into an element with a different names-
pace context, the original element would not be found. This approach is cur-
rently e.g. used in IBM appliances [IBM13].
It is important to mention that even if the signature mechanism verifies a

correct element, the user still has to ensure that this element is also processed
by the business logic. Considering the above given XPath expression evaluated
by the signature validation logic, an XSW attack could still be applied if the
business logic would process elements according to their namespace prefixes.

3.7 XSW Attack Library

Our crucial findings and the vast amount of possible permutations motivated
us to develop the first fully automated library for XSW attacks. The goal
of this library is to take an arbitrary signed XML message and generate a
list of XSW attack vectors according to this XML message. The first library
was implemented by Marco Kampmann and intended for SAML-based XML
messages [Mar11b, SMS+12]. Christian Mainka generalized Marco’s approach
so that it is now possible to automatically create XSW attack messages from
(1) arbitrary XML messages (2) using Id-based as well as XPath-based XML
Signatures [Chr12].
In this section, we briefly describe basic requirements, design, and imple-

mentation decisions for this library. The library can easily be integrated in
penetration testing applications. Currently, it is integrated in WS-Attacker5 –
a framework offering automatic pentesting of SOAP-based Web Services end-
points [MSS12].
More information on this topic can be found in the work of Christian

Mainka [Chr12].

3.7.1 Design and Algorithms

According to the theoretical and practical analysis of different frameworks and
systems applying XML Signatures, we gained the following general knowledge
about executing XSW attacks:

• XML Schema validation: Some of the frameworks check message confor-
mance to the underlying XML Schema. Therefore, it is necessary to use
XML Schema extension points (identified by any elements in the XML
Schema document) for placing the wrapped content.

5http://ws-attacker.sourceforge.net
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• Order and position: The order and position of signed and executed ele-
ments in the message tree can force the different processing modules to
have inconsistent data views.

• Processing Ids: Several frameworks explicitly check, if the Id attribute in
the XML content processed by the business logic is also used in the XML
Signature.

• XPath-based referencing: Usage of imprecise XPath expressions can in-
troduce new attack risks. Attacks based on imprecise axes definitions as
well as on namespace rewriting should be considered (see Sections 3.4.2.1
and 3.4.2.2).

• Signature exclusion: A bug in a framework implementation can cause the
signature validation step to be omitted.

• Untrusted signatures: It is essential to check that the signature was created
with a trustworthy key.

Based on this knowledge, we developed a library that allows for systematic
generation of a vast number of different XSW attack vectors.

3.7.1.1 XSW Attack Complexity

The general idea of an XSW library is very simple: Take a message, find a
position for a wrapper element, and insert new evil content defined by the user.
However, the number of possible XSW messages grows very fast based on the
number of signed elements in the attacked message and on the different attack
methods, see Figure 3.24.

XML
message

XML
Signature

Reference
[Id, XPath]

Wrapper
position

Additional
Adjustments

1 … n 1 … n 0 … n 0 … n

Figure 3.24: XSW attack complexity: the number of generated XSW attack
vectors depends on many factors (“0...n” indicates a zero-to-many relationship,
“1...n” indicates a one-to-many relationship).

In general, a single XML message can contain one or more XML Signatures.
Each XML Signature can contain one or more Reference elements. A reference
can apply an Id-based or XPath-based referencing mechanism. If XPath ref-
erencing is used, the XSW attack algorithm has to check for imprecise XPath
expressions as well as Namespace Injection techniques. The referenced contents
can be placed in a large number of wrapper positions resulting in many at-
tack vectors. Additionally, each attack vector can be adjusted, e.g. the newly
generated content can contain identical or different Id attributes.
These XSW attack properties show that a large number of attack messages can

be generated. It is impossible to cover all the possibilities without automation.

63



3 How to Break XML Signature

3.7.1.2 Transforming Id References to XPath Expressions

An element can be referenced using an Id or XPath. As mentioned in the
previous sections, each Id-based reference can be transformed into an XPath
expression. For example, an element with an Id="123" can be referenced by
the XPath expression //*[@Id="123"]. Thus, Id-based referencing can be con-
sidered as a subgroup of XPath referencing mechanisms.
In order to treat both referencing mechanisms generally – before searching for

new positions of signed data – each Id reference is internally transformed into
an XPath expression. Instead of developing two distinct XSW attack algorithms
for XPath and Id referencing, only one algorithm for the XPath referencing is
needed.

3.7.1.3 Handling Timestamps

Many XML messages applying XML Security contain Timestamp elements.
When executing an XSW attack, the timestamps included in the message have
to be updated. Otherwise, the message receiver would automatically reject all
provided XML messages.
For convenience, the XSW library automatically detects a Timestamp element

and adjusts it. An example of a Timestamp structure is depicted in Figure 3.25.
The library updates the Created and Expires elements inside the timestamp.
Thereby, the difference between the values of Expires and Created (timestamp
lifetime) remains equal.

Timestamp

Created

2013-06-20T14:00

Expires

2013-06-20T14:30

Figure 3.25: XSW library automatically detects Timestamp elements and up-
dates their contents.

3.7.1.4 Analyzing XML Schema

The signed content can theoretically be wrapped into an arbitrary element inside
the XML message. This can result in a huge number of possible positions. The
number of positions can be reduced by considering only the extensible elements.
These elements are defined in the XML Schema by an any element and can
contain an arbitrary content – which makes them ideal for placing the signed
elements.
It is notable that the applied algorithm does not only search for extensible

elements in the XML message, but also in the XML Schema document. If it finds
an extensible element in the XML Schema and this element is not contained in
the XML message, the XML message is explicitly extended with this element.
An example of this approach gives processing of the the Signature element
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(see Figure 3.26). This element typically contains two children: SignedInfo
and SignatureValue. However, it can also contain a KeyInfo or an Object
element. The Object element is an extensible element (as could be seen in the
previous sections, it is an ideal element for placing the wrapped content). Thus,
the algorithm automatically extends the Signature element and includes a new
Object element serving as a wrapper. This way it is possible to construct a
large number of valid positions for the wrapped XML content.

Signature

SignedInfo

SignatureValue

Object

Signed

Signature

SignedInfo

SignatureValue

Signed

Figure 3.26: According to the XML Schema, XSW library automatically ex-
tends the original XML message with extensible elements. The extensible ele-
ments can then be used as a placeholder for signed contents.

3.7.1.5 XPath Weakness Algorithms

Sections 3.4.2.1 and 3.4.2.2 gave an overview of different XSW attacks against
XPath-based referencing. The XSW library implements attacks abusing the
weaknesses of XML referencing (identifier referencing using an attribute value
and referencing with /descendant-or-self axes) and XML namespace redefi-
nition (XML Namespace Injection attacks).
In general, by executing an attack, the library first carefully analyzes the

included XPath expression. It searches for the signed content. Then, it divides
the XPath expression into processing steps and tries to find new positions within
the XML message tree used for the inclusion of the signed content.
Concrete algorithm descriptions are given in [Chr12].

3.7.1.6 Beyond XSW – XML Signature Forging and Exclusion

In summary, in four analyzed frameworks and systems (AWS, Apache Axis2,
JOSSO, and OpenAthens) implementation bugs caused the signature validation
step to be omitted. Based on the relevance of this attack, we included this
attack vector in the XSW library.
It is also essential to check whether the signature was created with a trust-

worthy key. Otherwise, the attacker can forge a signature with an arbitrary key
and embed the corresponding certificate in the KeyInfo element.

3.7.2 Implementation

The above described algorithms have been implemented and provided in the
XSW library. The library takes a signed XML message as input and returns
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valid XSW attack vectors. Thus, it can be embedded in an arbitrary penetration
testing tool.
The XSW library consists of three major parts:

• XML Signature Manager analyzes an XML message and identifies the
signed elements.

• XPath parser analyzes an XPath expression and represents it in an object-
oriented form.

• Wrapping Oracle accepts a signed XML message, a new evil payload, and
XML Schema documents. It analyzes the XPath expressions and the
XML Schema documents, and finds the extension possibilities within the
provided XML message. The found positions are numerated, for each
position different variations of the accepted evil payload are generated,
and the processing state is stored.6 The developer can then query the
XSW library iteratively to generate XSW attack vectors. See Figure 3.27.

Wrapping
Oracle

Wrapping
Oracle

Initialization: Signed message, new evil payload, 

index i

i-th XSW attack vector

XML Schema documents

Figure 3.27: The Wrapping Oracle is initialized by a signed XML message, a
new evil payload, and XML Schema documents. Afterwards, it can be queried
for XSW attack vectors.

3.7.3 Integration in WS-Attacker

WS-Attacker is a penetration testing framework for SOAP-based Web Ser-
vices [MSS12]. It provides a user with the ability to communicate with Web
Services. Developers can extend its functionality with new modules covering
additional attacks.
The XSW library was integrated in the WS-Attacker framework. This enables

automatic testing for XSW attacks against SOAP-based Web Services. The
XSW attack execution proceeds in the following steps (see Figure 3.28): First,
the user chooses the Web Service endpoint. He also provides WS-Attacker with a
signed XML message and with a new evil payload that should be executed with
a successful XSW attack. WS-Attacker analyzes the provided XML message
and the payload content. This results in a number of XSW attack vectors.
The XSW attack vectors are then iteratively generated by the Wrapping Oracle

6Processing an XML message can result in a few thousands of XSW attack possibilities. For
performance reasons, the attack messages are not stored in the memory. They can be
generated on the fly by using the attack message index i. See Figure 3.27.
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Wrapping
Oracle

Wrapping
Oracle

Signed 
SOAP message

index i i-th XSW message

Web
Service
Web

Service

WS-AttackerWS-Attacker

XSW
Library
XSW

Library

Send first XSW message

Response

Send i-th XSW message

Response

...
Figure 3.28: The XSW library with its Wrapping oracle was integrated into the
WS-Attacker framework.

and sent to the Web Service interface. If the Web Service responds with an
appropriate message, the XSW attack is successful.7

We are currently in the process of extending the WS-Attacker to provide
communication with arbitrary SAML interfaces.
Remark: If WS-Attacker does not find a successful XSW attack vector, it

does not automatically mean that the Web Service is secure. There are many
XML frameworks containing specific properties and slightly different parsing
mechanisms. Specific attack vectors can be overlooked or indicated as false
negatives. Thus, in addition to this automatic penetration testing with WS-
Attacker, manual testing should be performed.

3.8 Conclusion

In this chapter we showed that a large majority of systems and frameworks
exhibit security insufficiencies in their XML Security interfaces. These insuffi-
ciencies lead to critical XSW vulnerabilities. Application of XSW attacks on
SSO systems and cloud management interfaces can result in disastrous scenar-
ios: An attacker in possession of a single signed XML message can at any time
steal the identity of an arbitrary user or get control over the user’s cloud system.
This confirms that securing such interfaces is of crucial importance.
We presented a deep practical analysis of closed and open source SOAP and

SAML interfaces. Our analysis revealed new classes of XSW attacks which
worked even if specific countermeasures were applied. We showed that secure
application of XML Signatures heavily depends on the underlying XML pro-
cessing system (i.e. different XML libraries and parsing types). If the system
processes XML messages in different modules, it has to be ensured that all these
modules have the same view on the processed XML messages. Otherwise, XSW
attacks could arise and an attacker could force critical modules to process un-
signed XML contents.

7In most of the cases, for recognizing a successful XSW attack, it is sufficient to search for a
specific string in the response message, e.g. “successful login”. This string is provided
by the user.
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Based on our attacks, we developed a new XSW library for automatic gen-
eration of all XSW attack vectors described in this chapter. The complexity
and large variety of the attacks motivates us for further development of auto-
matic penetration testing tools in this area. We believe that attacks similar to
XSW can also be executed against different interfaces processing different data
formats.
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In this chapter, we describe how to perform Bleichenbacher’s attack [Ble98] and
a novel chosen-ciphertext attack (which is related to Vaudenay’s attack [Vau02])
on XML Encryption, and thus break the confidentiality of the exchanged XML
ciphertexts. Our attacks use different side-channels: errors from padding and
parsing mechanisms, or timing differences for processing valid and invalid mes-
sages. We describe how to use these side-channels to decrypt AES-CBC [MvV96]
and RSA-PKCS#1 v1.5 [Kal98] encrypted ciphertexts. Afterwards, we intro-
duce another novel attack class, Backwards Compatibility attacks. These at-
tacks allow us to also break AES-GCM [Dwo07] and RSA-OAEP [KS98] cipher-
texts.
In order to describe our attacks, we first give cryptographic background on

symmetric and asymmetric encryption mechanisms, and a high-level overview
of Bleichenbacher’s and Vaudenay’s attacks. We describe the steps necessary
for decryption of encrypted XML messages. Then, we move to the description
of our adaptive chosen-ciphertext attacks.

Notation. Throughout this chapter we use the following notation:

• `a = |a|: byte-length of a byte string a

• {0, 1}n: set of all bit strings of bit-length n (n = 8`)

• a⊕ b: bit-wise XOR of strings a and b

• a||b: concatenation of strings a and b

• m: plaintext

• C: ciphertext

• ν: block cipher block-length in bytes

• ξ: number of plaintext / ciphertext blocks of length ν

• m = (m1, . . . ,mν): individual bytes of m in a block

• m(i)
j,k: the k-th bit of the byte j from the i-th plaintext block

4.1 Cryptographic Background

This section presents symmetric and asymmetric encryption schemes relevant
to this thesis and to the attacks on XML Encryption. Readers familiar with the
CBC and GCM modes of operations and the PKCS#1 standard can skip this
section.
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4.1.1 Symmetric Encryption

4.1.1.1 Block Ciphers

The XML Encryption specification specifies Triple-DES (3DES) [Nat99] and
AES [AES01] as mandatory block ciphers. The attacks described in this thesis
do not exploit specific properties of these algorithms. They exploit rather a
weakness in the used mode of operation and padding scheme (see below), and
work with any cipher in a similar way. Thus, we will consider an abstract
block cipher in the following. To this end, we define a block cipher as a pair of
algorithms (Enc,Dec). The encryption algorithm

C = Enc(k,m)

takes as input a key k ∈ {0, 1}t and an ν-byte plaintext m ∈ {0, 1}n, where
n = 8ν, and returns a ciphertext C ∈ {0, 1}n. The decryption algorithm

m = Dec(k,C)

takes a key k and a ciphertext C, and returns m ∈ {0, 1}n.
Since AES and 3DES are block ciphers, they allow the processing of data

whose length is ν = 16 or ν = 8 bytes, respectively. In order to apply these
algorithms to data of arbitrary length, the data has to be padded and processed
using a mode of operation. In the following we describe two modes of opera-
tion relevant to this thesis: Cipher Block Chaining (CBC) [MvV96] and Galois
Counter Mode (GCM) [Dwo07].

4.1.1.2 Padding Scheme

4.1.1.2.1 Padding Scheme in XML Encryption. Suppose a byte string m
of arbitrary length is to be encrypted with a block cipher. The string m must
first be padded in order to achieve a length `, which is an integer multiple of the
block size ν of the selected block cipher. XML Encryption specifies the following
padding scheme π:

1. Compute the smallest integer padlen > 0 such that |m| + padlen is an
integer multiple of ν of the block cipher.

2. Append (padlen− 1) random bytes to m.

3. Append one more byte to m, whose integer value equals padlen.

For instance, the example given in [ERI+02] considers a three-byte message
m = 0x616263 and a block cipher with a block size of ν = 8 bytes. In this
case, we have

π(m) = m′ = 0x616263 ?? ?? ?? ??05,

where ?? is an arbitrary byte value, chosen randomly. To remove the padding,
one simply reads the last byte of m′ and removes the required number of bytes
from m′ to obtain m.
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4.1.1.2.2 Padding Scheme in PKCS#5. Note that there exist different
padding schemes. For example, PKCS#5 [Kal00] defines a padding scheme in
which the processor also appends padlen bytes to m, but the padded bytes all
have the length value padlen (instead of an arbitrary randomly chosen value).
By applying such a padding scheme, the message m = 0x616263 would be
padded as follows:

π(m) = m′ = 0x6162630505050505.

4.1.1.3 Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) [MvV96] is the most popular block cipher mode
of operation in practice. Its functionality with the XML Encryption padding
scheme is depicted in Figure 4.1.

... ...

... ...

... ...

...
Initialization Vector (iv) Ciphertext Block 1 Ciphertext Block 2

03??

Plaintext Block 1 Plaintext Block 2

Padding
byte

03??

Plaintext Block 1 Plaintext Block 2

EncKey

Encryption

Decryption

x

EncKey

DecKeyDecKey

... ...

......

Figure 4.1: CBC mode of operation with the XML Encryption padding scheme.

Using a padding scheme we get m′, whose length is a multiple of ν. Now, we
can split m′ into blocks of length ν: m′ = (m′(1), . . . ,m′(ξ)). These blocks are
processed in CBC as follows:

• An initialization vector iv ∈ {0, 1}8·ν is chosen at random. The first
ciphertext block C(1) is computed as

x(1) := m′(1) ⊕ iv, C(1) := Enc(k, x(1)). (4.1)

• The subsequent ciphertext blocks C(2), . . . , C(ξ) are computed as

x(i) := m′(i) ⊕ C(i−1), C(i) := Enc(k, x(i)) (4.2)

for i = 2, . . . , ξ.
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• The resulting ciphertext is C = (iv, C(1), . . . , C(ξ)).

The decryption procedure reverts this process in the obvious way:

• The first plaintext block m′(1) is computed as

x(1) := Dec(k,C(1)), m′(1) := iv ⊕ x(1).

• The subsequent plaintext blocks m′(2), . . . ,m′(ξ) are computed as

x(i) := Dec(k,C(i)), m′(i) := C(i−1) ⊕ x(i)

for i = 2, . . . , ξ.

The last decrypted block m′(ξ) is treated specifically. After the decryption pro-
cess, it is unpadded to recover the last plaintext block

m(ξ) = π−1(m′(ξ)).

In the sequel we will write

C = Enccbc(k,m
′) and m′ = Deccbc(k,C)

to denote encryption and decryption in CBC mode.

4.1.1.4 Galois Counter Mode (GCM)

Galois Counter Mode (GCM) [Dwo07] is a block cipher mode of operation,
which provides both high efficiency and strong security in the sense of authenti-
cated encryption [BN00]. In particular, GCM provides security against chosen-
ciphertext attacks, like padding oracle attacks [Vau02], for instance. GCM is
therefore an attractive choice for a replacement of CBC.
In the sequel let us assume a block cipher (Enc,Dec), consisting of an encryp-

tion algorithm Enc and a decryption algorithm Dec, with 128-bit block size1

(like AES [AES01]). Let k be the symmetric key used for encryption and de-
cryption. Let m = (m(1), . . . ,m(ξ)) be a message consisting of (ξ − 1) 128-bit
blocks (m(1), . . . ,m(ξ−1)) and one block m(ξ), where m(ξ) contains maximum of
128 bits and ξ < 232. The number of blocks ξmax = (232 − 1) is the maximal
number of blocks in a GCM plaintext according to [Dwo07]. The reason is that
the counter cnt can only have (232 − 1) possible values. Longer messages must
be split and encrypted separately.
A message is encrypted with (Enc,Dec) in GCM-mode as follows (see Fig-

ure 4.2).

• A 96-bit initialization vector iv ∈ {0, 1}96 is chosen at random. A counter
cnt is initialized to cnt := iv||031||1, where 031 denotes the string consisting
of 31 0-bits.

1In [Dwo07] GCM is specified only for 128-bit block ciphers.
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Figure 4.2: Counter mode encryption and decryption processing (we omit Ga-
lois field computation details as it is not relevant to our attacks).

• For i ∈ {1, . . . , ξ}, the i-th message block2 m(i) is encrypted by computing
the i-th ciphertext block C(i) as

C(i) := Enc(k, cnt + i)⊕m(i).

• In parallel, an authentication tag τ (a message authentication code) is
computed using arithmetic over a binary Galois field. The details of this
computation are not relevant for our attacks. Without τ , GCM would
become a simple stream cipher (Counter mode of operation) without in-
tegrity and authenticity protection.

• The resulting ciphertext is C = (iv, C(1), . . . , C(ξ), τ).

The decryption procedure inverts this process in the obvious way. The cipher-
text C = (iv, C(1), . . . , C(ξ), τ) is decrypted as follows:

• The 96-bit initialization vector iv is used to initialize the counter cnt:
cnt := iv||031||1.

• For i ∈ {1, . . . , ξ}, the i-th message block m(i) is decrypted as

m(i) := Enc(k, cnt + i)⊕ C(i).

2Note that i < 232.
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• In parallel, an authentication tag τ ′ is computed and compared with τ .
If τ ′ = τ , the ciphertext is authenticated and the plaintext m can be
processed.

4.1.2 Asymmetric Encryption

Let (N, e) be an RSA public key, where N has byte-length ` (|N | = `), with
corresponding secret key d = 1/e mod φ(N).

4.1.2.1 PKCS#1 v1.5 Encryption Padding

The basic task of the PKCS#1 v1.5 encryption padding scheme [Kal98] is to
prepend to a message k (typically a symmetric session key) a random padding
string PS (|PS| > 8), and then apply the RSA encryption function:

1. The encryptor takes a message k and chooses a random byte string PS,
where |PS| > 8, and |PS| = `− 3− |k|, and 0x00 6∈ {PS1, . . . , PS|PS|}.

2. It sets encryption block m = 00||02||PS||00||k. By interpreting this string
as an integer, m < N .

3. It computes the ciphertext as C = me mod N .

By decrypting such a ciphertext, the decryptor first computes m = Cd mod
N . Afterwards, it checks whether the decrypted message m has a correct
PKCS#1 v1.5 format. We say that the ciphertext C and the decrypted message
m = m1||m2||...||m` are PKCS#1 v1.5 conformant if:

m1 = 0x00

m2 = 0x02

0x00 6∈ {m3, . . . ,m10}
0x00 ∈ {m11, . . . ,m`}

If this holds, it searches for the first value i > 10 such that mi = 0x00. Then,
it extracts k = mi+1|| . . . ||m`. Otherwise, the ciphertext is rejected.
In case of SSL/TLS, PKCS#1 v1.5 is for example used for encapsulation of the

pre_master_secret exchanged during the handshake [DR08]. Thus, k is inter-
preted as the pre_master_secret. In case of XML Encryption, k is interpreted
as a key that is directly used for an AES/3DES computation. Figure 4.3 gives an
example of a 16-byte long symmetric key padded to be encrypted with a 1024-
bit RSA key. If the size of k would be incorrect, the application could not use k
in further processing and should apply specific steps to thwart Bleichenbacher’s
attack [Ble98]. We describe the attack and the countermeasures against this
attack in Sections 4.2.2 and 4.5.
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0200 00 kPS

109 bytes 16 bytes

Figure 4.3: PKCS#1 v1.5 padding applied to a 16-byte long symmetric key
padded to be encrypted with a 1024-bit RSA key.

4.1.2.2 RSA-OAEP

In RSA-OAEP [BR94] (aka. PKCS#1 v2.0 [KS98] or 2.1 [JK03]3) a much more
complex padding scheme is used. Let us describe the padding in detail. In the
sequel let `G, `H , `k, `0 ∈ N be integers such that ` = 2+`G+`H and `0 = `G−`k.
Moreover, let G : {0, 1}8`H → {0, 1}8`G and H : {0, 1}8`G → {0, 1}8`H be
cryptographic hash functions.4

A message k of byte-length `k is encrypted as follows (see Figure 4.4).

1. Choose a random padding string PS ∈ {0, 1}8`H .

2. Compute values s ∈ {0, 1}8`G and t ∈ {0, 1}8`H as

s := k||08`0 ⊕G(PS) and t := PS ⊕H(s).

3. Set m := 00||s||t. Interpret m as an integer such that 0 < m < N .

4. Compute the ciphertext as C = me mod N .

G

PSk || 0

H

8 l0

ts

Figure 4.4: The OAEP padding process.

3PKCS#1 v2.1 introduces “multi-prime” RSA (where the modulus may have more than two
prime factors) and the RSASSA-PSS signature. They are not relevant for this work.

4The message encryptor can choose between SHA-1, SHA-256, SHA-384, and
SHA-512 [EJ01]. The default hash function is SHA-1.
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4.1.2.3 RSA-PKCS#1 v1.5 Signatures

In the sequel let H : {0, 1}∗ → {0, 1}8`H be a cryptographic hash function
(e.g. SHA-1) with `H -byte output length. A digital signature over message m
according to RSA-PKCS#1 v1.5 is computed in three steps.

1. Compute the hash value H(data).

2. Prepend H(data) (from right to left) with

• a 15-byte ASN.1 string α, which identifies the hash function H,

• one 0x00-byte,

• `− `H − 17 copies of the 0xFF-byte, and

• the 0x01-byte,

to obtain a padded message string m of the form

m = 0x01||0xFF|| . . . ||0xFF||0x00||α||H(data).

3. Compute the signature σ as

σ := md mod N.

4.2 Adaptive Chosen-Ciphertext Attacks

Over time, cryptography and security research introduced different classes of
attacks breaking different security properties. One of these attack classes is
adaptive chosen-ciphertext attacks.

Chosen-Ciphertext Attacks. In cryptographic theory, adaptive
chosen-ciphertext attacks (also known as CCA2 attacks, in contrast to the non-
adaptive counterpart known as CCA1 attacks [KL07]) are a class of attacks
where the attacker receives as input a ciphertext C from a challenger, and is
allowed to query a decryption oracle O. O decrypts any ciphertext under key k
except for C. The goal of the attacker is to obtain some non-trivial information
about C (e.g., decrypt C or break indistinguishability [KL07]). See Figure 4.5.
A detailed description of these attacks is out of scope of this thesis, we refer
to [KL07] for more details.

Challenger
C

C'
Dec(k,C')

C''

Dec(k,C'')

...

AttackerAttacker

Oracle O
Dec(k,C)

Figure 4.5: Adaptive chosen-ciphertext attack in theory.
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Chosen-Ciphertext Attacks in Practice. While theoretically useful, this
setting does not completely fit to practice. In practice, the attacker has only
access to a message receiver (e.g. a web server). If he would have access to
a decryption oracle, then he could simply use this oracle to decrypt the given
ciphertext C. Typical examples of chosen-ciphertext attacks in practice, like
the ones considered in this chapter, do not need a powerful decryption oracle.
Instead, they turn a receiver into a weaker oracle, which, for example, only allows
to distinguish valid from invalid ciphertexts. An attacker having access to such
an oracle iteratively chooses ciphertexts derived from the original ciphertext,
sends them to the oracle, and evaluates the responses. With each response, he
learns some information about the plaintext. He repeats these steps until he
achieves his goal. See Figure 4.6.

ReceiverReceiverC

C'
valid / invalid

C''

valid / invalid

...

SenderSender

AttackerAttacker
C

Figure 4.6: Adaptive chosen-ciphertext attack in practice.

Two major examples of these attacks are Vaudenay’s attack on CBC-based
symmetric encryption [Vau02] and Bleichenbacher’s attack on RSA-PKCS#1
v1.5-based public-key encryption [Ble98]. We describe them in this section.

Side-Channel Attacks. In practice, the oracle is provided by information
gained from the implementation of a cryptosystem, rather than a weakness of
the algorithm itself. This includes, for instance, error messages returned from a
server, distinguishable timing behavior of the receiver, power consumption, etc.
Such additional information is called “side-channel information”, and attacks
exploiting such information are “side-channel attacks”.

4.2.1 Vaudenay’s Padding Oracle Attack

At Eurocrypt 2002 Serge Vaudenay presented an adaptive chosen-ciphertext at-
tack on protocols applying CBCmode of operation [Vau02]. The follow-up works
by Canvel et al. [CHVV03] and Paterson et al. [DP07, DP10, AP13] showed that
the attack is practically applicable to IPSec [TDG98] or TLS [DA99], for exam-
ple.
One ingredient to Vaudenay’s attack is that ciphertexts encrypted in CBC

mode (see Section 4.1.1.3) can be modified by an attacker such that the resulting
ciphertext is related to the original ciphertext in a certain way. This works for
any block cipher.
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Suppose a ciphertext C = (iv, C(1), . . . , C(ξ)) encrypting a message m =
(m(1), . . . ,m(ξ)) in CBC mode is given. Then a related ciphertext can be con-
structed as follows. Let iv′ := iv ⊕ msk for some msk ∈ {0, 1}n. Then the
ciphertext

(iv′, C(1))

is a valid encryption of the message m(1)⊕msk. This can be seen by inspecting
Equations (4.1) in Section 4.1.1.3. Similarly, Equations (4.2) show that the
ciphertext

(C(i−1) ⊕msk,C(i))

is a valid encryption of the message m(i) ⊕ msk for all i ∈ {2, . . . , ξ}. Here
we use that the decryption algorithm interprets Ci−1⊕msk as an initialization
vector, if the ciphertext starts with this value. This property of the CBC mode
of operation allows an attacker to flip arbitrary bits in the plaintext.
Vaudenay applied an adaptive chosen-ciphertext attack on ciphertexts using

the PKCS#5 padding scheme [Kal00]. Recall from Section 4.1.1.2 that this
padding scheme is more restrictive than the padding scheme used in XML En-
cryption as described in Section 4.1.1.2. A padding string PS according to the
PKCS#5 scheme can have the following values, if a block cipher of block size
ν = 8 is used:5

PS = 0x01

PS = 0x0202

PS = 0x030303

. . .

PS = 0x0808080808080808.

If the decrypted CBC ciphertext does not end with one of these values, the
ciphertext is invalid.
Vaudenay showed how to use the malleability of CBC and the strict PKCS#5

padding scheme to execute padding oracle attacks. These attacks require an or-
acle that responds with two types of messages according to the padding validity:

O(C) =

{
1 if CBC decryption of C ends with a valid padding
0 otherwise.

Suppose an attacker is in possession of an encrypted message C = (iv, C(1)).
The attacker applies Vaudenay’s padding oracle attack as follows. He first ran-
domizes the initialization vector and obtains iv′ ∈ {0, 1}8ν . If he sends the
message (iv′, C(1)) to the oracle O, it most likely answers with 0 since the
decryption of a randomized ciphertext results in a plaintext with an invalid
padding. Next, the attacker modifies the message until O(iv′, C(1)) = 1. He
proceeds from the last byte in the initialization vector. He generates values
msk ∈ {0x00, . . . 0xFF} and sets

iv′′ = iv′ ⊕ 0ν−1||msk,
5SSL/TLS[DR08] uses a similar padding scheme, where PS ∈
{0x00, 0x01 01, 0x02 02 02, . . .}.
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where ν is the block cipher block size in bytes (thus, he generates initialization
vectors iv′′ with different values of the last byte iv′′ν ). He sends (iv′′, C(1)) to
the oracle. If O(iv′′, C(1)) = 1, he knows that he the decryption of (iv′′, C(1))
results in a plaintext with a valid padding PS = 0x01 with a high probability.6

Thus, the attacker can compute

x(1)ν = iv′′ν ⊕ 0x01

= ivν ⊕msk ⊕ 0x01,

where x(1) = Dec(k,C(1)). See also Figure 4.7.

3Des-Dec

Initialization Vector (iv') Ciphertext Block

Plaintext Block

iv'8

m'8 = 0x01

x'8

m'8

?

0x00

0xFF
...

Figure 4.7: The malleability of CBC and the padding scheme allow an attacker
to recover x8.

As the attacker now knows the byte x(1)ν , he can generate a ciphertext resulting
in a valid plaintext ending with 0x02: iv′′ν = x

(1)
ν ⊕0x02. Now, he can repeat the

previous procedure for the (ν−1)th byte. He iteratively generates new values of
iv′′ν−1 = iv′ν−1⊕msk and sends them toO. He knows that ifO(iv′′, C(1)) = 1, the
decrypted plaintext ends with PS = 0x0202. Thus, the attacker can compute
the second last byte

x
(1)
ν−1 = iv′′ν−1 ⊕ 0x02.

This way, the attacker can iteratively decrypt all the x(1) bytes. For decryp-
tion of one byte, he needs 255 queries in the worst-case, and about 128 queries
on average. Knowledge of x(1) allows him to decrypt the ciphertext

m(1) = iv ⊕ x(1).

To recover a ciphertext consisting of more blocks C = (C(0), C(1), . . . , C(ξ)),
the attacker simply splits C into ξ block pairs (C(i−1), C(i)), where i ∈ {1, . . . , ξ}.

6It is also possible that the attacker guessed PS = 0x02 02 or another valid padding string
correctly. The attacker can however with one additional oracle query find out, if PS =
0x01. He sets iv′′ν−1 = iv′′ν−1 ⊕ 0x80. If O(iv′′, C(1)) = 1, he can be sure that PS = 0x01.
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He uses each block pair as a pair of an initialization vector and one ciphertext
block (iv, C(1)) = (C(i−1), C(i)), and queries O to recover m(i). See the original
paper for more details [Vau02].
The attack became popular and was applied to different standards and im-

plementations in the recent years [Vau02, RD10, DR11a, AP12].

4.2.2 Bleichenbacher’s Million Message Attack

In 1998 Daniel Bleichenbacher presented an adaptive chosen-ciphertext attack
on protocols implementing RSA-PKCS#1 v1.5 encryption standard [Ble98]. He
applied his attack exemplarily on the SSL v3.0 protocol. By turning the SSL
server into a decryption oracle O, he was able to decrypt the encrypted SSL
pre_master_secret, from which a symmetric SSL session key is derived [DR08].
Bleichenbacher’s attack allows an attacker to recover the encrypted plaintext

m from the ciphertext C. For the attack execution the attacker uses an oracle
O that decrypts C and responds with 1 or 0 according to a conformity of the
message. More precisely, O gives the attacker a hint if the decrypted message
m starts with 0x00 02 or not:7

O(C) =

{
1 if m = Cd mod N starts with 0x00 02

0 otherwise.

Bleichenbacher’s attack uses such an oracle to invert the RSA encryption
functionm 7→ me mod N . The algorithm is based on the malleability of the RSA
encryption scheme. Assume that a PKCS#1 v1.5 conformant C = me mod N
is given. Then, m = Cd mod N lies in the interval [2B, 3B), where B = 28(`−2)

and N has byte-length ` (|N | = `). Bleichenbacher’s algorithm proceeds as
follows. It chooses a small integer s, computes

C ′ = (C · se) mod N = (ms)e mod N,

and queries the oracle with C ′. If O(C ′) = 0, the algorithm increments s and
repeats the previous step. Otherwise, the algorithm learns that

2B ≤ ms− rN < 3B,

for some r. This allows the attacker to reduce the set of possible solutions to

2B + rN

s
≤ m <

3B + rN

s
.

By iteratively choosing new s, querying the oracle O, and computing new r
values, the attacker reduces the possible solutions m, until only one is left. On
average, the attacker needs to issue about 215,000 oracle queries when he knows
that the searched m is PKCS#1 v1.5 conformant.8

7This oracle does not strictly verify the PKCS#1 v1.5 conformity as defined in Section 4.1.2.1.
The oracle verifies only the first two message bytes. We describe later in this section, what
attack performance impact has a strict PKCS#1 v1.5 conformity verification.

8The original paper estimates about one million queries, thus the attack has also been named
“The million message attack”. This estimation assumes that the attacker decrypts an
arbitrary ciphertext, which is not necessarily PKCS#1 v1.5 conformant.

80



4.2 Adaptive Chosen-Ciphertext Attacks

Very recently, Bardou et al. [BFK+12] improved the original attack. Their al-
gorithm is about four times faster on average than the original. Their technique
allows division to be used to manipulate encrypted PKCS#1 v1.5 messages (and
not only multiplication as in the original algorithm). We refer to the original
papers [Ble98, BFK+12] for details.

Impact of Oracle Type on Attack Performance. The oracle O needed
for the attack execution can be provided, for example, by a server responding
with different error messages if the message is PKCS#1 v1.5 conformant or not.
Bleichenbacher tested his attack against an SSL server, which strictly checked
the PKCS#1 v1.5 format. However, the attack performance varies. It heavily
depends on the restrictiveness of the oracle O by validating the PKCS#1 v1.5
message format. Bleichenbacher’s algorithm relies on the knowledge that the
first two message bytes are equal to 0x00 02. Bardou et al. analyzed differ-
ent oracle types and their impact on the attack performance [BFK+12]. They
characterize the oracles by three Boolean values (see also Section 4.1.2.1 for the
PKCS#1 v1.5 format description). A Boolean value signifies whether the oracle
responds with 1 for plaintexts that contain:

1. no 0x00 bytes at all after the first ten bytes: 0x00 6∈ {m11, . . . ,m`}.

2. 0x00 in the first eight bytes of mandatory non-zero padding:
0x00 ∈ {m3, . . . ,m10}.

3. 0x00 at a wrong position (i.e. the oracle for example does not check
whether the unwrapped symmetric key is of correct length).

These three Boolean values can be used to define specific oracles, for example:

• TTT: The oracle verifies only the first two bytes of the decrypted message
and responds with 1 each time the message starts with 0x00 02. This
makes it very helpful (i.e. “strong”) for an attacker in executing the attack.

• TFT: This oracle responds with 1 when the decrypted message starts with
0x00 02 and the first eight bytes of mandatory padding contain no 0x00.
This oracle is also very strong.

• FFF: Additionally to TFT, this oracle checks whether the 0x00 byte is placed
at the correct position so that the unwrapped key is of the correct size.
Such a behavior leads to many false negatives (since many messages start-
ing with 0x00 02 are indicated as invalid), which slows down the attack
performance. This oracle is very restrictive and thus very “weak”.

Restrictiveness of an oracle can be measured according to its ability to respond
with 1 in case that the decrypted message starts with 0x00 02. Suppose P (A)
defines a probability that the first two bytes of the decrypted message are 0x00
02. P (1|A) is a probability that the oracle answers with 1, in case that the
decrypted message starts with 0x00 02. For TTT, this probability is 1. For TFT,
the probability can be computed as:

PTFT (1|A) =

(
255

256

)8

≈ 0.969.
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If we use a 1024 bit long RSA key to unwrap a 128 bit long symmetric key, the
padding string PS has to contain 109 non-zero bytes and is followed by a 0x00
byte (see Figure 4.3). The probability for the FFF oracle strictly checking this
structure can be computed as:

PFFF (1|A) =

(
255

256

)109

·
(

1

256

)
≈ 0.0025.

Lower probabilities drastically slow down the attack performance. For ex-
ample, for a 1024 bit long RSA key, the improved Bleichenbacher attack algo-
rithm needs about 10,000 queries on average using a TTT oracle. It needs about
18,000,000 queries using an FFF oracle [BFK+12].

4.3 Decryption of Encrypted XML Messages

Recall from Section 2.5.2 that in most scenarios hybrid encryption is used. In
the following we give a precise description of how a Web Service server processes
an encrypted XML message. This example is necessary for the description of
our attacks in this chapter.
Figure 4.8 gives an example of a SOAP message containing a hybrid cipher-

text. This message consists of the following parts.

1. The EncryptedKey element (Cpub) with an encrypted session key k stored
in the CipherValue element.

2. The EncryptedData element (Csym) with an encrypted payload data stored
in the CipherValue element.

A Web Service receiving this XML document processes it as follows. It parses
the document to locate the Cpub part. It locates the EncryptionMethod and
KeyInfo elements within this part to retrieve the used algorithm and decryption
key. The server assumes PKCS#1 v1.5 padding and decrypts the content of the
CipherValue element. If the resulting plaintextm is PKCS#1 v1.5 conformant,
the session key k is extracted from m as a byte string following the second 0x00
byte (see Section 4.1.2.1).
Afterwards, the server searches for the Csym part according to the URI in the

DataReference element. It determines the needed symmetric algorithm from
the EncryptionMethod element and decrypts the content of the CipherValue
element with the session key k. Finally, the decrypted payload data is parsed,
if well-formed, and put back into the XML document tree. This enables the
processing of the whole unencrypted XML document in subsequent steps, and
the server can finally respond to the sender.
If an error occurs during the decryption or parsing process, this error is prop-

agated to the message handler, and the message handler responds to the sender
with an error message. Otherwise, the decrypted XML document can be cor-
rectly processed and the sender receives a legitimate response from the Web
Service server.
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<Envelope>
 <Header>
  <Security>
   <EncryptedKey Id="EncKeyId">
    <EncryptionMethod Algorithm="...xmlenc#rsa-1_5"/>
    <KeyInfo>...</KeyInfo>
    <CipherData>
     <CipherValue>Y2bh...fPw==</CipherValue>
    </CipherData>
    <ReferenceList>
     <DataReference URI="#EncDataId-2"/>
    </ReferenceList>
   </EncryptedKey>
  </Security>
 </Header>
 <Body>
  <EncryptedData Id="EncDataId-2">
   <EncryptionMethod Algorithm="...xmlenc#aes128-cbc"/>
   <CipherData>
    <CipherValue>3bP...Zx0=</CipherValue>
   </CipherData>
  </EncryptedData>
 </Body>
</Envelope>

csym

cpub

Public­key 
Decryption

k

Symmetric­key
Decryption

and 
XML Parsing

Figure 4.8: Decryption process of a SOAP message with a hybrid ciphertext.

4.4 Attacking CBC Ciphertexts in XML Encryption

In this section, we present an attack technique that enables an attacker to
decrypt arbitrary data was encrypted according to the XML Encryption speci-
fication. Based on a cryptographic weakness of the CBC mode, we are able to
perform a chosen-ciphertext attack which recovers the entire plaintext from a
given ciphertext. The only prerequisite for this attack consists in availability of
an “oracle” telling us whether a given ciphertext contains a “correctly formed”
plaintext. “Correctly formed” means here that the plaintext contains a valid
encoding (e.g. in UTF-8 or ASCII) of a message. In practice, this oracle may
be provided by a Web Service that returns suitable error messages, or that pro-
vides some other side-channel allowing us to distinguish correct from invalid
ciphertexts, like a different timing of data processing, for instance.
To prove the practical relevance of our attack, we apply it to the Apache

Axis2 XML framework. We show that a moderately optimized implementation
of the attack is able to decrypt 160 bytes of encrypted data within 10 seconds
by issuing 2,137 queries to the Web Service. The complexity of the attack grows
only linearly with the ciphertext size, thus recovering a larger plaintext of 1,600
bytes takes about 100 seconds and 23,000 queries.
Despite the fact that the details of the attack, and thus our results in context

of the Axis2 framework, are of course rather application-specific, we want to
stress that the attack itself is generic, and can be adapted to other scenarios
like alternative XML frameworks and possibly even other systems beyond XML
Encryption as well. For instance, we verified that the attack works against Red
Hat JBoss, and SAP systems as well without any modifications.
In general, chosen-ciphertext attacks can be avoided by ensuring the integrity

of the ciphertext. One would therefore expect our attack can easily be thwarted
by using XML Signature [ERS+08] to ensure integrity (note that XML Signature
specifies not only classical public-key signatures, but also “secret-key signatures”,
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i.e., message authentication codes). However, for several reasons this is not
true, since we can show how to perform our attack even if either public-key or
secret-key XML Signatures over the ciphertext are used. We achieve this either
by applying classical Signature Wrapping [MA05] techniques, or by using a new
attack technique that we call Encryption Wrapping.

Responsible disclosure. The attack described in this section was announced
to the W3C XML Encryption Working Group and to several providers and users
of implementations of XML Encryption in February 2011. This includes The
Apache Software Foundation (Apache Axis2), Red Hat Linux (JBoss), IBM,
Microsoft, and a governmental CERT. All acknowledged the validity of our
attack. It received the CVE Identifier CVE-2011-1096.
As a countermeasure against our attacks, the newest XML Encryption speci-

fication version now includes AES-GCM. AES-CBC and 3DES-CBC are still in
the specification for backwards compatibility reasons. Our security considera-
tions are summarized in the specification [ERH+12, Section 6.1.1].

Paper. This section is based on the paper How to Break XML Encryption
published at the ACM Conference on Computer and Communications Secu-
rity [JS11] written together with Tibor Jager.
The initial idea of applying adaptive chosen-ciphertext attacks on AES-CBC

in XML Encryption came from Tibor. He noticed that it is possible to use the
parsing mechanism in XML as an additional side-channel needed to construct
new attacks. I analyzed the decryption mechanisms in XML Encryption frame-
works and developed a practical attack exploiting the XML parsing mechanisms.
I used different performance optimizations, which made our attack about ten
times faster than Vaudenay’s padding oracle attack [Vau02]. Afterwards, I in-
vestigated the side-channels provided by the XML Encryption frameworks that
allow the application of this attack.

4.4.1 Related Work

It is well-known that the CBC encryption mode is malleable unless additional
methods for ensuring integrity are applied. This was exploited by
Vaudenay [Vau02], who showed that it is possible to decrypt a ciphertext which
is encrypted in CBC mode by issuing a small number of queries to a so-called
padding oracle. Subsequent work refines the idea of Vaudenay [Vau02], for
instance to other padding schemes and modes of operations [BU02, PY04],
random or secret initialization vectors [YPM05], attacks on real world sys-
tems like IPSec [DP07, DP10] and ASP.NET, JSF CAPTCHA, the Ruby on
Rails framework, and an OWASP security system [RD10, DR11a]. Duong and
Rizzo [RD10, DR11a] also make the observation that a padding oracle does not
only allow to decrypt ciphertexts, but also to obtain valid encryptions of ar-
bitrary plaintexts. It is possible to describe padding schemes which are secure
against padding oracle attacks [BU02, PW08], a corresponding formal security
model was given by Paterson and Watson [PW08].
By their nature, padding oracle attacks work only for certain padding schemes.

In particular, the above attacks are not applicable to XML Encryption, since the
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specification specifies a different padding scheme. By the application of a typical
padding oracle attack, the attacker decrypts bytes in a ciphertext block one after
another, starting from the last one. According to the oracle responses, he mod-
ifies iv′ and successively searches for (iv′, C(1)) combinations resulting in valid
plaintexts ending with PS1 = 0x01, PS2 = 0x0202, PS3 = 0x030303, and so
on. See Figure 4.9 (left). In XML Encryption this is not possible. The XML
Encryption padding scheme strictly defines only the value of the last padding
byte. This gives the attacker a possibility to construct an oracle responding
with 1 or 0 according to the validity of the last message byte. However, all the
preceding padding bytes can have arbitrary values. Changing these bytes does
not influence the oracle response. The attacker has no possibility to find out
whether these bytes are valid or not. See Figure 4.9 (right).

01

02 02

03 03 03

04 04 0404

Decryption
of byte:

m(l)

m(l­1)

m(l­2)

m(l­3)

01

?? 02

?? ?? 03

?? ?? 04??

…
Figure 4.9: A PKCS#5 padding validity oracle allows an attacker to succes-
sively construct valid paddings: PS ∈ {0x01, 0x0202, . . .} (left). This allows
him to decrypt m`,m`−1, etc. An XML Encryption padding validity oracle
checks only the last padding byte (right). Thus, it is not possible to decrypt
m1, . . . ,m`−1.

In contrast to padding oracle attacks, we use the encoding of data as a side-
channel that allows us to attack encryption schemes using a weak mode of oper-
ation, which allows to exploit the in most cases inevitable fact that an attacker
is able to observe whether a decrypted plaintext is processed by an application
after decryption, or discarded since the encoding could not be recognized. Note
that this works independently of the padding scheme, and thus potentially also
in scenarios where padding oracle attacks are not applicable. Mitchell [Mit05]
already outlined such a generalization of padding oracle attacks, but without
giving any specific example.

Our attack on XML Encryption is highly efficient, as it needs only 14 queries
per byte on average to break XML Encryption ciphertexts. For comparison,
Vaudenay’s padding oracle attack or the related attack of Rizzo and
Duong [RD10] issue 128 oracle queries per byte on average.
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4.4.2 Basic Idea of the Attack – A Toy Example

In this section, we describe a simple attack on ciphertexts encrypted in CBC
mode, which allows one to recover the plaintext message, if a certain oracle
(to be described below) is given. The actual attack on XML Encryption from
Section 4.4.3 is based on the same idea, but in addition handles some technical
obstacles that arise when the theoretical concept is adapted to the “real world”.
In the following let us assume that a plaintext consists only of 8-bit characters

(e.g. ASCII), and that no padding scheme is used (i.e., the length of the en-
crypted data is always an integer multiple of the block-length of the cipher). Let
us partition the set of all characters into two sets TypeAset and TypeBset. We
say that TypeAset contains “Type-A” characters, and TypeBset contains “Type-
B” characters. In this toy example we assume that TypeAset = {w} contains
only a single character w. For instance, w = 0x00 may be the NULL character.

Definition 1. We say that a ciphertext C is well-formed w.r.t. key k, if the
plaintext m = Deccbc(k,C) contains only Type-B characters.

Let us assume that we are given a (not necessarily well-formed) ciphertext

C = (iv, C(1)) = Enccbc(k,m)

consisting of an initialization vector iv and a single encrypted block C(1), which
encrypts a message m. Furthermore, suppose that we may query an oracle
O. The oracle takes as input CBC-encrypted ciphertexts C = (iv, C(1)). It
computes the decryption Deccbc(k,C) and replies as follows.

O(C) =

{
1 if m = Deccbc(k,C) contains only Type-B characters.
0 otherwise.

We will show how to use this oracle to recover the message m contained in
C = (iv, C(1)) byte-by-byte. To this end, we proceed in three steps.

1. Use the oracle to compute an initialization vector iv′ such that C ′ =
(iv′, C(1)) is well-formed.

2. Use the oracle to recover the CBC decryption intermediate value x =
Dec(k,C(1)).

3. Recover the message m by computing m = iv ⊕ x.

It is easy to compute an initialization vector iv′ such that the ciphertext
C ′ = (iv′, C(1)) is well-formed. To this end, we can first query the oracle whether
O((iv, C(1))) = 1. In this case we can set iv′ := iv. Otherwise, we set iv′ to a
random bit string. The probability Π that this yields a well-formed ciphertext
depends on the number ν of bytes per block. For the current definition of
TypeAset, the probability is equal to

Π(ν) = (1− 1/256)ν .
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When using AES we have Π(16) = (1− 1/256)16 ≈ 0.94, while using 3DES we
have Π(8) ≈ 0.97. Thus, we can expect that we find a suitable iv′ after a few
trials. We query the oracle to test whether we are successful.

Now we have a well-formed ciphertext (iv′, C(1)). Next we show how to recover
an arbitrary byte xj of the CBC decryption intermediate value x = Dec(k,C(1)).
We modify the initialization vector iv′ by XOR-ing a byte-mask msk to the j-th
byte of iv′, until a mask msk is found such that

m = Deccbc(k, (iv
′′, C(1)))

= iv′′ ⊕ Dec(k,C(1))

= iv′′ ⊕ x

contains a character from TypeAset = {w}. Since we have only modified the
j-th byte of iv′, we can conclude that

w = iv′′j ⊕ xj .

Thus, we can recover xj by computing xj = w⊕ iv′′j . Since this procedure works
for all j, we can thus determine x byte-wise. See Algorithm 4.1.

Algorithm 4.1 Recovering xj .

Input: A single-block ciphertext C ′ = (iv′, C(1)) and an index j ∈ {1, . . . , ν}.
Output: The j-th byte xj of x = Dec(k,C(1)).
1: msk := 0x00

2: repeat
3: msk := msk + 1
4: iv′′ := iv′ ⊕ 08(j−1)||msk||0n−8j
5: until (O(iv′′, C(0)) = 0)
6: return xj := w ⊕ iv′′j

Finally, if we are given x = Dec(k,C(1)), then we can recover the message m
contained in the original ciphertext (iv, C(1)) by computing m = iv ⊕ x. The
process of recovering x1 is illustrated in Figure 4.10.
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Figure 4.10: Using the malleability of CBC and the oracle O to recover x1.

4.4.3 Attacking XML Encryption

In this section, we show how to apply the attack described above on a real
world Web Service framework. We chose Apache Axis2, since it is one of the
major frameworks. However, the attack is in general applicable to an arbitrary
framework utilizing XML Encryption. We start our description with some basics
on character encodings. Then, we describe how we can use an Axis2-based
Web Service endpoint as an oracle OAxis for our attack. Finally, we describe
algorithms that execute the attack using this oracle by first preparing a given
multi-block ciphertext (by e.g. adjusting the padding) and then recovering the
plaintext byte-wise from such a prepared ciphertext.

4.4.3.1 Character Encondings

The XML Encryption specification prescribes that characters and symbols are
encoded according to the UTF-8 code, which specifies a bit-representation of
characters from various alphabets (latin, greek, cyrillic, hebrew, arabic, and
many more) plus many special symbols (e.g. from mathematics or music). Most
characters specified in UTF-8 are rather exotic, and thus only rarely used. The
most important subset of UTF-8 characters consists of latin characters, arabic
numerals, and some special symbols like line feed and carriage return. It
is important to know that for these characters UTF-8 is identical to ASCII.
The ASCII code represents characters as single bytes, and allows to encode

27 = 128 different characters, as depicted in Figure 4.11. Note that the encoding
uses only 7 out of 8 bits, the most-significant bit is always equal to 0 for all ASCII
characters.
Figure 4.11 lists also a classification of ASCII characters into “Type-A” and

“Type-B” characters, which is not relevant yet, but will be useful to explain our
attack.
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Hex Char. Type Hex Char. Type Hex Char. Type Hex Char. Type
Block 0 Block 2 Block 4 Block 6

00 NUL A 20 SPC B 40 @ B 60 ‘ B
01 SOH A 21 ! B 41 A B 61 a B
02 STX A 22 " B 42 B B 62 b B
03 ETX A 23 # B 43 C B 63 c B
04 EOT A 24 $ B 44 D B 64 d B
05 ENQ A 25 % B 45 E B 65 e B
06 ACK A 26 & A 46 F B 66 f B
07 BEL A 27 ’ B 47 G B 67 g B
08 BS A 28 ( B 48 H B 68 h B
09 HT B 29 ) B 49 I B 69 i B
0A LF B 2A * B 4A J B 6A j B
0B VT A 2B + B 4B K B 6B k B
0C FF A 2C , B 4C L B 6C l B
0D CR B 2D - B 4D M B 6D m B
0E SO A 2E . B 4E N B 6E n B
0F SI A 2F / B 4F O B 6F o B

Block 1 Block 3 Block 5 Block 7
10 DLE A 30 0 B 50 P B 70 p B
11 DC1 A 31 1 B 51 Q B 71 q B
12 DC2 A 32 2 B 52 R B 72 r B
13 DC3 A 33 3 B 53 S B 73 s B
14 DC4 A 34 4 B 54 T B 74 t B
15 NAK A 35 5 B 55 U B 75 u B
16 SYN A 36 6 B 56 V B 76 v B
17 ETB A 37 7 B 57 W B 77 w B
18 CAN A 38 8 B 58 X B 78 x B
19 EM A 39 9 B 59 Y B 79 y B
1A SUB A 3A : B 5A Z B 7A z B
1B ESC A 3B ; B 5B [ B 7B { B
1C FS A 3C < A 5C \ B 7C | B
1D GS A 3D = B 5D ] B 7D } B
1E RS A 3E > B 5E ^ B 7E ~ B
1F US A 3F ? B 5F _ B 7F DEL B

Figure 4.11: ASCII Character Encoding Table and Classification of Charac-
ters.

4.4.3.2 Axis2 Security Faults

After sending an invalid SOAP message to the Axis2 Web Service server, one
can receive different SOAP faults based on the error origin (e.g. invalid security
processing, malformed XML document, or an invalid function parameter in the
SOAP body). We exploit this to construct our oracle OAxis. We distinguish be-
tween two types of server responses. We say that a security fault is returned,
if the server replies with a WSDoAllReceiver: security processing failed
message. If an application-specific error or no error message is returned, then
we say that the server replies with an application response.
To construct our Axis2-based oracle OAxis, we evaluate the SOAP faults re-

turned by the security handler of an Axis2 server. This handler returns a
security fault fault whenever a problem during the processing of security
elements in a message occurs. This fault can have several reasons, which can be
divided into two categories:

Decryption error. This results from incorrect padding.

Recall that the last byte of a padded plaintext must include a valid padding
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number in the range from 0x01 (indicating only the last byte is padded)
to 0x10 (indicating the whole last block is a padding block).

Parsing error. This error may have two reasons.

Either the plaintext contains an “invalid” character. Invalid characters
are all ASCII characters from 0x00 to 0x1F, except for 0x09 (horizontal
tab), 0x0A (line feed), and 0x0D (carriage return).

The other reason is that the syntax of the decrypted XML part is not
valid. The latter means that the special escape character 0x26 (&) is not
followed by a valid entity reference, or the bracket 0x3C (<) is not properly
closed.9

Since in both cases the same error message is returned, we cannot distinguish
between them.

4.4.3.3 An Axis-based Oracle

We classify the set of ASCII characters in two categories, which we call “Type-
A” and “Type-B” characters. This classification is depicted in Figure 4.11. We
denote with TypeAset the set of all Type-A characters, and with TypeBset the
set of all Type-B characters. Observe that TypeAset contains primarily “invalid”
characters, plus the reserved XML characters “&” and “<”.
Based on this classification, we can construct an oracle OAxis, which is similar

to the oracle O from Section 4.4.2, as follows. OAxis takes as input a CBC-
encrypted ciphertext C = (iv, C(1)), which consists of an initialization vector iv
and a single ciphertext block C(1) ∈ {0, 1}n. It embeds the ciphertext C into a
SOAP message, sends this document to the Axis2 server, and replies as follows.

• OAxis(C) = 0, if the Axis2 server returns a security fault.

• OAxis(C) = 1, otherwise.

As described in the previous section, the Axis2 server will return no security
fault, if

• the decryption m′ = π(m) = iv⊕Dec(k,C(1)) yields a message with valid
padding, and

• the plaintext m = π−1(Deccbc(k,C)) has a valid XML structure. That is,

– if m contains an XML tag <a> for some string a, then it must also
contain the corresponding closing tag </a>,

– if m contains the & ampersand character, then it must be a valid
entity reference, like &gt; for instance,

– m does not contain any characters from 0x00 to 0x1F, except for
0x09 or 0x0A or 0x0D.

9Please note that an invalidly placed right bracket “>” does not cause a parsing error when
it is positioned in a text element. In this case, the “>” character is escaped and the parsing
process proceeds.
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Otherwise, a security fault is returned. This allows us to use OAxis in a way
similar to the oracle O from Section 4.4.2.

4.4.3.4 Using OAxis to Recover Plaintexts

In this section, we describe an algorithm that uses the OAxis oracle to decrypt a
given ciphertext C = (iv, C(1), . . . , C(ξ)). Note that C may consist of multiple
blocks (i.e., ξ ≥ 1). Due to the rather complex structure of the set TypeAset
and some optimizations to reduce the number of oracle queries, this procedure
is rather complex. For better readability, we present only simplified algorithms,
which illustrate the basic attack idea better. However, we implemented the
optimized algorithms. We will furthermore make the (in practice reasonable)
assumption that the plaintext contains only ASCII characters, but no characters
from the extended character set of UTF-8. The attack can however be extended
to arbitrary UTF-8 characters.
First, we need a new definition of well-formedness.

Definition 2. We say that a single-block ciphertext C = (iv, C(1)) is well-
formed w.r.t. key k, if

m = (m1, . . . ,mν) = Deccbc(k,C)

has a single byte padding (i.e. mν = 0x01) and consists only of Type-B charac-
ters (i.e. mj ∈ TypeBset for all j ∈ {1, . . . , ν − 1}).

The algorithm is a composition of two sub-procedures, which we call FindIV
and FindXbyte.

• The FindIV procedure prepares the ciphertext for our attack. It takes as
input a multi-block ciphertext C = (iv, C(1), . . . , C(ξ)) and an index i ∈
{1, . . . , ξ}, and returns an initialization vector iv such that the ciphertext
C = (iv, C(i)) is well-formed.

• The FindXbyte procedure takes as input an index j ∈ {1, . . . , ν} and a
well-formed (w.r.t. the target key) single-block ciphertext C = (iv, C(1))
such that C(1) = C(i) (as provided by the FindIV procedure). It returns
the j-th byte xj of the CBC decryption intermediate value

x = (x1, . . . , xν) = Dec(k,C(i)).

Using these procedures, Algorithm 4.2 recovers the plaintext m contained
in C. The algorithm loops through all ξ ciphertext blocks of C, each time
performing essentially three steps.

1. First, it calls the FindIV procedure, which computes an initialization vector
iv such that C = (iv, C(i)) is a well-formed ciphertext (Line 2).

2. Then it runs the FindXbyte procedure ν times to recover all ν decryption
intermediate values

x(i) = (x
(i)
1 , . . . , x(i)ν ) = Dec(k,C(i))

(Lines 3 to 5).
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3. Knowledge of x(i) = Dec(k,C(i)) allows us to recover the i-th plaintext
block as

m(i) = Dec(k,C(i))⊕ C(i−1)

= x(i) ⊕ C(i−1)

(Lines 6 and 7).

Algorithm 4.2 Using OAxis to recover plaintexts.
Input: C = (C(0) = iv, C(1), . . . , C(ξ))
Output: m = (m(1), . . . ,m(ξ))
1: for i = 1 to ξ do
2: iv := FindIV(C, i)
3: for j = 1 to ν do
4: x

(i)
j := FindXbyte(C(i), iv, j)

5: end for
6: x(i) := (x

(i)
1 , . . . , x

(i)
ν )

7: m(i) := x(i) ⊕ C(i−1)

8: end for
9: return (m(1), . . . ,m(ξ))

Note that the above algorithm makes exactly ξ calls to the FindIV procedure
and ξ · ν calls to the FindXbyte procedure.

4.4.3.4.1 Procedure FindIV. In this section, we describe the FindIV pro-
cedure. This procedure takes as input a ciphertext C = (C(0), C(1), . . . , C(ξ))
and an index i, and returns an initialization vector iv such that (iv, C(i)) is a
well-formed ciphertext.
For simplicity, we explain the algorithm for the case where a block cipher with

block size ν = 16 bytes is used. This corresponds to the case where AES is used
in the XML Encryption specification. With a few minor changes the procedure
can be adapted to ciphertexts of arbitrary block length. Moreover, we suppose
the input ciphertext has the following properties:

• The plaintext of C ′ = (C(i−1), C(i)) does not contain any “Type-A” char-
acter, except for (possibly) the “<” character.

• Each encrypted block contains only incomplete XML elements (i.e. there
exists no start tag followed by an element content and an end tag).

If the input ciphertext meets these ciphertext properties, then there are two
more issues our FindIV procedure must solve. First, it has to remove all occur-
rences of the “<” character. Thus, we obtain an encrypted text content ciphertext
consisting only of characters from TypeBset. Second, it sets the last byte of the
newly created iv so that the padding byte becomes equal to 0x01. Thus, we
obtain a valid padded ciphertext with a single padding byte. These are exactly
the prerequisites for our FindXbyte procedure.
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We start the description of our FindIV procedure with an observation on the
padding byte. The padding byte can be modified by changing the last byte of
C(i−1). When we iterate over all the 256 possible values for the last byte C(i−1)

ν

of C(i−1), then we implicitly modify the last byte of the (padded) plaintext
contained in (C(i−1), C(i)). Note that in the case ν = 16 there are at most 16
valid padding bytes, namely all values from 0x01 (one padding byte) to 0x10
(all 16 bytes are padding).
First observe that, since we know that the first bit of any ASCII character

and any valid padding byte is always equal to 0, we can copy the first bit from
the last byte of the original initialization vector C(i−1). Our algorithm iterates
only over the remaining at most 128 possible values of the last byte of C(i−1).
Observe now that, if the plaintext of (iv, C(i)) contains only characters from

TypeBset (no “<” character), then OAxis returns exactly ν = 16 responses such
that OAxis(C) = 1. Otherwise, the number of OAxis(C) = 1 responses depends
on the position of the first “<” character in the block. For example, if we get
only one OAxis(C) = 1 response, then this means that only one padding byte,
namely 0x10 is valid. This implies that the first byte of the plaintext is equal
to the “<” character. Similarly, if we get three OAxis(C) = 1 responses it means
that the paddings 0x10, 0x0F, and 0x0E are valid and the “<” character stands
in the third position.
For the purpose of getting the number of valid padding bytes we introduce

the procedure in Algorithm 4.3, which collects all the valid padding masks.

Algorithm 4.3 GetValidPaddingMasks

Input: iv, C(i)

Output: A set of valid padding masks Pset
1: Pset := ∅
2: for j := 0x00 to 0x7F do
3: iv′ := iv ⊕ (0n−8||j)
4: if OAxis(iv

′, C(i)) = 1 then
5: Pset := Pset ∪ iv′ν
6: end if
7: end for
8: return Pset

Algorithm 4.3 computes a set of valid padding masks Pset. If Pset contains
ν = 16 elements, then this tells us that the block does not include any “<”
character. Otherwise, we learn that the “<” character stands in the position
pos := |Pset|. We can simply change the “<” character by flipping the last bit
of the ivpos. We repeat the GetValidPaddingMasks procedure and the bit flipping
until |Pset| = ν.
After extraction of all the “<” characters, we set the last byte of iv to cause the

padding 0x01. To this end, we introduce another procedure, called
GetIvWithPaddingMask01. This procedure gets as input iv and Pset of ν = 16
valid padding masks msk0x01 . . .msk0x10. Since the padding mask msk0x10
differs from other paddings in the 4-th bit, we can distinguish it from other
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Decrypted message block
0x00

0xFF
...< e x p i r e s > 2 0 1 1 < /

1 Valid Response:
Valid Padding = 0x10 
1. Byte '<', set it to '='

0x00

0xFF

...= e x p i r e s > 2 0 1 1 < /

iv1 = iv1   0x01

= e x p i r e s > 2 0 1 1 = /

14 Valid Responses:
Valid Paddings = 0x03...0x10 

14. Byte '<', set it to '='
iv14 = iv14   0x01

0x00

0xFF

...

= e x p i r e s > 2 0 1 1 = / 01

16 Valid Responses:
Valid Paddings = 0x01...0x10 

Set Padding Byte to 0x01

iv'
16

iv'16

iv'
16

2
Set padding
byte to 0x01

1
Exclude

brackets '<'

3 Decrypt all the bytes in the message – byte by byte – 
by observing errors stemming from invalid ASCII characters

Figure 4.12: Example of FindIV processing: it ensures that (iv, C(i)) results in
a plaintext with a 0x01 padding, which contains only Type-B characters.

padding masks. Therefore, we can simply set the iv to:

iv := iv ⊕ (0n−8||(msk0x10⊕ 0x11))

The complete procedure is depicted in Algorithm 4.4. In Figure 4.12 we give
an example showing how a block is processed in the FindIV procedure.

Algorithm 4.4 FindIV

Input: A ciphertext C = (C(i−1), C(i))
Output: iv
1: iv := C(i−1)

2: repeat
3: Pset := GetValidPaddingMasks(iv, C(i))
4: pos := |Pset|
5: ivpos := ivpos ⊕ 0x01

6: until |Pset| = ν
7: iv := GetIvWithPaddingMask01(PSet, iv)
8: return iv

4.4.3.4.2 Procedure FindXbyte. In this section, we describe a procedure
FindXbyte which takes as input a single-block ciphertext C(i), an initialization
vector iv such that C = (iv, C(i)) is well-formed, and an index j ∈ {1, . . . , ν} (as
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provided by FindIV). The procedure returns the j-th byte of x(i) = Dec(k,C(i)).
Note that we have

Dec(k,C(i))⊕ iv = Deccbc(k, (iv, C
(i))).

If j = ν, i.e., the procedure is asked to return the ν-th byte of x(i), then
the algorithm can compute x(i)ν without even querying the oracle. Recall that
we know that the last plaintext-byte contained in C is the single-byte padding
0x01. Thus, we have

(??, . . . , ??, 0x01) = Deccbc(k, (iv, C
(i)))

= x(i) ⊕ iv.

This enables us to recover x(i)ν as x(i)ν = 0x01⊕ ivν .
If j ∈ {1, . . . , ν − 1}, then we need to use the OAxis oracle to recover x(i)j .

We do this by modifying the initialization vector iv and evaluating the response
behavior of the oracle. Let us write iv = (iv1, . . . , ivν) to denote individual
bytes of iv, and (ivj,1, . . . , ivj,8) to denote individual bits of byte ivj . Similarly,
we write x(i)j = (x

(i)
j,1, . . . , x

(i)
j,8) to denote individual bits of byte x(i)j .

Determining the first bit x(i)j,1 is easy, since the first bit m(i)
1,j of an ASCII-

encoded character m(i)
j is always equal to 0. Since we have

x(i) = iv(i) ⊕m(i),

we know that x(i)j,1 = iv
(i)
j,1 for all i ∈ {1, . . . , ξ} and j ∈ {1, . . . , ν}.

To describe our algorithm to determine the remaining bits, let us divide the
ASCII table into blocks, as depicted in Figure 4.11. The first four bits of an
ASCII character determine to which block it belongs. For instance, 0x5A is a
character from Block 5, 0x35 is from Block 3, and so on. This leads us to the
following observations on the distribution of Type-A characters:

• Only Blocks 0 to 3 contain Type-A characters.

• There is only one block which does not contain any Type-B character,
namely Block 1.

• Blocks 2 and 3 contain exactly one Type-A character, namely 0x26 in
Block 2 and 0x3C in Block 3.

• The last four bits of 0x26 and 0x3C are not equal.

We use these observations as follows. In order to determine x(i)j,2, x
(i)
j,3, x

(i)
j,4, we

first run Algorithm 4.5 to compute a set Aset of bit masks. This algorithm
initializes set Aset to the empty set (Line 1). Then, by looping through all
possible masks msk ∈ {0x00, 0x10, 0x20, . . . , 0x70}, the algorithm modifies the
bits of the initialization vector which correspond to the bits x(i)j,2, x

(i)
j,3, x

(i)
j,4 (Line

4). The algorithm queries OAxis to test whether

m̃
(i)
j = x

(i)
j ⊕ (ivj ⊕msk)

95



4 How to Break XML Encryption

Algorithm 4.5 Computing the set Aset.
Input: C = (iv, C(i)), j ∈ {1, . . . , ν}
Output: Set Aset ⊆ {0, . . . , 7}
1: Aset := ∅
2: for R = 0 to 7 do
3: msk := 0xR0

4: iv′ := iv ⊕ 08(j−1)||msk||0n−8j
5: if OAxis((iv

′, C(i))) = 0 then
6: Aset := Aset ∪ {msk}
7: end if
8: end for
9: return Aset

is a Type-A character (Line 5). If true, the algorithm stores the corresponding
mask msk in Aset (Line 6).
We can now observe that the set Aset returned by Algorithm 4.5 contains

always either one or two or three elements. To see this, recall that the last four
bits of m(i)

j are never modified. Therefore, we have:

• |Aset| = 1 if and only if the last four bits of m(i)
j are equal to 0x?9, or

0x?A, or 0x?D (see the Type-B characters in Block 0).

• |Aset| = 3 if and only if the last four bits of m(i)
j are equal to 0x?6 or

0x?C (see the Type-A characters in Block 2 and Block 3).

• |Aset| = 2 otherwise.

If |Aset| = 1 and Aset = {msk}, then we learn that
m

(i)
j ⊕msk ∈ {0x19, 0x1A, 0x1D}. Now observe that there is exactly one mask

msk′ ∈ {0x25, 0x26, 0x21} such that m(i)
j ⊕msk ⊕msk′ = 0x3C is a Type-A

character. Again we can use the oracle to determine msk′. This gives us an
equation

x
(i)
j ⊕ (ivj ⊕msk)⊕msk′ = 0x3C

where only x(i)j is unknown. Thus, we can recover byte x(i)j . Note that in the
case |Aset| = 1 we need at most two oracle queries to determine msk′.
If |Aset| = 2 or |Aset| = 3, then a procedure that applies the same principle

as the above, but is slightly more complex, allows us to recover x(i)j , by issuing
at most 23 oracle queries in total. Due to the complexity of the procedure and
its similarity to the procedure for |Aset| = 1, we omit further details.

4.4.3.5 Attack Variations

Since FindIV executes its attack on each cipher block independently, the attack
can easily be parallelized so that each block preparation following by a byte
decryption is made in a separate thread or on a different machine.
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A priori knowledge about the plaintext could improve the attack significantly.
For instance, knowing the XML Schema [WF04], which defines the structure
of the XML document, one could skip decryption of blocks that contain the
known plaintext, like XML element tags, and focus on the blocks that contain
unknown contents. In the same line, if the attacker knows a priori that an
encrypted text is, for instance, a credit card number, he can rule out any po-
tential plaintext character that is not a digit. Since this kind of knowledge is
commonly published at the Web Service endpoint as a Web Service Description
Language (WSDL) [CCMW01], we expect such types of optimization to speed
up an attack run.

Furthermore, it is obvious that knowledge of the x(i) bytes also allows an
attacker to encrypt arbitrary messages. To this end, the attacker proceeds “from
right to the left”, i.e., starting with the last ciphertext block (see also [RD10]).

4.4.4 Experimental Analysis

In order to investigate the feasibility and performance of our approach we de-
veloped a proof-of-concept implementation of the algorithms decribed in the
previous section. We implemented slightly optimized variants of the presented
algorithms.

We measured the time and the number of server requests sent for different
ciphertext sizes. Our implementation uses Java 6. As a Web Service server, we
used the recent Apache Axis2 Version 1.5.3 with Apache Rampart 1.5 module.
Both application and Axis2 server, were running on a single machine. For
completeness, the machine was equipped with Linux Ubuntu 10.10 and Intel
Core2 Duo P9700 processor (2 cores running at 2.80 GHz).

Setting. We implemented a simple Java class and deployed it on the Apache
Axis2 server to create a Web Service endpoint. We secured the generated Web
Service endpoint with the default XML Encryption setting so that the Axis2
server accepted only the SOAP messages with encrypted SOAP body. We used
the AES block cipher with 128-bit key (but everything works the same way with
256-bit key).

We generated messages of various lengths and structures. The shortest mes-
sages consisted of 10 characters, thus fitted in a single AES block, and no ’<’
characters. Larger SOAP messages contained two ’<’ characters (i.e. one validly
closed XML element) in each plaintext block. The symmetric key was encrypted
with the public key of the Axis2 server and put into the header of the SOAP
message.

Results. The results of our analysis with messages of size 1, 10, 100, and 1000
blocks are depicted in Table 4.1. The first two columns in the table describe
the plaintext length. The third column shows the number of requests sent by
FindIV and FindXbyte. The overall time for the attack execution is listed in the
last column.
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Plaintext Server requests Time
size (bytes) FindIV FindXbyte Total (seconds)

16 32 130 162 0.975
160 449 1688 2137 9.6

1,600 7,453 16,356 23,809 98
16,000 81,155 161,433 242,588 1,039

Table 4.1: Summary of Experimental Analysis.

Figure 4.13 shows that the number of server requests and the running time
of the attack grow linearly with the size of the ciphertext.

Figure 4.13: Relation between ciphertext size, number of server requests, and
attack duration.

Analysis. Our results show the practicality of our attack. A single encrypted
block can be decrypted with only 162 requests in less than one second. Moreover,
it is also feasible to decrypt larger ciphertexts, decrypting 16,000 bytes takes
only 17 minutes.

As we executed the tests on a single machine, the timing results are only
approximate. For instance, one has to consider the delay in transporting the
SOAP message over the network to the server and back. On the other hand,
usage of a more powerful server would speed up the message processing.

In any case, the experimental results show that the attack is applicable in
practical real world scenarios, not only for very short messages but also for
larger plaintexts.

98



4.4 Attacking CBC Ciphertexts in XML Encryption

4.4.5 Countermeasures

In the following, we give an overview of some countermeasures against the attack
on XML Encryption described in this section, and we analyze the scenarios in
which they work.

4.4.5.1 XML Signature

Application of XML Signatures on ciphertexts can ensure their authenticity and
integrity. This specification describes two types of signatures, namely public-key
XML Signatures (which use classical digital signature schemes) and secret-key
XML Signatures (which use message authentication codes).
Generally, XML Signatures can thwart the described attack if and only if :

1. The attacker is not able to create validly signed messages.

2. The encrypted part cannot be moved to any unsigned part of the docu-
ment.

If the application ensures these two points, the attack can not be applied. How-
ever, in the following we illustrate that this is not that trivial. For this purpose,
please consider the SOAP message depicted in Figure 4.14. In this message
the SOAP body contains an encrypted payload, which is signed using an XML
Signature and Id-based referencing.

Signed

Decrypted and
Processed

Envelope

Header

Signature

Reference URI=“#signed“

Id=“original“

Security

EncryptedKey

DataReference URI=”#original”

Body

EncryptedData

Id=“signed“

Figure 4.14: XML Signature applied on the encrypted payload in a SOAP
message.

4.4.5.1.1 Attacker Able to Create Validly Signed Messages. The first prob-
lem with application of public-key XML Signatures comes with a scenario where
more parties are allowed to communicate with a Web Service server. Consider
for instance there are two clients E1 and E2 of a Web Service provider, where
both clients can send encrypted and digitally signed messages to the server. As-
sume that E1 creates a SOAP message with encrypted and signed content, and
sends it to the server. Now if E2 wants to learn the contents of this message,
then it could record this message, simply remove the signature, compute its own
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signature over the ciphertext, and mount the attack. The crucial point here is
that the server cannot distinguish whether E2 has encrypted the payload itself
or copied it from a ciphertext that E1 has created. Still, in the digital signature
setting the server can at least identify the attacker uniquely.

4.4.5.1.2 XML Signature Wrapping. Another problem with application of
XML Signatures on ciphertexts is the XML Signature Wrapping (XSW) attack.
This attack affects public-key as well as secret-key XML Signatures. Practical
XSW attacks were presented in the previous chapter.
Figure 4.15 gives an example of XSW attack application on the message pre-

sented in the previous figure. In order to execute this attack, the attacker first
copies the authenticated SOAP body into the security header. As the Id of the
SOAP body stays the same, the signature validation component is able to verify
this element. Afterwards, the attacker needs only to apply the attack on XML
Encryption on the content of the newly defined SOAP body: He must force
the server to decrypt the content of this element. Thus, he simply changes the
DataReference element in EncryptedKey and makes it point to the content of
the newly defined SOAP body.

Signed

Decrypted and
Processed

Envelope

Header

Signature

Reference URI=“#signed“

Id=“oracle“

Security

EncryptedKey

DataReference URI=”#oracle”

Body

EncryptedData

Id=“attack“

Id=“original“

Body

EncryptedData

Id=“signed“

Figure 4.15: XML Signature Wrapping moves the signature validation to the
SOAP header and thereby offers a new possibility for mounting of the XML
Enryption attack.

The server would process the depicted message as follows. It first validates
the XML Signature. Afterwards, it decrypts and parses the content of the newly
defined SOAP body. If this step fails, the server returns an error. Otherwise, if
the data is successfully decrypted and parsed, the payload is forwarded to the
business logic. Business logic processing most probably fails, since decryption
of a modified ciphertext provides a payload which cannot be processed. Thus,
by applying this attack, the attacker must rely on differences between fault
messages coming from the decryption processing and the business logic.
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4.4.5.1.3 XML Encryption Wrapping. Beyond the classical XML Signature
Wrapping attacks, we furthermore developed a novel class of attacks that allow
to mount our attack even if XSW attacks are not applicable. We call these at-
tacks XML Encryption Wrapping. To illustrate the idea, consider the message
from Figure 4.14, where the SOAP body contains data encrypted with a sym-
metric key. This symmetric key is encrypted with the server’s public key and
put into the SOAP header. Along with the encrypted key, the SOAP header
includes a reference list which tells the server which elements must be decrypted
using the symmetric key. The whole SOAP body including the encrypted data
is signed.
We observed that it is possible to copy the encrypted data to the SOAP header

and insert a new element to the DataReference list. A simple attack message is
depicted in Figure 4.16. This forces the server to process both EncryptedData
elements, and thus allows to bypass the XML Signature validation to perform
the attack.

Signed

Decrypted and
Processed

Envelope

Header

Signature

Reference URI=“#signed“

Id=“original“

Security

EncryptedKey

DataReference URI=”#original”

Body

EncryptedData

Id=“signed“

Decrypted

Id=“oracle“EncryptedData

DataReference URI=”#oracle”

Figure 4.16: XML Encryption Wrapping copies the encrypted payload to an
unsigned document part and thereby offers an attacker construction of a server
oracle.

By application of this attack, the server validates the signature over the
original SOAP body. It can also decrypt and correctly process the original
SOAP body, as its content is unchanged. On the other hand, the newly inserted
EncryptedData element is only decrypted. It is not processed by the business
logic, since it is hidden in the SOAP header. The server only responds with a
fault message if the new ciphertext cannot be decrypted or parsed. Thereby,
the attacker creates a server oracle, which responds with 0 or 1 depending solely
on the validity of the new ciphertext.

4.4.5.2 Unifying Error Messages

The possibly most obvious countermeasure to our attack consists of unifying the
SOAP fault messages sent in response to invalid SOAP request messages so that
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an attacker can not distinguish between a decryption error and an application
level error. However, this approach has some serious drawbacks.
Firstly, meaningful error messages are generally considered as “good program-

ming practice”. In fact, they are necessary for developers that have to implement
client-side applications for encryption-enabled Web Services.
Secondly, even with unified SOAP fault messages, there are additional side-

channels that can be exploited for determining what type of error a certain
request message triggered. For instance, measuring the time consumed until
a (unified) SOAP fault message arrives may already indicate the level in the
application stack at which the error occurred.
Finally, we stress that this countermeasure is not effective when XML En-

cryption Wrapping attacks as described above are applicable, since copying the
encrypted data to a deeper level in the SOAP header would exclude them from
XML Schema validation and business logic processing. Thus, the server would
respond with a SOAP fault if and only if the encrypted data in the SOAP
header are incorrect.

4.4.5.3 Other Countermeasures

In this section, we describe other countermeasures, which were proposed by
different software vendors.

4.4.5.3.1 Revocation of Session Keys. By application of the attack on one
EncryptedData element, the attacker uses the same symmetric key for each
server request. Revocation of symmetric keys could be considered as a valid
countermeasure. However, this countermeasure causes the following problems:

• It needs to apply serious changes to applications or libraries.

• It requires a shared state across servers that are working in a cluster. Even
if this state would be achieved, it would potentially be possible to get some
responses back before all the servers know about the revoked key.

• Sometimes, even a few bits of information are enough to decrypt an im-
portant part of a message. For example, this is the case with messages
including boolean values (“yes“/“no“) or credit card numbers.

4.4.5.3.2 Blacklisting Clients’ Public Keys. This countermeasure would bring
similar problems as described above. However, it would partially solve the
public-key signature problems described in Section 4.4.5.1: dishonest clients
having server access would be blocked after sending invalid messages.

4.4.5.3.3 Inclusion of Signed Nonces. Inclusion of signed nonces could be
seen as another valid countermeasure. However, it causes similar problems as the
above mentioned revocation of session keys. Moreover, its application includes
signature problems as described in Section 4.4.5.1.
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4.4.5.3.4 Blacklisting Clients’ IP addresses. A countermeasure proposed by
some developers is blocking the clients that already sent a few number of invalid
messages causing security faults. Please note that there are the same drawbacks
as in the countermeasures described above. Moreover, this countermeasure does
not work if the attacker is able to execute his attack from machines with different
IP addresses. This is a valid assumption when considering allocation of virtual
instances in cloud scenarios.

4.4.5.3.5 Decryption only of Signed Elements. WS-Security Policy defines
security properties of elements contained in the processed message. For example,
it defines that specific elements have to be signed or encrypted. However, it does
not explicitly allow to define which elements must not be decrypted. This makes
it possible to apply XML Encryption Wrapping attacks. We propose inclusion
of new policy mechanisms allowing to decrypt the element only if it is signed.
We communicated with the Apache WSS4J developers. The Apache

WSS4J library now includes a configuration parameter called
REQUIRE_SIGNED_ENCRYPTED_DATA_ELEMENTS. If this is set to true, then any
symmetrically encrypted EncryptedData elements which are are not signed are
rejected without processing. In the default configuration, this parameter is set
to false. The developers considered to default this parameter to true for
EncryptedData elements secured with the CBC mode encryption in the next
framework release. However, they decided against this modification as it would
break many existing use-cases.
Please note that application of this countermeasure still would not be useful, if

the attacker were able to create valid signatures as described in Section 4.4.5.1.1.

4.4.5.4 Changing Mode of Operation

Finally we would like to highlight some cryptographic countermeasures. One
option is to use a symmetric cryptographic primitive that does not only provide
confidentiality, but also integrity. One option may be to add a message authen-
tication code (MAC) like HMAC [KBC97] (see [MvV96]) over the ciphertext
to the encrypted message. In contrast to a digital signature, which can simply
be replaced by a different signature, the security properties of a MAC ensure
that it is not possible for an attacker to modify a ciphertext while keeping the
MAC valid. In this case, our attack becomes impossible. Another option, which
provides the same improvement in security, would be to replace the CBC mode
of operation with a mode of operation that provides message integrity, like the
Galois Counter Mode (GCM) [MvV96], for instance.
The XML Security Working Group already included this mode of operation

into the new specification version.

4.4.5.4.1 Streaming-based XML Encryption Processing. Even when ap-
plying message authentication codes, the developers should pay attention to
other side-channel attacks. These can appear when applying streaming-based
XML processing.
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Consider an XML security module that accepts an encrypted byte stream. It
decrypts this stream and sends it block-by-block to a streaming-based parser.
The parser processes the incoming elements and sends them to another process-
ing module. At the end of the stream the security module checks the MAC over
all encrypted data. Consider that if a decryption or parsing error occurs, the
parser interrupts the message processing and immediately sends a fault mes-
sage. Moreover, consider an attacker who is in possession of a valid encrypted
text and is able to flip the first bits in the plaintext. If the encrypted text is
long enough, the attacker could observe the server response time differences.
Longer response time would indicate correct payload and failure of the MAC
verification. Shorter response time would indicate an incorrect payload and a
failure of its parsing.
This is a valid assumption also when applying standard DOM-based (tree-

based) parsers [BHH+04]. Namely, some DOM-parsers include an underly-
ing streaming-based parser, which is used for preprocessing of the incoming
elements. An example is given by org.apache.xerces.parsers.DOMParser,
which is included as the default parser in JDK. Therefore, developers should
pay attention when implementing modes of operations including MAC verifi-
cation: The encrypted part must always be completely processed and parsed
and the MAC must be validated afterwards. Otherwise, different side-channels
could appear.

4.5 Breaking PKCS#1 v1.5 in XML Encryption

In 1998 Bleichenbacher [Ble98] published an algorithm for an adaptive chosen-
ciphertext attack on the RSA-based PKCS#1 v1.5 encryption scheme. For
instance, the algorithm enabled to attack popular implementations of the SSL
protocol. These implementations were fixed immediately using a workaround
patch, which until today seems to be sufficient to provide security in the context
of SSL/TLS. Nonetheless, Bleichenbacher’s attack sheds serious doubt on the
security of PKCS#1 v1.5.
In spite of these negative results, in 2002, four years after publication of

the Bleichenbacher attack, the W3C consortium published the XML Encryp-
tion specification [ERI+02], in which PKCS#1 v1.5 encryption is specified as a
mandatory key transport mechanism. The decision to use PKCS#1 v1.5 despite
the known criticisms on its security may be partly due to the fact that the ad hoc
countermeasures against Bleichenbacher’s attack employed in SSL seem to work
well – at least for protocols of the SSL family. However, one must not ignore
that SSL and XML Encryption are fundamentally different protocols, running
in different settings, using a different combination of cryptographic primitives,
and providing different side-channels. Does the use of PKCS#1 v1.5 make XML
Encryption vulnerable to attacks?

Contributions. We describe different attacks on the key transport mechanism
of XML Encryption, which is based on PKCS#1 v1.5. Our goal is to turn a
given Web Service into a “Bleichenbacher oracle” that allows us to mount the
Bleichenbacher attack [Ble98].
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First, we show that it is possible to execute Bleichenbacher’s attack in a
straightforward way against some widely-used Web Services implementations,
such as Apache Axis2 or Red Hat’s JBossWS. This is noteworthy, given that
Bleichenbacher’s attack has received much attention in the computer security
community.
Second, and from a theoretical point of view more interesting, we show that

it is possible to conduct practical attacks even against Web Services imple-
mentations that seem not vulnerable (e.g. since they implement the classical
countermeasure against Bleichenbacher’s attack, which we describe below). To
this end, we exploit two properties of the XML Encryption specification:

• The attacker can choose the ciphertext size. The basic idea is that a
larger ciphertext increases the running time of the decryption process. We
will show that this allows the attacker to perform very powerful timing
attacks, which work even in networks where such attacks can usually not
be executed in practice, e.g., in networks with a substantial amount of
jitter.

• A weak mode-of-operation. XML Encryption uses CBC mode of operation.
As described in Section 4.4, CBC exhibits a weakness [Vau02] that allows
an attacker to make modifications to the encrypted plaintext, by XOR-ing
arbitrary bit strings to the plaintext. We show that it is possible to use
this weakness as an alternative way to determine whether a PKCS#1 v1.5
ciphertext is “valid” or not.

Besides CBC mode, the updated version of the XML Encryption specifi-
cation allows to use the GCM mode of operation. This mode was intro-
duced to prevent the attacks from Section 4.4. Interestingly, the attack
we describe in this section allows to decrypt GCM ciphertexts, too — if
the receiving Web Service is able to decrypt CBC ciphertexts, which is
mandatory for any standard compliant implementation. This is due to
the fact that we use the PKCS#1 v1.5 weakness in combination with the
CBC weakness only to decrypt the session key. After we obtained this
session key, we can decrypt an arbitrary ciphertext, regardless of whether
it is encrypted using CBC, GCM, or any other mode-of-operation.

A classical countermeasure against Bleichenbacher’s attack is to let the
decryption algorithm return a random key if decryption fails. Then the
system proceeds with this random key. We stress that the CBC-based
attack described in this section can not be prevented by this countermea-
sure.

We verify our attacks by experimental analyses. Because of the very de-
tailed error messages of JBossWS, we found that for certain ciphertexts (a
1/80 fraction of all valid ciphertexts) the straightforward implementation of
Bleichenbacher’s attack takes less than 30 minutes to recover the symmetric
key. Apache Axis2 was used to test the timing-based and CBC-based attacks.
The timing-based attack takes 200 minutes on the localhost and less than one
week when performed over the Internet. The CBC-based attack takes less than
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five days. These attacks are applicable to other systems as well, as we describe
below. We stress that all figures are derived using “good” ciphertexts, a property
that we describe more precisely in Section 4.5.3, and which holds for (heuris-
tically) one out of 80 ciphertexts (see Section 4.5.3.1). We also note that the
recent improvements to Bleichenbacher’s algorithm by Bardou et al. [BFK+12]
apply in our case as well.
In general chosen-ciphertext attacks can be avoided by ensuring the integrity

of the ciphertext. One would therefore expect our attack can easily be thwarted
by using XML Signature [ERS+08] to ensure integrity. However, this is not
true, since chosen-ciphertext attacks on XML Encryption can be applied even
if either public-key or secret-key XML Signatures over the ciphertext are used.

Further Applications. In close cooperation with SAP AG, Germany, we
furthermore verified that all attacks worked also against the implementation of
XML Encryption in Version 7.03 of the SAP ABAP stack.
Beyond XML Encryption, the recent JSON Web Encryption (JWE) specifica-

tion [JRH12] prescribes RSA-PKCS#1 v1.5 as a mandatory encryption scheme.
This specification is under developement and at the time of writing there only
existed one implementation following this specification [Nim13]. We verified
that this implementation was vulnerable to our attacks. We cooperated with
the developers, who implemented countermeasures against our attacks.

Responsible disclosure. In June 2011 we disclosed our attack to the W3C
XML Encryption Working Group, several developers of well-known Web Ser-
vices frameworks, and a governmental CERT. All acknowledged the validity of
the attack. The attack was assigned CVE-2011-2487.
The W3C XML Encryption Working Group added a remark to the updated

specification [ERH+13, Section 6.1.2], which addresses our attack and recom-
mends to use PKCS#1 v2.1 (aka. RSA-OAEP) instead. However, PKCS#1
v1.5 is still contained in the specification, and mandatory for any specification
compliant implementation.

Paper. This section is based on the paper Bleichenbacher’s Attack Strikes
Again: Breaking PKCS#1 v1.5 in XML Encryption published at the 17th Eu-
ropean Symposium on Research in Computer Security [JSS12]. The paper was
written together with Tibor Jager and Sebastian Schinzel.
The idea of applying Bleichenbacher’s attack on XML Encryption came from

Tibor and me. We designed the high-level attacks. In the implementation phase,
Tibor concentrated on the Bleichenbacher’s attack and its evaluation. I was
responsible for the analysis of the used Web Services frameworks and practical
attack applications. Sebastian investigated and implemented the timing-based
attacks.

4.5.1 Related work

Bleichenbacher’s attack [Ble98] on PKCS#1 v1.5 [Kal98] was published at
CRYPTO 1998. This attack was applied by Klima et al. to popular real
world implementations of the SSL protocol by incorporating an additional side-
channel: a version number check over PKCS#1 plaintext [KPR03]. In [BFK+12]
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Bardou et al. describe several ways to improve the efficiency of Bleichenbacher’s
attack. They demonstrate the attacks on various security devices including
smartcards, USB security tokens, and HSMs (Hardware Security Modules).
At Crypto 2001 Manger [Man01] presented an attack on Version 2.0 of

PKCS#1 (RSA-OAEP) [KS98], which is very similar to Bleichenbacher’s at-
tack, and applicable to the current Version 2.1 [JK03] as well. Manger’s attack
is considered as rather theoretical, since it requires that a specific side-channel
oracle is given. We are not aware of any practical application, since the required
side-channel information is usually not given in practice. Bauer et al. [BCN+10]
showed that PKCS#1 v1.5 is insecure in two non-standard (but realistic) set-
tings, namely broadcast encryption and IND-CPA security in presence of a
plaintext validity checking oracle.
A result with many similarities to our work was published by

Smart [Sma10], who shows how to apply a Bleichenbacher-style attack to break
RSA-based PIN encryption, if a certain side-channel oracle is given. Thus, like
our work, Smart points out the danger of using legacy cryptosystems, and sug-
gests to replace them with new ones. Very recently, Degabriele et al. [DLP+12]
provided another Bleichenbacher-style attack that allows to forge signatures in
an EMV transaction. Both these attacks are rather theoretical, since it is un-
likely that the required oracle is given in practice.
In [Res02] it was noted that valid (symmetric-cipher) padding may lead to

a side-channel that allows an attacker to mount Bleichenbacher’s attack, but
without additionally exploiting the plaintext-malleability of the symmetric ci-
pher or giving any concrete application. In contrast, we obtain an oracle which
is able to determine whether a given ciphertext is PKCS#1 v1.5 conformant
with probability 1 in at most 256 steps, and show that this attack is practically
relevant.
Generally, we give a truly practical attack which is directly applicable to a

vast number of real world systems. This shows that using legacy cryptosystems
is extremely dangerous, and makes a very strong case for replacing them.

4.5.2 Attacks

4.5.2.1 Axis2 Security Faults

We performed our tests using the Apache Axis2 framework. When receiving
a SOAP message containing encrypted data, Axis2 locates Cpub and Csym in
the XML document structure. In order to decrypt Cpub, Axis2 performs the
PKCS#1-validity checks described in Section 4.1.2.1. In addition, Axis2 tests
whether the resulting session key k has a length equal to 16, 24, or 32 bytes.
If this fails, then the SOAP error message security processing failed is re-
turned. Otherwise, key k is used to decrypt Csym, which yields the payload data
m. Finally, m is parsed as an XML message. If this parsing fails, a security
processing failed SOAP error message (i.e., the same error message that is
returned if decryption of k fails) is returned. Otherwise, it is forwarded to the
next module in the processing chain or to the business application
Now, assume we are given a ciphertext (Cpub, Csym), and we modify the key
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encapsulation part Cpub (this is necessary to mount Bleichenbacher’s attack).
Then we obtain a modified ciphertext (C ′pub, Csym). If we send this ciphertext
to the Web Service, then we will receive a security processing failed error
message, since either processing of C ′pub or parsing of the payload m contained
in Csym will fail (except for a negligibly small probability). Thus, we are not
able to distinguish whether C ′pub is a valid or an invalid ciphertext. This seems
to thwart Bleichenbacher’s attack at first sight. However, in the following, we
will describe techniques for exploiting side-channels allowing us to determine
the validity of C ′pub.
Remark: Though we analyze mainly Apache Axis2, and thus strictly speaking

all our experimental results are only valid for Axis2, we stress that the attacks
described below are in principle applicable to other frameworks as well (as we
verified for SAP, for instance). Moreover, as we describe in Section 4.5.3.4 in
detail, it turns out that exploiting certain additional framework-specific side-
channels may even lead to dramatically more efficient attacks.

4.5.2.2 Basic Ideas

Imagine an attacker who intercepts a message transferred to the Web Service
server and whose goal is to decrypt Csym. In order to gain the session key k
needed for data decryption, the attacker can apply Bleichenbacher’s attack on
Cpub. In this section, we describe two ways to obtain a side-channel that allows
to determine whether a given ciphertext is valid (PKCS#1 v1.5 conformant),
even though the server does not respond with error messages allowing to dis-
tinguish valid from invalid ciphertexts. Thus, we turn a seemingly secure Web
Service server into an oracle O responding with 1, if the decrypted k is valid, or
0 otherwise.
See Figure 4.17 for the description of this scenario. Bleichenbacher’s attacker

sends an adapted ciphertext C ′pub to O. O inserts C ′pub into an XML document,
sends it to the Web Service server, and evaluates its response. O repeats this
step until it knows if C ′pub is valid or not. Afterwards, it responds to the attacker
with 1 or 0 according to the message validity. When constructing the oracle O
we have to face the following challenges:

1. O must not respond with false positives: ciphertexts falsely identified as
valid cause that Bleichenbacher’s algorithm execution ends up in a wrong
internal state from which the algorithm cannot recover.

2. O should respond with as few false negatives as possible: valid ciphertexts
falsely identified as invalid slow down the attack performance.

3. The number of requests and the amount of data sent between O and the
Web Service server should be as small as possible.

The goal of this work is to show how to construct an oracle O. If such an oracle
is given, the attacker is able to query O with further ciphertexts C ′′pub, C

′′′
pub, . . .

to execute Bleichenbacher’s attack.
Let us first sketch our ideas on a high level. The first idea is to exploit the

fact that the server decrypts and parses the payload data Csym if and only if
Cpub is valid. Therefore, the time between sending the ciphertext and receiving
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Figure 4.17: Bleichenbacher’s attack algorithm relies on an oracle that returns
1 or 0 according to the message validity. In this section we describe how to
construct such an oracle by communicating with a Web Service server.

the error message depends on the validity of Cpub. Therefore, we can create a
Bleichenbacher oracle by measuring this response time. In practice, this does
not always form a practically useful side-channel, since timing measurements in
real networks contain jitter introduced by network latency or server workload.
However, here it comes in handy, that the attacker can set Csym to any bit
string whose length is a multiple of the block size of the block cipher. Thus,
by increasing the length of Csym, the attacker can also increase the timing
gap between a valid and an invalid Cpub. The challenge is to keep Csym as
small as possible (to keep the attack efficient), but as large as necessary (to get
distinguishable timing results).
In certain scenarios, the timing approach may become inefficient, for instance

if the server workload is extremely unbalanced, or the network connection is
not reliable. Therefore, we describe a second idea, which exploits a weakness
of the CBC mode. Consider a ciphertext encrypting a single (padded) payload
data block m(1). Recall that such a ciphertext consists of an iv and a ciphertext
block C(1) := Enc(k, x), where x := m(1) ⊕ iv. Thus, by flipping bits in iv,
we can implicitly flip bits in the plaintext m(1). In particular, we can modify
the last byte of m(1), which contains the number of padding bytes. The crucial
observation is now that there exists one modified iv′ such that the last byte
of m(1)′ = x ⊕ iv′ equals the block-length of the block cipher. In this case,
(iv′, C(1)) corresponds to an encryption of the empty string, and XML parsing
of the empty string does not fail. We use this property to distinguish a valid
from an invalid Cpub.
In the following sections, we describe how to use these ideas to construct an

oracle O telling whether a given Cpub is valid. This oracle can then be used to
mount Bleichenbacher’s attack.
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4.5.2.3 Timing Attack

In this section, we describe a timing oracle Ot that determines if a given Cpub
is valid. Our observation is that the analyzed Web Service only then decrypts
Csym if Cpub is valid. Furthermore, parsing of the clear text does not start until
Csym was fully decrypted, i.e. filling Csym with random data will yield a parsing
error after the decryption has completed, except for some negligible probability.
Another observation is that a larger Csym leads to measurably longer decryption
times as depicted in Figure 4.18. This combination makes our attack well suited
for timing attacks across noisy networks, because the attacker can increase the
timing differences by changing the size of Csym. Note that the actual content
of Csym is irrelevant, only the size is important for the timing delay. In our
experiments we enforced Axis2 to decrypt Csym using AES-CBC. Note that
3DES-CBC would bring even larger timing differences because the decryption
process in 3DES is less efficient than AES. This would make our attack easier.
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Figure 4.18: Timing difference of valid Cpub and invalid Cpub in relation to
the size of Csym, which was decrypted using AES-CBC.

By nature, the timing measurements in an adaptive chosen-ciphertext at-
tack need to be evaluated during the attack because subsequent requests de-
pend on the answer of the timing oracle of the previous request. By executing
Bleichenbacher’s adaptive chosen-ciphtertext attack, it is very important that
the given oracle does not respond with 1 when a ciphertext is not PKCS#1 v1.5
conformant (an oracle request should not result in a false positive). If the this
would happen, Bleichenbacher’s algorithm computes a wrong interval and gets
into a non-recoverable state. On the other hand, false negatives (PKCS#1 v1.5
conformant ciphertexts falsely indicated as invalid) slow down Bleichenbacher’s
attack execution. We propose a new algorithm that takes into account these
properties. The algorithm exploits the facts that valid keys have a longer pro-
cessing time than invalid keys, and that any noise in the form of random delays
that occur in networks and busy systems is strictly additive. Intuitively, the
algorithm determines the minimum response time tmin for valid keys. Any mea-
sured response time t < tmin must be from an invalid key. We call a key a
candidate for a valid key if the associated response time is above tmin . To make
sure that this candidate is not actually an invalid key with the random noise
pushing it above the timing boundary, we repeat the timing measurement with
this key i times, resulting in a set of measurements TCpub = 〈t1, t2, . . . , ti〉. If
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any of the repeated measurements is below the boundary, the key is marked
as invalid. This algorithm was designed by Sebastian Schinzel. Our later mea-
surements confirmed that it was well-suited for our purposes and for omitting
false positives which break Bleichenbacher’s algorithm. Note that the attacker
can freely choose the size of the timing differences of valid and invalid keys by
adjusting the size l of Csym. Equation 4.3 formally defines the timing oracle.

Ot(Cpub, l) =

{
1 if min(TCpub) ≥ tmin,
0 if ∃t ∈ TCpub : t < tmin,

(4.3)

The algorithm is split into two phases: First, there is a calibration phase,
where the particular timing conditions of the system are determined. The result
of this phase is tmin, which is fed to the timing oracle in the second phase.

4.5.2.3.1 Calibration Phase The oracle can determine if a given Cpub is valid
by measuring the response time of a request that uses this particular key. Thus,
the oracle must be calibrated so that it can distinguish the response time of
a valid Cpub from an invalid Cpub. For this, we perform n requests with a
valid Cpub and record the set of timings Tvalid = 〈t1, t2, . . . , tn〉. Note that the
attacker already has one valid Cpub from the message he listened in to. Let
tmin = min(Tvalid)− ε where ε accounts for the fact that min(Tvalid) is only an
approximation for the actual minimum response time t′min of valid keys, because
t′min ≤ tmin.
We assume at this stage that the response times for valid and invalid keys

remain stable during the attack phase, i.e. tmin remains the lower boundary for
response times with valid keys for the duration of the attack. If this assump-
tion does not apply for a given system, the attacker can regularly repeat the
calibration phase to address fluctuations of tmin.

4.5.2.3.2 Attack Phase. Now thatOt is calibrated, the attacker can apply the
Bleichenbacher algorithm as described in Section 4.2.2. Figure 4.19 describes
the procedure of Ot. The Bleichenbacher algorithm calls Ot and passes Cpub as a
parameter. The oracle copies Cpub in a SOAPmessage, sends it to the server, and
measures the response time t. The oracle answers with 0 if t < tmin. It repeats
the measurement n times if t ≥ tmin to confirm that Cpub is indeed valid.10 The
oracle answers with 1 if all measurements resulted in greater response times
than tmin.

10We used n = 100 in our measurements.
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def is_valid(C_{pub}, n):
do n times:

start = now()
request(C_pub, l)
end = now()

t = end - start
if t < t_min:

return 0 // "invalid"
return 1 // "valid"

Figure 4.19: Pseudo code sketching the validation routine of candidates of valid
keys.

4.5.2.4 Exploiting a Weakness of CBC

In this section, we describe another attack on Cpub, which is based on the proper-
ties of the CBC mode of operation. As described in the previous sections, Axis2
processes XML Encryption as follows. It first decrypts Cpub. Afterwards, it uses
the decrypted session key k to decrypt Csym. If an error during the decryp-
tion occurs, Axis2 returns an error message that reads security processing
failed. There are several possible causes for this error:

• Cpub decryption: the decrypted Cpub was invalid.

• Csym decryption: the decrypted data from Cpub was valid, but the Csym
decryption or padding processing failed.

• data parsing: Csym was correctly decrypted and padded, but it contained
non-printable characters (e.g. NULL or vertical tab) or a badly placed
special character (< or &).

Thus, if the attacker receives a security processing failed error message, he
does not know in which of these three steps the message processing failed (and
thus if Cpub is valid or not). The attacker only then knows that Cpub is valid if
all steps including parsing completed successfully. Therefore, the attacker must
find a way to construct well-formed data that will be parsed successfully.
To construct well-formed data, we create Csym consisting of two randomly

generated 16 bytes long blocks Csym = (iv, C(1)). Then we submit the ciphertext
(Cpub, Csym) to the Web Service, claiming that Csym is generated in CBC mode.
The latter is possible by simply adjusting the Algorithm attribute value in
the EncryptionMethod element (see Figure 4.8). The decryption module first
decrypts the C(1) block resulting in: x = Deck(C

(1)). The result of decryption
x is afterwards XORed with the initialization vector iv, so that the plaintext
block becomesm(1) =iv⊕x. The last byte ofm(1) is taken as a padding byte and
the padding is checked. Again, if the padding byte is not valid or the unpadded
bytes result in non-printable characters, an error is returned.

To overcome this problem one can iterate over all the byte values in the last
byte of the initialization vector iv and construct 256 different iv′ values (see
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Figure 4.20). As flipping a bit in iv implicitly changes the corresponding bit in
the m(1) block, one can iteratively modify the value of the last byte in m(1)′ .
Thereby exactly one pair (iv′, C(1)) results in a valid padding byte 0x10, which
pads the whole plaintext block. As this special plaintext is empty (0 bytes in
length), parsing always succeeds. In this case, the message is passed to the next
module in the Axis2 processing chain. Note that errors in other modules result
in different error messages.

... ...

...

...

AES-Dec

Initialization Vector (iv') Ciphertext Block

Plaintext Block

0x00

0xFF

...

0x00

0xFF

...

m'16

if (m'16 == 0x10) => block padded

iv'16

0x10

...

Figure 4.20: Iterating over all the values of the last iv′ byte results in one
plaintext with the padding byte m′16 = 0x10. This ensures that the whole 16-
bytes long block is padded and the unpadded plaintext is of length 0.

We can use these observations for constructing an oracle, which returns 1 or
0, depending on the validity of the given Cpub. For each tested Cpub, the CBC-
oracle Ocbc needs to send at most 256 requests with different iv′ values11. As
shown in Equation 4.4, if Axis2 responds with a security processing failed
error for a given Cpub and all possible values of iv, then Ocbc returns that Cpub
was invalid.

Ocbc(Cpub) =

{
1 if ∃iv16 ∈ {0, 1, . . . , 255} : Dec(Cpub, iv) = “no error”
0 if ∀iv16 ∈ {0, 1, . . . , 255} : Dec(Cpub, iv) = “error”

(4.4)

11We want to mention that the parsing error could be omitted if the server would be forced
to handle the decrypted bytes as binary data. This would be possible by forcing the server
to process MTOM encrypted binary data [MGRN05]. It would improve our attack by
factor of 16 as each plaintext containing a valid padding would be valid, independently of
the unpadded content. However, as the encryption application on the binary data is not
supported by the analyzed frameworks, we do not investigate it further.
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4.5.3 Experimental Analysis

In this section, we describe the results of our practical experiments. The timing-
based and padding-based attacks were carried out using “good” ciphertexts, see
Section 4.5.3.1 for a description of this property. We did this to speed up our
experiments, which was necessary due to limited computational resources. How-
ever, a heuristical analysis shows that it is very likely that a random ciphertext
(e.g., encrypting a cryptographic key with correct padding) meets this property:
For a 1024-bit modulus a fraction of about 1/80 of all ciphertexts is good in the
above sense.
We stress that all timing figures derived from our experiments are valid only

for this 1/80 fraction of all PKCS#1 ciphertext, which is however still a signif-
icant number. We also note that Bleichenbacher’s attack in principle allows to
decrypt any ciphertext, but for a 79/80 fraction the running time of the attack
will be longer. However, we stress that it is possible to test whether a given
ciphertext is good, by issuing at most N/(3B) − N/(2B) = N/(6B) ≈ 10, 000
oracle queries.
Bad performance of the described timing-based and padding-based attacks

is caused by high restrictiveness of the oracle that was provided by the tested
Apache Axis2 implementation. This implementation can also be characterized
by a variant of an FFF oracle type introduced by Bardou et al. [BFK+12] (see
Section 4.2.2). Apache Axis2 strictly checks whether the unwrapped key is
of correct length. It accepts three possible key lengths: 16, 24, or 32 bytes.
Later in this section we show how to perform Bleichenbacher’s attack against
JBossWS using direct error messages. Using error messages of JBossWS results
in a permissive oracle, and thus in better attack performance.
In order to evaluate our attacks, we deployed a Web Service secured with XML

Encryption and generated a valid SOAP message containing Cpub in the SOAP
header. This element included a symmetric key for Csym decryption, encrypted
with a 1024-bit RSA key. The results of the timing-based and padding-based
attacks shown here were all performed against Axis2. Please note that we also
got similar results when testing our attack against the other mentioned XML
Encryption implementations and other RSA key sizes.

4.5.3.1 Probability of “good” ciphertexts

The first step of Bleichenbacher’s algorithm searches for an integer s such that
m · s mod N is PKCS#1 v1.5 conformant. Note that m · s mod N can only be
PKCS#1 v1.5 conformant if

i ·N
3B

≤ s ≤ i ·N
2B

for some i ∈ N. Therefore, the Bleichenbacher algorithm starts with s = N/3B
and increments this value until a suitable s is found. Clearly, this procedure
finds s quickly if m has the property that there exists an s such that

1 ·N
3B

≤ s ≤ 1 ·N
2B
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and m · s mod N is PKCS#1 v1.5 conformant. Moreover, in our application we
will only be able to learn that a ciphertext C = (ms)e mod N is PKCS#1 v1.5
conformant if ms mod N has the form

ms mod N = 00||02||PS||00||k

where PS contains only non-zero bytes and the byte-length of k is equal to 16,
24, or 32. In the sequel, we will say that a ciphertext is a good ciphertext if it
satisfies these properties.
In order to save computation time, all our experiments were executed with

random good ciphertexts. Thus, all our experimental results are meaningful only
if the probability that a honestly generated ciphertext meets the above property
is sufficiently high. This leads us to the question what is the probability that a
real world ciphertext is good?
We ran some additional experiments in order to determine the probability that

a random ciphertext is good. To this end, the algorithm depicted in Figure 4.21
was implemented. This algorithm generates a random 1024-bit RSA modulus.
Then it generates ` random padded plaintexts, and counts the number of plain-
texts such that there exists a suitable s ∈ [N/3B,N/2B] withm·s mod N being
PKCS#1 v1.5 conformant.

1. Generate a random 1024-bit RSA modulus N . Set
c = 0.

2. For i from 1 to ` do:

• Choose a random bit string k

• Pad k according to PKCS#1 v1.5, such that

m = 00||02||PS||00||k

• If there exists s ∈ [N/3B,N/2B] such that

– m · s mod N is PKCS#1 v1.5 conformant,

– ms mod N = 00||02||PS||00||k,
with |k| ∈ {16, 24, 32},

then set c = c+ 1.

Figure 4.21: Experimental analysis of the distribution of “good” ciphertexts.

We repeated this algorithm 100 times, i.e., we generated 100 random moduli,
and tried ` = 1, 000 padded plaintexts for each modulus, such that in total
100,000 plaintexts where tested. Among these 100,000 plaintexts there were
1,543 padded plaintext that lead to good ciphertexts. Thus, about one in 80
ciphertexts is good.
Note also that in general all ciphertexts are vulnerable, even though the attack

execution might take some more time (i.e., more server requests) to decrypt.
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4.5.3.2 Timing-based Attack

In this section, we show the results of the empirical evaluation of Ot proposed
in Section 4.5.2.3. We used the RDTSC assembler instruction of recent Intel
Pentium processors to measure the timings with below nanosecond accuracy.
In the following, we describe the results of the timing oracle evaluation of two
different attacker models.

4.5.3.2.1 Attack on Local Machine. In this measurement setup, we run the
Axis2 server and the attack script on the same computer. This is a very practical
attack scenario, e.g. in cloud computing and especially in a Platform as a
Service, where it is feasible for an attacker to rent a virtual machine that is
co-located on the same physical hardware [RTSS09] as the victim.
The measurement computer had 2 Intel XEON 2.4 GHz processors. Fig-

ure 4.22a shows the response times measured during the calibration phase with
100 KB Csym ciphertext and a Cpub encrypted with an 1024-bit RSA key. The
solid line denotes valid requests, the dashed horizontal line marks the learned
boundary, and the dotted line indicates invalid requests. When compared to the
learned timing boundary tmin, it becomes clear that most invalid requests are
below tmin. Any request above tmin is treated as a candidate for a valid request
and repeated n = 100 times for confirmation. The figure suggests that only
few invalid requests slipped above tmin leading to a repetition of the request.
Nevertheless, our oracle responded all the queries correctly (no false negatives
and no false positives appeared). As a result, Cpub could be reconstructed suc-
cessfully in 200 minutes. Overall, the 321,870 oracle queries resulted in 398,123
queries in our measurement setup, i.e. the oracle needs to perform 1.24 actual
Web Service requests per oracle query. On our hardware, we could perform on
average 37 Web Service requests per second.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60  70  80  90  100

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ili

s
e

c
o

n
d

s
)

n
th request (100KB cdata)

PKCS#1 compliant
Learned boundary tmin
Not PKCS#1 compliant

(a) Localhost

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50  60  70  80  90  100

n
th request (1MB cdata)

PKCS#1 compliant
Learned boundary tmin
Not PKCS#1 compliant

(b) Internet

Figure 4.22: Response times with valid and invalid Cpub.
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4.5.3.2.2 Attack through Internet. Additionally, we evaluated the effective-
ness of the timing oracle for a remote attacker who attacks the Web Service
through the Internet. For this measurement setup, we chose two Planetlab
nodes at universities. The nodes were seven hops apart from each other and the
round trip time was approximately 22 milliseconds.
We calibrated the valid/invalid boundary of the timing oracle as shown in

Figure 4.22b and used 1,000KB of random data as Csym. In this configuration,
the oracle correctly answers approximately 2,000 queries per hour and needs to
perform approximately 2,400 actual Web Service requests to the server. Thus,
an attacker can decrypt Cpub across practical networks in less than one week.

4.5.3.3 Padding-based Attack

As the padding-based attack does not depend on the network connection, we
tested its functionality on a localhost so the Web Service client and server did
not communicate over the Internet. The used machine had 2 Intel XEON 2.4
GHz processors.
The whole attack execution lasted less than five days. Thereby, the attacker

sent about 322,000 oracle queries, which resulted in 82,180,000 (≈ 256∗322, 000)
total server requests.
Note that other ciphertexts could lead to different attack executions with

different number of oracle queries. Our practical attack targeting one ciphertext
could be seen as a proof that the constructed CBC-oracle OCBC is sufficient to
mount Bleichenbacher’s attack.

4.5.3.4 Exploiting JBossWS PKCS#1 Processing

All our attacks presented so far are also applicable to the XML Encryption
implementation of JBossWS [JBo13]. In addition, we discovered another side-
channel in JBossWS 6.0 that allows us to mount Bleichenbacher’s attack directly,
by adapting it slightly to the XML Encryption setting. We do not even need to
consider good ciphertexts.
In the sequel, let us assume a 1024-bit modulus is used. Given a cipher-

text Cpub, JBossWS first decrypts Cpub and obtains a padded plaintext m =
(m1, . . . ,m128) consisting of 128 bytes mi, i ∈ {1, . . . , 128}. Then it performs
the following checks:

1. Test whether (m1,m2) = (0x00, 0x02). If true, proceed.

2. Test whether there exists i ∈ {3, . . . , 10} such that mi = 0x00. If false,
proceed.

3. Test whether there exists i ∈ {11, . . . , 128} such that mi = 0x00. If true,
proceed.

If any of these tests fails, an internal WS-Security error SOAP fault message
is generated and returned. Otherwise, JBossWS tries to proceed. This might
also fail, for instance if the decrypted key has incorrect length or if the parsing of
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encrypted payload fails. However, in this case a different error message, namely
a Decryption failed SOAP fault, is returned.

This leads to the following side-channel leakage. If the attacker does not re-
ceive the internal WS-Security error SOAP fault, then it learns that the
first two bytes (m1,m2) of the plaintext contained in the submitted ciphertext
were equal to (0x00, 0x02). This suffices to mount Bleichenbacher’s attack di-
rectly. The oracle provided by this implementation can also be characterized by
the FFT oracle type introduced by Bardou et al. [BFK+12].

We applied the Bleichenbacher attack on JBossWS using a 1024-bit key. We
measured the execution time on a machine with two 2.8 GHz processors. It
turns out that it is possible to decrypt a given ciphertext within less than 30
minutes, by issuing about 250, 000 server request. Again, different ciphertexts
could lead to different attack executions with different number of oracle queries.

4.5.3.5 Exploiting Additional Side-Channels in Apache Axis2

As described in Section 4.3, SOAP messages containing encrypted data typically
consist out of two parts: Cpub and Csym. In order to reference the Csym part
from the Cpub part, the DataReference element is used. Using DataReference,
the message interceptor can locate the part dedicated for symmetric decryption.

By modifying the Cpub ciphertexts in the original SOAP messages, Axis2 in
comparison to JBossWS always correctly responded with the same error mes-
sage. Thus, we tried to find additional side-channels to mount the straight-
forward Bleichenbacher attack. By analyzing the Axis2 framework we found out
that removing the DataReference elements from the Cpub part reveals a new
side-channel: When the decrypted message was not PKCS#1 v1.5 conformant,
the server responded with an obvious security error (security processing
failed). In case of a PKCS#1 v1.5 conformant message the server correctly
decrypted a session key. However, as there was no DataReference element, the
server security module skipped the Csym decryption and forwarded the docu-
ment to further processing modules responding with different error messages.
This way we were able to provoke new error responses leading to a direct appli-
cation of Bleichenbacher’s attack.

This interesting result shows that secure looking systems can reveal unex-
pected side-channels coming from the communication between different pro-
cessing layers – in this case: XML layer processing XML Encryption structure
and the underlying crypto layer processing PKCS#1.5. Interfaces communicat-
ing with the underlying libraries should be analyzed more deeply in order not
to reveal details leading to cryptographic side-channels.
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4.5.4 Countermeasures

In this section, we discuss several countermeasures against the described attacks
and analyze their security.

4.5.4.1 XML Signature

XML Signatures can be used to secure authenticity and integrity of arbitrary
document elements, including the elements that contain PKCS#1 v1.5 cipher-
texts. In general, by using XML Signatures to counter these attacks, the same
problems could appear as by thwarting the attacks from Section 4.1.1.3: An
attacker could be registered as an honest client and issue valid XML Signatures
(see Section 4.4.5.1), or he could apply XML Signature Wrapping attacks. In
the following, we describe only the attacks on secret-key XML Signatures and
XML Encryption Wrapping attacks as they work slightly differently.

Suppose a SOAP document includes one XML Signature securing a symmetric
ciphertext Csym. See Figure 4.14.

4.5.4.1.1 Secret-Key XML Signatures. The XML Signature specification
allows to apply HMACs. HMACs use the symmetric key encrypted in Cpub. This
binds the encryption and signature processing together. The server handling this
message would first decrypt Cpub, then verify the signature over the ciphertext
Csym, and decrypt the encrypted block.

However, as the signature validation needs as input the symmetric key en-
capsulated in the PKCS#1 v1.5 structure for HMAC computation, the attacker
would possibly get a new timing side-channel. The server processing would ac-
tually last longer if the HMAC value over Csym has to be computed. This side-
channel would have to be prevented by generating a random key as described
later in Section 4.5.4.2, which could introduce new implementation problems.

4.5.4.1.2 XML Encryption Wrapping. An attacker being in possession of
a signed SOAP message could also execute XML Encryption Wrapping attacks
to turn a Web Service into an oracle. He proceeds as follows. He copies the
original EncryptedData element Csym−original to the SOAP header and changes
its Id. We call this element Csym−oracle. Afterwards, he simply duplicates the
original EncryptedKey element Cpub−original containing the asymmetric cipher-
text and makes it point to the newly created Csym−oracle (see Figure 4.23).
Thereby, he forces the server to process both EncryptedKey elements and both
EncryptedData elements. As Cpub−original and Csym−original are left unchanged,
the signature stays valid and the decryption of these elements produces no error.
The attacker can perform the attack using Cpub−oracle and Csym−oracle.
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Signed

Decrypted and
Processed
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Reference URI=“#signed“
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Security

EncryptedKey

DataReference URI=”#original”

Body

EncryptedData

Id=“signed“

Decrypted

Id=“oracle“EncryptedData

DataReference URI=”#oracle”

EncryptedKey
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Cpub­oracle

Csym­oracle
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Figure 4.23: XML Encryption Wrapping: The attacker copies the original
encrypted payload to an unsigned document part (Cpub−oracle and Csym−oracle).
He modifies this payload and uses the server as an oracle. The original payload
(Cpub−original and Csym−original) is left unchanged.

4.5.4.2 Generating Random Symmetric Keys

The classical countermeasure against Bleichenbacher’s attack is to let the de-
cryption algorithm return a random key k if Cpub is invalid, and then to proceed
as if Cpub was valid [Res02, DR08].
A first obvious drawback of this countermeasure is that the system has to

proceed with the random key even if it knows that this key is invalid. This may
lead to data inconsistencies at the receiver side.
Even worse, it turns out that this countermeasure cannot prevent our CBC-

based attack. Note that if Cpub is valid, then among all 256 initialization vec-
tors chosen by the attacker there must exist at least one iv such that Csym =
(iv, C(1)) returns no error. In particular, if the attacker submits a ciphertext
Csym that decrypts to well-formed XML repeatedly to the Web Service, then it
will always respond that the ciphertext is valid. In contrast, if Cpub is invalid,
and a random key k0 is chosen by the Web Service for further processing, then
even if the Web Service responds once that the tuple C = (Cpub, Csym) is de-
crypted into well-formed XML for k0, then the attacker can resubmit the same
C to the Web Service. Again, another random key k1 6= k0 will be chosen for
further processing, and it is unlikely that the same C will decrypt to well-formed
XML for k0 and k1 simultaneously. By repeating this procedure, the attacker
can easily determine whether Cpub is valid with probability close to 1.
To summarize, this countermeasure effectively thwarts the presented timing-

based attacks. However, we stress that it works against the presented CBC-
based attacks only if the attacker has no possibility to distinguish valid from
invalid ciphertexts Csym. This could be e.g. ensured, if the application would
process signed symmetric ciphertexts, see Section 4.4.5.2 for more details.
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4.5.4.3 RSA-OAEP

The XML Encryption specification allows to choose between two different ver-
sions of the PKCS#1 encryption standard, namely Version 1.5 [Kal98] (which
is vulnerable to Bleichenbacher’s attack) and Version 2.0 [KS98], which is also
known as RSA-OAEP [BR94]. In contrast to v1.5, it is known [FOPS04] that
v2.0 (and its successor v2.1 [JK03]) meets the strong notion of chosen-ciphertext
security (see e.g. [BDPR98]). In particular, Version 2.0 is not vulnerable to
Bleichenbacher’s attack.
A valid countermeasure to our attack might therefore be to use Version 2.0

instead of Version 1.5. This requires modifications on both the client and the
server. We stress that the server must reject any PKCS#1 v1.5 ciphertext.
Otherwise, an attacker could exploit the server’s PKCS#1 v1.5 processing vul-
nerability to decrypt PKCS#1 v2.0 ciphertexts. We present these attacks in
the next section in more detail.
We note also that Manger presented at Crypto 2001 [Man01] that there ex-

ists a variant of Bleichenbacher’s attack that allows to break Version 2.0 as well.
This however only works for implementations leaking a certain intermediate
value during decryption. If a cryptography library correctly implements the de-
cryption process, the developer can safely use this library in his implementation
(e.g., in his XML Security library, JSON Security library, or SAML provider).
There is no possibility for the attacker to decrypt PKCS#1 v2.0 ciphertexts
as the attacks against PKCS#1 v2.0 are implicitly thwarted on the cryptogra-
phy library level. On the other hand, if the developer supports PKCS#1 v1.5
in his implementation, he always needs to consider countermeasures against
Bleichenbacher’s attack, no matter how secure the applied cryptography library
is. Attacks on PKCS#1 v1.5 cannot be directly thwarted in a cryptography li-
brary. Thus, they force the developers to apply countermeasures on higher levels
(e.g., in XML Security or JSON Security libraries).

4.6 Backwards Compatibility Attacks

Complexity is often portrayed as being the enemy of security: The more complex
a system is, the harder it is to analyze, and the harder it is to eliminate all
possible attack vectors. One source of complexity in real world security systems
stems from the desire to maintain backwards compatibility between new and
old versions of systems.
It is obvious that introducing a new system whilst maintaining backwards

compatibility with old versions having known weaknesses undermines security:
If a system or a protocol can be configured into an insecure state, then some
users will do so. In this section, we show something a little less obvious. Namely,
that even if users have the best of intentions to use only the most up-to-date,
vulnerability-free version of a system, the mere existence of support for old ver-
sions can have a catastrophic effect on security. We show this in the context of
systems employing cryptography, introducing what we term backwards compat-
ibility (BC) attacks.
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As a taster of our attacks to follow, consider a situation where, for backwards
compatibility reasons, a system still allows the use of CBC mode encryption, but
where Galois Counter Mode (GCM) is the preferred secure encryption scheme.
The reason to switch to GCM may be that the CBC mode is vulnerable to one
of the several attacks presented in the previous sections. Now what happens if
users select GCM as their preferred mode? Then an attacker who can modify
messages so that they are decrypted using CBC mode instead of GCM can use
the old attack to decrypt the ciphertexts as if they were CBC encrypted. Here
we assume that the same key is used, irrespective of the mode. Then, this CBC
decryption capability can be quickly and efficiently turned into a distinguishing
attack against GCM. In a public key scenario, similar attacks can be used to
break confidentiality of RSA-OAEP ciphertexts or to forge server signatures.
This situation is not purely hypothetical. As we described in the previous

sections, our attacks on CBC and PKCS#1 v1.5 applied in XML Encryption
influenced this specification. This has lead to a specification update and to a
recommendation of GCM and RSA-OAEP encryption schemes. However, CBC
and PKCS#1 v1.5 schemes were retained in the specification for backwards
compatibility reasons. These legacy schemes typically apply the same keys as
GCM and RSA-OAEP. Finally, a man-in-the-middle attacker can easily manip-
ulate XML attributes so that an insecure mode for decryption is indicated. So
all the pre-conditions for our attack are met.

Contributions. First, we demonstrate working BC attacks against the
W3C XML Encryption [ERH+13] and XML Signature [ERS+08] specifications.
In the secret key setting, we describe a practical BC attack that allows to
break (i.e., to distinguish plaintexts of) GCM-based encryption in XML En-
cryption, based on a weakness of CBC. The basic idea of this generic attack is
described in Section 4.6.2. Furthermore, in Section 4.6.5.2 we apply a signifi-
cantly more efficient variant of this attack, which exploits specific weaknesses
of XML Encryption, exemplarily to the widely-used Apache Web Services Se-
curity for Java (WSS4J) library. In the public-key setting, we show how the
well-known attack of Bleichenbacher [Ble98] gives rise to a BC attack that al-
lows an attacker to decrypt ciphertexts of PKCS#1 v2.0 encryption in both
XML Encryption [ERH+12], and to forge signatures for arbitrary messages in
XML Signature [ERS+08]. In addition to the XML Security specifications, we
show that our attacks are applicable against the current draft of JSON Web
Encryption [JRH12] and Web Signature [JBS12]
Second, we discuss countermeasures against the BC attacks. Obviously, usage

of appropriate key separation ensuring that different keys are used in “weak” and
“strong” cryptographic algorithms would be a correct countermeasure. However,
this apparent simplicity is deceptive. Our experience is that developers some-
times fail to appreciate this requirement, or understand the requirement but fail
to provide key separation. Moreover, in the context of public key cryptography,
the most common data format for transporting public keys, the X.509 certifi-
cate, does not by default contain a field that limits the cryptographic algorithms
in which a public key and its corresponding private key can be used. This lack
of precision opens up the possibility of BC attacks in the public key setting.
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Responsible Disclosure. We informed the W3C Working Group of the
attacks presented in this section in July 2012. They acknowledged the attack
and extended the specification with security considerations addressing BC at-
tacks [ERH+13, Section 6.1.3]. We informed the JOSE Working Group, which
is in charge of JSON Web Encryption and JSON Web Signature, of our BC
attack on RSA-OAEP and PKCS#1 v1.5 in April 2012. Their standards are
still under development at the time of writing.
We also communicated with several vendors applying XML Signature and

XML Encryption. We highlight the steps they used to counter our attacks in
Section 4.6.6.3. The attacks received the CVE identifier CVE-2012-5575.

Paper. This section is based on the paper One Bad Apple: Backwards Com-
patibility Attacks on State-of-the-Art Cryptography published at the Network
and Distributed System Security Symposium (NDSS) [JPS13]. The paper was
written together with Tibor Jager and Kenneth G. Paterson.
My contribution lay in the investigation of the BC attacks’ application on

XML Encryption and JSON Web Encryption. I designed and implemented
the attacks, and contributed to the practical section. Tibor and Kenny ana-
lyzed attacks’ theory and implications, and investigated general countermea-
sures against these attacks.

4.6.1 Related Work

Wagner and Schneier [WS96] described version rollback attacks on Version 2.0
of the SSL protocol. Speaking generally, version rollback attacks target cryp-
tographic protocols where cryptographic algorithms and parameters are nego-
tiated interactively between communication partners at the beginning of a pro-
tocol execution. The attacker modifies messages exchanged in this negotiation
phase, in order to lure both communication partners into using weak cryptog-
raphy, such as for instance legacy export-weakened algorithms.
Backwards compatibility attacks can be seen as a variant of version rollback

attacks that apply to non-interactive protocols. An essential difference is that
version rollback attacks on two-party protocols can be prevented by either party,
if that party simply uses exclusively strong state-of-the-art cryptography.12 In
contrast, in this section we describe attacks that can not be prevented if one
party is only prepared to use strong cryptography: The willingness of the other
party to use weak cryptography suffices to foil security.
Kelsey et al. [KSW97] described chosen-protocol attacks. These consider a

scenario where a victim executes a cryptographic protocol Π, and an attacker
is able to trick this victim into executing an additional maliciously designed
cryptographic protocol Π′, too. This helps the attacker to break the security
of Π. Clearly such attacks require a very strong attacker, and are only appli-
cable if potential victims can be seduced into executing malicious protocols. In
contrast, in typical backwards compatibility attacks, no adversarial control over
the protocols executed by honest parties is needed.13

12In presence of an attacker the negotiation might then fail, which reduces the version rollback
attack to a denial-of-service attack.

13Even worse, in the examples of BC attacks described in this section honest parties are forced
to execute weak cryptographic algorithms, in order to remain standard compliant.
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The attack described by Kaliski Jr. [Kal02] assumes an attacker that is able
to register new hash function identifiers, and can thus be seen as a special case
of chosen-protocol attacks.
Gligoroski et al. [GAK08] emphasize the need for key separation when using

different modes of operation of a block cipher, and criticize some ISO and NIST
standards for failing to make this point explicitly. However, they do not present
any concrete attacks against deployed protocols.
Barkan et al. [BBK03] showed that the key separation principle is violated

in the GSM mobile telecommunications system, and exploited this in what can
be seen as a BC attack on the GSM encryption mechanism: In their attack, an
active attacker fools the receiver into using a weak encryption algorithm (A5/2),
extracts the key by cryptanalysis, and then uses the same key to decrypt traffic
protected by the stronger A5/1 algorithm. Thus, the continued presence of a
weak algorithm enables the enhanced security provided by a stronger algorithm
to be bypassed. This is the only previous concrete example of a BC attack (of
the specific type we explore in this section) that we know of.
A cryptographic primitive with the property that different instantiations can

securely share the same key is called agile [ABBC10]. In a sense, the attacks
presented in this section provide evidence that block cipher modes of operation
and public-key schemes are not agile, and show how this property leads to
relatively efficient practical attacks on important web standards. Another line
of work, related to agility, concerns joint security, wherein a single asymmetric
key pair is used for both signatures and encryption. An up-to-date overview of
work in this area is provided in [PSST11].

4.6.2 Breaking GCM with a CBC Weakness

In this section, we describe a BC attack on symmetric encryption. We show how
to break the expected security of ciphertexts encrypted in Galois Counter Mode
(GCM) by exploiting a weakness of the cipher-block chaining (CBC) mode.
This attack provides just one concrete example of a BC attack. We decided

to describe this particular case in detail because we will show the practical
applicability of exactly this attack in Section 4.6.5.2. Similar attacks can applied
on different modes of operations.

4.6.2.1 An abstract view on attacks on CBC

Starting with Vaudenay’s padding-oracle attacks [Vau02], several efficient
attacks exploiting the malleability of CBC-encrypted ciphertexts were pub-
lished [DR11a, JS11, AP12] (see Section 4.2.1). These attacks are the main
reason why CBC is phased out in new standards and replaced with modes of
operation like GCM that provide security against chosen-ciphertext attacks.
Two properties that all these attacks have in common will be important for

us: They allow to decrypt ciphertexts encrypted in CBC-mode, and they are
efficient.
Thus, from an abstract point of view, the attacks provide an efficient CBC

decryption oracle OCBC. This oracle takes as input a CBC-encrypted ciphertext
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C = (iv, C(1), . . . , C(n)) encrypting a message (m(1), . . . ,m(n)), and returns

(m(1), . . . ,m(n)) = OCBC(C)

4.6.2.2 The Backwards Compatibility Attack

In this section, we describe a generic backwards compatibility attack on GCM,
which is based on a weakness of CBC. We will first describe an abstract appli-
cation scenario, which is practically motivated by the recent development of the
XML Encryption specification. Then we describe the attack that allows an at-
tacker to determine whether a ciphertext contains a certain message, and discuss
the relevance of such distinguishing attacks. Finally, we sketch optimizations of
the generic attack, which lead to significant efficiency improvements.

4.6.2.2.1 Application Scenario. In the sequel let us consider a scenario (an ex-
ample application) in which encrypted messages are sent from senders S1, . . . , S`
to a receiver R. Each ciphertext C received by R consists of two components
C = (Cpub, C

CBC
sym ), where

• Cpub is a public-key encryption of an ephemeral session key k under R’s
public-key, and

• CCBCsym encrypts the actual payload data under key k, using a block cipher
in CBC-mode.

Suppose that S1, . . . , S` and R use this application, until it eventually turns
out that it is susceptible to a chosen-ciphertext attack (CCA) which allows an
attacker to decrypt ciphertexts in CBC-mode. For example, this may involve a
padding oracle attack.
The application is immediately updated. The update replaces CBC-mode

with GCM-mode, because GCM-mode provides provable CCA-security [MV04].
It is well-known that if the public-key encryption scheme used to encrypt the
session key k is CCA-secure too,14 then this combination forms a CCA-secure
encryption scheme. Therefore, senders using this combination of algorithms
may expect that their data is protected against chosen-ciphertext attacks.
After the update the receiver R remains capable of decrypting CBC-mode

ciphertexts for backwards compatibility reasons, since it is infeasible to update
the software of all senders S1, . . . , S` simultaneously. However, at least those
senders that are using GCM instead of CBC may expect that their data is
sufficiently protected.
We show that the latter is not true. The sole capability of R being able to

decrypt CBC ciphertexts significantly undermines the security of GCM cipher-
texts.

14For instance, RSA-OAEP [BR94], standardized in RSA-PKCS#1 v2.1 [JK03], is a widely
used public-key encryption algorithm that provably meets this security property [FOPS04].

125



4 How to Break XML Encryption

4.6.2.2.2 A Distinguishing Attack on GCM. We describe a distinguishing
attack, which allows the attacker to test whether a GCM ciphertext contains
a particular message. The attack exploits the CBC decryption capability of
R. It can be applied block-wise to each ciphertext block, which enables the
attacker to employ a “divide-and-conquer” strategy that in many scenarios is
equivalent to a decryption attack. See Section 4.6.2.2.3 for further discussion of
why distinguishing attacks matter.
The attack consists of two key ingredients.

1. We show that the availability of the CBC decryption attack allows the
attacker not only to decrypt arbitrary ciphertexts in CBC-mode, but also
to invert the block cipher used within CBC at arbitrary positions. That is,
we show that a CBC decryption oracle implies a block cipher decryption
oracle.

2. We show that this block cipher decryption oracle can be used to mount a
distinguishing attack on GCM.

CBC-Decryption implies Block Cipher Inversion. Due to the availability of
the CBC decryption attack, R involuntarily provides an efficient CBC decryp-
tion oracle OCBC, which takes as input a tuple C = (Cpub, C

CBC
sym ), and returns

the decryption of CCBCsym under the key k contained in Cpub.
We show that this oracle OCBC can be turned into a new oracle ODec that

inverts the block cipher used in CBC-mode. Oracle ODec takes as input a tuple
C = (Cpub, C

′), and returns the block cipher decryption m′ = Dec(k,C ′) of C ′

under the key k contained in Cpub.
Oracle ODec proceeds on input (Cpub, C

′) as follows.

1. It chooses an arbitrary initialization vector iv′.

2. It queries the CBC decryption oracle on input

(Cpub, (iv
′, C ′)).

Note that (iv′, C ′) is a valid CBC ciphertext consisting of an initialization
vector iv and a single ciphertext block C ′. Therefore, oracle OCBC will
return the CBC decryption

m = Dec(k,C ′)⊕ iv

of (iv′, C ′).

3. Finally, ODec computes and outputs m′ = m⊕ iv′.

It is straightforward to verify that m′ = Dec(k,C ′).
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Distinguishing GCM Ciphertexts. Consider an attacker who eavesdrops an
encrypted message C = (Cpub, C

GCM
sym ) sent from a sender S to receiver R.

Ciphertext Cpub encrypts a key k, and CGCMsym = (iv, C(1), . . . , C(n), τ) encrypts
a message m = (m(1), . . . ,m(n)) in GCM-mode with key k.
Assume the attacker has access to an oracle ODec which takes as input a tuple

C = (Cpub, C
′) where C ′ is a single ciphertext block, and returns the block cipher

decryption of C ′ under the key k contained in Cpub.
The attacker can use this oracle to test whether the i-th encrypted message

block m(i) contained in the eavesdropped ciphertext block C(i) is equal to a
certain message m′. It proceeds as follows.

1. The attacker queries oracle ODec by submitting the ciphertext

C̃ := (Cpub, C
(i) ⊕m′).

2. If the decryption oracle ODec responds with

ODec(C̃) = iv||031||1 + i, (4.5)

then the attacker concludes that m′ = m(i).

To see that this indeed allows the attacker to determine whether C(i) encrypts
m′, note that in GCM-mode

Dec(k,C(i) ⊕m(i)) = iv||031||1 + i

holds if and only if

C(i) = Enc(k, iv||031||1 + i)⊕m(i).

Because (Enc,Dec) is a block cipher, Enc(k, ·) is a permutation, and Dec(k, ·) =
Enc−1(k, ·) is its inverse. Thus, if Equation (4.5) holds, then it must hold that
m(i) = m′.

4.6.2.2.3 Why Distinguishing Attacks Matter. Practitioners are prone to
dismissing distinguishing attacks as being only of theoretical interest. However,
we caution against this viewpoint, for two reasons. Firstly, such attacks are
readily converted into plaintext recovery attacks when the plaintext is known
to be of low entropy. We will demonstrate this in practice in Section 4.6.5.2.
Secondly, such attacks are indicative of problems that tend to become more
severe with time. The recent example of TLS1.0 provides a good example of
this phenomenon: As early as 1995, Rogaway [Rog95] pointed out that CBC
encryption is vulnerable to a chosen plaintext distinguishing attack when the
initialization vectors used are predictable to the attacker. This vulnerability was
addressed in TLS1.1, but TLS1.0 support remained widespread. Then in 2011,
the Duong and Rizzo BEAST attack [DR11b] showed how to extend Rogaway’s
original observation to produce a full plaintext recovery attack. Their attack
applies to certain applications of TLS in which there is some adversarially-
controllable flexibility in the position of unknown plaintext bytes. The resulting
scramble to update implementations to avoid the Rogaway/BEAST attack could
easily have been avoided had the distinguishing attack been given more credence
in the first place.
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4.6.2.2.4 Optimizations. We based our description of the GCM distinguish-
ing attack on the availability of an abstract CBC decryption oracle OCBC. This
oracle can be provided somehow, that is, by an arbitrary attack on CBC-mode
encryption. The distinguishing attack uses the OCBC oracle naively as a black-
box, without taking into account, which specific weaknesses of CBC-encryption
and the target application are exploited to implement OCBC. While on the pos-
itive side this implies that the GCM distinguishing attack works in combination
with any CBC decryption attack, we also note that an attack making naive
usage of the OCBC oracle is potentially not optimally efficient.
For instance, in practice the CBC decryption oracle is usually given by a

padding oracle attack. A typical padding oracle attack requires on average
between 14 [JS11] and 128 [Vau02, DR11a] chosen-ciphertext queries to recover
one plaintext byte. If the CBC decryption oracleOCBC is used naively as a black-
box, without further consideration of which particular attack is performed by
OCBC, then this complexity is inherited by the attack on GCM. Thus, in order
to test whether a particular GCM-encrypted ciphertext block C(i) contains a
particular message m′ (in case of a 16-byte block cipher like AES [AES01]), one
expects that between 14 ·16 = 224 and 128 ·16 = 2048 chosen-ciphertext queries
are required to perform one test.
We note that the GCM distinguishing attack can be improved dramatically

by exploiting specific properties of the provided CBC padding oracle and the
application. Jumping a bit ahead, our implementation of the GCM distinguish-
ing attack (as described in Section 4.6.5.2) uses an optimized version of the
naive attack. This optimized attack takes into account specific details of the
target application, like formatting of valid plaintexts and padding, which allows
for much more efficient attacks. For the optimized attacks on GCM in XML
Encryption and JOSE detailed in Section 4.6.5.2, only 2 queries are already
sufficient to mount our distinguishing attack.

4.6.3 Further BC Attacks on Symmetric Cryptography and
Generic Countermeasures

The principle of backwards compatibility attacks on symmetric encryption
schemes is of course not limited to CBC and GCM. We described this special
case in the previous section as a first example because it represents a reason-
able practical scenario, which nicely matches the practical attacks described in
Section 4.6.5.2. In this section, we discuss further BC attacks on symmetric
encryption schemes and generic countermeasures.

4.6.3.1 BC Attacks on Other Modes of Operation

There exists a large number of block cipher modes of operation defined by var-
ious organizations in various standards. For instance, popular unauthenticated
modes of operation are ECB, CBC, OFB, and CTR [NIS80, NIS01b]. Widely
used authenticated modes of operation are OCB [RBBK01], EAX [BRW04], and
CCM [NIS04].
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For any authenticated mode of operation, one can select a suitable unauthen-
ticated mode of operation and describe a backwards compatibility attack which
allows an attacker to distinguish encrypted messages, or even to decrypt high-
entropy ciphertexts. Since of course most combinations of modes of operation
and attack scenarios are not of practical relevance, and the additional theoret-
ical contribution over the attack from Section 4.6.2.2.2 is limited because the
attack principle is always the same, we do not describe all possible attacks in
detail.
We note only that different modes of operation have very different properties

and characteristics w.r.t. backwards compatibility attacks. For example:

1. Some modes use the encryption algorithm Enc(k, ·) of the block cipher for
encryption, and the decryption algorithm Dec(k, ·) for decryption. Exam-
ples for such modes are ECB and CBC.

2. Some modes use the encryption algorithm Enc(k, ·) of the block cipher
for both encryption and decryption. Examples of this type are OFB and
“counter”-modes, like CTR and GCM, where the block cipher is turned
into a stream cipher by encrypting an incrementing counter value.

The type of oracle provided by an attack on a mode of operation depends
strongly on such characteristics. For instance, a CBC decryption attack provides
a block cipher decryption oracle that allows an attacker to compute the block
cipher decryption function Dec(k, ·). In contrast, a decryption attack on OFB
mode would provide a block cipher encryption oracle Enc(k, ·).
In Section 4.6.2.2.2 we showed that the block cipher decryption oracle Dec(k, ·)

provided by the attack on CBC is sufficient to mount a distinguishing attack
on GCM. In turn, this allows the decryption of low-entropy ciphertexts by ex-
haustive search over all possible plaintexts. If instead an encryption oracle was
given, then this would even allow the decryption of high-entropy GCM cipher-
texts, since this oracle essentially computes the block cipher operation performed
in the GCM-decryption algorithm.
In a different application scenario, with a different combination of algorithms,

a block cipher decryption oracle may also lead to a full-fledged decryption attack.
For example, AES Key Wrap [NIS01a] is a NIST-specified symmetric key trans-
port mechanism designed to encapsulate cryptographic keys. AES Key Wrap
is used, for instance, in XML Encryption. Indeed, the block cipher decryption
oracle provided by attacks from Section 4.4 allows to decrypt even high-entropy
keys encrypted with the AES Key Wrap scheme.

4.6.3.2 Generic Countermeasures

There are a number of obvious countermeasures which would prevent our sym-
metric BC attacks. The cleanest approach is to fully embrace the principle of
key separation, which dictates that different keys should be used for different
purposes. Extending this principle would mean using completely different keys
for different algorithms serving the same purpose. Of course, the required keys

129



4 How to Break XML Encryption

may not be readily available, and making them available might require signif-
icant re-engineering of other system components. This approach does not sit
well with maintaining backwards compatibility.
A compromise position would be to take the existing key and ensure that

distinct, algorithm-specific keys are derived from it using suitable algorithm
identifiers. For example, we could set kprime = PRF(k, "Algorithm Identifier")
where now the original key k is used as a key to a pseudo-random function sup-
porting key derivation. Suitable pseudorandom functions can be implemented
based on block ciphers or hash functions, which are readily available in most
cryptographic libraries.

4.6.4 BC Attacks on Public-Key Cryptography

In this section, we recall the well-known attack of Bleichenbacher [Ble98] on
RSA-PKCS#1 v1.5 encryption [Kal98]. We discuss its applicability to RSA-
OAEP encryption [BR94] (as standardized in RSA-PKCS#1 v2.0 [KS98] and
v2.1 [JK03]) and to RSA-PKCS#1 v1.5 signatures [JK03].
Essentially, Bleichenbacher’s attack allows to invert the RSA-function m 7→

me mod N without knowing the factorization of N . This fact gives rise to obvi-
ous attacks on RSA-based encryption and signature schemes. Therefore, the fact
that Bleichenbacher’s attack may in certain applications give rise to backwards
compatibility attacks is not very surprising. We stress that we consider the
contribution of this part therefore not in demonstrating this relatively obvious
fact, but rather in showing that such attacks are indeed applicable in practice.

4.6.4.1 The Power of Bleichenbacher’s Attack

As already noted in [Ble98], the attack of Bleichenbacher allows not only to de-
crypt PKCS#1 v1.5 ciphertexts. Instead, it uses the PKCS#1 validity oracle to
invert the RSA function m 7→ me mod N on an arbitrary value (not necessarily
a PKCS#1 v1.5 conformant ciphertext).
Therefore, Bleichenbacher’s attack can potentially also be used to decrypt

RSA-OAEP ciphertexts, or to forge RSA-based signatures, whenever the fol-
lowing two requirements are met.

1. The PKCS#1 v1.5 encryption scheme and the attacked cryptosystem (like
RSA-OAEP encryption or RSA-signatures) use the same RSA-key (N, e).

2. A PKCS#1 v1.5-validity oracle is given, in order to mount Bleichenbacher’s
attack.

We will show that these two requirements are indeed met in certain practical
applications, where PKCS#1 v1.5 encryption is available due to backwards
compatibility reasons.

4.6.4.2 Attacking RSA-OAEP

Note that in order to decrypt an OAEP-ciphertext it suffices to be able to invert
the RSA encryption function m 7→ me mod N , since the message encoding

130



4.6 Backwards Compatibility Attacks

and decoding steps are unkeyed. Thus, if the RSA public key (N, e) is used
for OAEP-encryption and an oracle O is available which tells whether a given
ciphertext is PKCS#1 v1.5 conformant w.r.t. (N, e), then one can use this
oracle to decrypt OAEP-ciphertexts by mounting Bleichenbacher’s attack.

4.6.4.3 Attacking RSA-PKCS#1 v1.5 Signatures

In order to forge an RSA-PKCS#1 v1.5 signature it suffices to be able to invert
the RSA encryption function. Thus, if the RSA public key (N, e) is used for
RSA-PKCS#1 v1.5 signatures and an oracle O is available that tells whether
a given ciphertext is PKCS#1 v1.5 conformant w.r.t. (N, e), then one can use
this oracle to forge RSA-PKCS#1 v1.5 signatures by mounting Bleichenbacher’s
attack on a suitably randomized version of the encoded message M .
This attack possibility is mentioned in Bleichenbacher’s original paper [Ble98].

A variant of the attack was recently explored in [DLP+12] in the context of EMV
signatures (where the same RSA key pair may be used for both signature and
encryption functions).

4.6.4.4 Countermeasures and the Difficulty of Key Separation with X.509
Certificates

Key separation means to use different (independent) keys for different algo-
rithms. In theory this principle provides a simple solution to prevent backwards
compatibility attacks. As described in Section 4.6.3.2, key separation is very
easy to enforce in the symmetric setting, for instance by a suitable application
of a pseudorandom function before using the symmetric key.
In principle, key separation in the public-key setting is almost as easy to

enforce as in the symmetric setting. One could simply generate different keys
for different purposes. For instance, one RSA-key (N0, e0) is generated ex-
clusively for PKCS#1 v1.5 encryption, another independent RSA-key (N1, e1)
exclusively for PKCS#1 v1.5 signature, and yet another independent RSA-key
(N2, e2) only for RSA-OAEP encryption. Each public-key should then be pub-
lished together with some information (included in the certificate, for instance)
that specifies for which algorithm this key can be used. Accordingly, each secret
key should be stored together with this additional information. Cryptographic
implementations should check whether the provided key is suitable for the exe-
cuted algorithm.
Unfortunately this theoretically sound solution is not easy to implement in

practice. This is because common data formats for public keys do not provide
this additional information as part of the basic standard. For example, the X.509
standard for public-key certificates defines a popular data format for public
keys. While an X.509 certificate does include algorithm identifiers for the signing
algorithm used to create the certificate itself, these certificates do not necessarily
include any information about with which algorithms the certified public key can
be used. It is possible to extend X.509 certificates with such a field, the Subject
Public Key Info field (see RFC 5280 [CSF+08] and more specifically RFC 4055
[SKH05] for naming conventions for RSA-based algorithms), but supporting this
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field is not mandatory and would require major changes to implementations and
libraries. In view of BC attacks, we consider this to be a big handicap of X.509
certificates. We suggest that algorithm identifiers for certified keys be included
by default in future revisions of X.509.
The importance of key separation still seems to be not very well understood

in practice. For instance, a large cloud identity security provider even suggested
the use of RSA keys for both digital signatures and encryption [Pin12], while
RFC 4055 [SKH05] permits the same RSA key pair to be used for more than one
purpose (see specifically Section 1.2 of RFC 4055). There is limited theoretical
support for this kind of key reuse (see [PSST11] and the references therein), but
in general, as our attacks show, it is a dangerous practice.

4.6.5 Attacking XML Encryption and JSON Web Encryption

In this section, we demonstrate the vulnerability of current versions of XML
Encryption [ERI+02] and JSON Web Encryption [JRH12] to BC attacks. We
describe optimized versions of the BC attacks illustrated in previous sections.
Then, we discuss practical countermeasures, their applicability, and propose
changes to the algorithms and security considerations in the analyzed specifica-
tions.

4.6.5.1 Platforms for our Experimental Analyses

As described in the previous sections, for execution of the backwards compat-
ibility attacks two prerequisites have to be given. First, the server implemen-
tation has to support both secure and insecure algorithms using the same key.
Second, the attacker has to be able to lure the server into processing the ci-
phertexts with a different algorithm. XML Encryption supports RSA-PKCS#1
v1.5 and AES-CBC, and JWE supports RSA-PKCS#1 v1.5. In order to force
the server to process a ciphertext with a desired algorithm, the client speci-
fies the algorithm directly in the message (he changes the Algorithm attribute
in EncryptionMethod in XML Encryption message or the alg attribute in the
JWE header, see Figures 2.17 and 4.8). This makes XML Encryption and JWE
suitable for application of our attacks.
We analyze the practicality and performance of our attacks on XML En-

cryption and XML Signature by applying them to the Apache Web Services
Security for Java (Apache WSS4J) library. This is a widely used library pro-
viding Web Services frameworks with implementations of XML Encryption and
XML Signature. It is used in several major Web Services frameworks, including
JBossWS [JBo13], Apache CXF [Apa13b], and Apache Axis2 [Apa13a].
The practicality and performance of our attacks on JWE and JWS are investi-

gated by applying these attacks to the Nimbus-JWT library [Nim13]. Nimbus-
JWT is a Java implementation of JSON Web Encryption (JWE) and JSON
Web Signature (JWS), developed by NimbusDS to support their Cloud Identity
management portfolio.15

15Even though Nimbus-JWT claims to implement version 02 of the JWE standard draft,
at the time of writing it still supported usage of AES-CBC (without MAC), which was
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Note that we test our attacks in this section at the library level, not against
actual applications. It may therefore be possible that applications implement
specific countermeasures to prevent these attacks. However, we stress that pre-
venting most attacks on higher application layers is extremely difficult or even
impossible, as we describe later in this section.

4.6.5.2 Breaking AES-GCM

In this section, we describe our practical attacks breaking indistinguishability
of the AES-GCM ciphertexts in XML Encryption. We first describe a perfor-
mant variant of the attack from Section 4.6.2. Then we present the results of
our experimental evaluation, executed against Apache WSS4J and against the
Nimbus-JWT library.

4.6.5.2.1 Plaintext Validity Checking. A symmetric XML Encryption ci-
phertext is processed as follows. It is first decrypted with a decryption key.
Then the padding is removed, and the decrypted plaintext is parsed as XML
data. If any of these steps fails, the process returns a processing failure.
Padding and parsing mechanisms in XML Encryption were already described

in Sections 4.1.1.3 and 4.4.3. In the following we describe how these mechanisms
influence our BC attacks.
In the sequel let us assume that XML Encryption is used with a block cipher

of block size ν = 16 byte, like AES, for instance.

Padding in XML Encryption. For the description of our attacks, it is impor-
tant to rephrase that the last byte in the plaintext indicates the padding byte.
When using a block cipher of block size ν = 16, there exist 16 valid padding
byte values.
Based on this fact, observe that a randomly generated plaintext block is

valid according to the XML Encryption padding scheme with a probability of
Ppad = 16/256 (if a 16-byte block cipher is used, as we assume), since there are
16 possible values for the last byte that yield a valid padding.

XML Parsing. Valid XML plaintexts have to consist of valid characters and
have a valid XML structure. Parsing XML data that are not well-formed or
contain invalid characters leads to parsing errors (see Section 4.4.3 for more
details). For simplicity, let us assume in the following that an XML plaintext
consists only of ASCII characters. The ASCII code allows to encode 27 = 128
different characters.
The ASCII table contains two sets of characters: parsable and non-parsable.

Parsable characters include letters, numbers, or punctuation marks. About a
25% of ASCII characters are non-parsable. This includes, for example, the NUL,
ESC, and BEL characters. If any of these is contained in an XML document, then
this will lead to a parsing error.

available in version 01, but not in version 02 or any subsequent versions. This made the
Nimbus-JWT library suitable for testing our symmetric key scenarios.
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Thus, Pparse, the probability that a random byte corresponds to a parsable
character, is about 1/2 · 3/4 = 3/8.

Probability of valid XML ciphertexts. The fact that an XML processor
responds with an error message if the padding or the plaintext format of a
decrypted message is invalid allows us to determine whether a given CBC-
encrypted ciphertext is valid or not. This allows us to construct an XML de-
cryption validity oracle OCBCxml, which takes as input an AES-CBC ciphertext
c̃ = (ĩv, C̃(1)), decrypts it, and responds with 1 if the plaintext is correct, and 0
otherwise.
In particular, a randomly generated ciphertext (ĩv, C̃(1)) consisting of an ini-

tialization vector and one ciphertext block leads to a decryption error with high
probability. The probability that a random ciphertext is valid is only

Pvalid =
15∑
i=0

(1/256)(3/8)i ≈ 0.0062

This low probability that a random ciphertext is valid is one of the key ingredi-
ents to our attack.

Plaintext Validity Checking in JWE. The JWE standard applies a different
padding scheme, namely PKCS#5. This padding scheme has a more restrictive
padding validity check, such that random ciphertexts are rejected with even
higher probability. This improves the success probability of our attack. In the
context of JWE we thus obtain a plaintext validity oracle OCBCjwe, which is
similar to OCBCxml but has an even smaller false positive rate.

4.6.5.2.2 Optimized Algorithm

Distinguishing Plaintexts. Let us now describe our optimized attack. Con-
sider an attacker who eavesdrops an AES-GCM ciphertext

C = (iv, C(1), . . . , C(n), τ).

His goal is to determine whether the i-th ciphertext block C(i) encrypts a par-
ticular message m′. The attacker proceeds as follows (see Figure 4.24):

1. He computes a CBC ciphertext by setting the first ciphertext block equal
to C̃ = m′ ⊕ C(i). (If he guessed m′ correctly, then this sets Dec(k, C̃) =
cnt = iv||031||1 + i.)

2. He selects a valid XML plaintext m̃ and a CBC-mode initialization vector
ĩv, such that

m̃ = ĩv ⊕ cnt

3. The ciphertext (ĩv, C̃) is then sent to the CBC validity checking oracle.
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Figure 4.24: Breaking indistinguishability of AES-GCM with AES-CBC.

If the CBC validity checking oracle accepts this as a valid ciphertext, then the
attacker most likely guessed m′ correctly (with a probability of Pm′ = 1 −
Pvalid ≈ 0.9938). Otherwise, he certainly guessed wrongly. This test can be
repeated a few times with distinct values of m̃ to decrease the probability of a
false positive.

Recovering Plaintext Bytes. The distinguishing attack can also be used to
decrypt low-entropy plaintexts. For our experiments, we consider an attacker
that a priori knows the complete plaintext except for one plaintext byte. We also
assume that the attacker reduces the number of false positives by one additional
oracle query for each positive response.
The attack procedure for recovering one plaintext byte is depicted in Algo-

rithm 4.6. The algorithm iterates over all the n = 256 possibilities for byte
b. The performance of this step can be improved significantly if the attacker
is able to narrow the number of possible values for b, for instance if the target
application accepts only ASCII characters, only letters, only integers, etc.
The algorithm can easily be extended to decrypt larger numbers of unknown

bytes in one block. To decrypt x unknown bytes, the attacker needs to issue
about nx oracle queries.

4.6.5.2.3 Evaluation. We evaluated performance of our attacks against both
WSS4J and Nimbus-JWT. We first used the libraries to generate valid messages
containing AES-GCM ciphertexts. Then we modified the algorithm parameters
in the messages, forcing the receiver to process the ciphertexts using AES-CBC,
and executed the attack described in Algorithm 4.6. The required ciphertext
validity oracles were based on error messages generated by the libraries.
Table 4.2 reports the results of our evaluation, with figures obtained by aver-

aging over 50 executions. We include results for ciphertext blocks containing 1,
2, and 3 unknown bytes. We restricted the possible character set to a group of
alphabetic and numeric characters. Thus, in this setting the attacker needs to
test n = 64 possibilities for each byte.
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Algorithm 4.6 Recovering a single plaintext byte b from an AES-GCM cipher-
text using an OCBCxml oracle.
Input: Plaintext block m′ containing one unknown byte b. Position p of the

unknown byte b. AES-GCM ith ciphertext block C(i) and initialization
vector iv.

Output: Plaintext byte b.
1: m̃valid1 := 0x00||0x00|| . . . ||0x00||0x10
2: m̃valid2 := 0x40||0x40|| . . . ||0x40||0x01
3: cnt := iv||031||1 + i
4: n := 256
5: for b = 0→ (n− 1) do
6: m′p := b

7: C̃ := m′ ⊕ C(i)

8: ĩv := cnt⊕mvalid1

9: if OCBCxml(ĩv, C̃) = 1 then
10: ĩv := cnt⊕mvalid2

11: if OCBCxml(ĩv, C̃) = 1 then
12: return b
13: end if
14: end if
15: end for

Number of Guessed OCBCxml OCBCjwe
unknown bytes m′ plaintexts queries queries

1 36 37 37
2 2,130 2,145 2,139
3 142,855 143,811 143,409

Table 4.2: Attack results applied on ciphertext blocks containing 1, 2, and 3
unknown bytes from a group of alphabetic and numeric characters.

As expected, the attack performs well if the target ciphertext blocks contain
a large number of known plaintext bytes. The number of oracle queries needed
increases exponentially with the number of unknown plaintext bytes.
While the number of guessed m′ plaintexts is constant for both libraries, the

number of total oracle queries varies. The different numbers of queries is caused
by different plaintext validation models being used in the XML Encryption and
JWE specifications: The validation model in JWE employs a stricter verification
for the padding, which results in less oracle queries being needed by the attacker.

Extension to a Full Plaintext Recovery Attack. Our evaluation shows that
an attacker is able to efficiently decrypt ciphertexts with a large number of
known bytes in the plaintext. We note that an attacker who is able to con-
trol parts of the plaintext is also able to recover high-entropy plaintexts, by
employing the technique from Duong and Rizzo’s BEAST attack [DR11b].
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Let us sketch the basic idea of this technique. The attacker uses its control
over the plaintext to prepend the unknown high-entropy plaintext with n − 1
known bytes, where n is the block size of the block cipher in bytes. Thus,
only the last byte of the first block is unknown to the attacker, and can be
recovered relatively efficiently with the above procedure. In the next step, the
attacker prepends the high-entropy plaintext with n−2 known bytes. Since the
first byte of the plaintext is already recovered, there is again only one unknown
byte in the resulting plaintext. By executing Algorithm 4.6 repeatedly with this
divide-and-conquer strategy, the attacker is able to recover the full high-entropy
plaintext.

4.6.5.3 Practical Examples of BC Attacks on Public-Key Cryptography

As described in Sections 2.5 and 2.10.1, both XML Encryption and JWE specify
public-key encryption according to PKCS#1 v1.5 and v2.0 as being mandatory.
Similarly, both XML Signature and JWS specify PKCS#1 v1.5 signatures as
being mandatory.
Recall from Section 4.6.4.1 that the known attack of Bleichenbacher on

PKCS#1 v1.5 can be used to decrypt PKCS#1 v2.0 ciphertexts or to forge
RSA-signatures if two requirements are met:

1. The application allows the RSA public-key (N, e) used for PKCS#1 v2.0
encryption (or RSA-signatures) to be also used for PKCS#1 v1.5 encryp-
tion; and

2. the application provides a PKCS#1 v1.5 validity oracle.

In Section 4.5 we observed that both XML Encryption and JWE inherently
provide PKCS#1 v1.5 validity oracles. Thus, Property 2 is met by XML En-
cryption and JWE. It remains to show that Property 1 is also met. Indeed,
neither specification distinguishes between keys for PKCS#1 v2.0 encryption,
PKCS#1 v1.5 encryption, and PKCS#1 v1.5 signatures (as noted before, some
providers even recommend re-use of RSA-keys across different algorithms).
Let (N, e) be the RSA public key of a receiver. A ciphertext according to

PKCS#1 (regardless of v1.5 or v2.0), consists of a single integer y modulo N .
Thus, in order to apply the correct decryption algorithm to y, the receiver
needs additional information, namely the version (v1.5 or v2.0) of PKCS#1
according to which the ciphertext C was encrypted by the sender. In both XML
Encryption and JWE, this information is provided in metadata16 accompanying
the ciphertext. These metadata are (typically) not integrity-protected. Thus,
an attacker can change them arbitrarily.
This enables an attacker to trick the receiver into applying the PKCS#1

v1.5 decryption algorithm to an arbitrary value y modulo N . In combination
with the PKCS#1 v1.5 validity oracle from Section 4.5 and Bleichenbacher’s
attack [Ble98], this suffices to invert the RSA-function m 7→ me mod N on an
arbitrary value y. This in turn allows to decrypt PKCS#1 v2.0 ciphertexts or to
forge RSA-signatures with respect to key (N, e), as explained in Section 4.6.4.1.
16The EncryptedKey element in XML Encryption, the header segment in JWE.
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4.6.5.3.1 Experimental Results. In order to assess the practicability and per-
formance of the attack, we implemented Bleichenbacher’s attack and applied it
to the Nimbus-JWT library. The PKCS#1 v1.5 validity oracle was provided by
different error messages returned by this library.17

The experiment was repeated 10,000 times, each time with a fresh 1024-bit
RSA-key, which was generated using the standard Java key pair generator.18

Decrypting a random PKCS#1 v2.0 ciphertext took about 171,000 oracle queries
on average. Forging a JSON Web Signature for an arbitrary message took about
218,000 queries on average. See Table 4.3 for details.

Mean Median Maximum # Minimum #
of queries of queries

PKCS#1 v2.0 171,228 59,236 142,344,067 4,089Ciphertext
PKCS#1 v1.5 218,305 66,984 395,671,626 20,511Signature

Table 4.3: Experimental results of BC attacks on PKCS#1 v2.0 ciphertexts
and PKCS#1 v1.5 signatures.

Executing the attacks with 2048 and 4096-bit RSA-keys resulted in only a
slightly higher number of requests.
For our evaluation purposes, we used the original attack algorithm.

Bardou et al. [BFK+12] described significantly improved variants of
Bleichenbacher’s attack. We did not implement these optimizations yet, but
since the improvements in [BFK+12] are very general, we expect that they lead
to much more efficient BC attacks, too.

4.6.6 Countermeasures

In this section, we discuss why several seemingly simple countermeasures (see
Sections 4.6.3.2 and 4.6.4.4) are hard to employ in practice.

4.6.6.1 Disallowing Legacy Algorithms

An obvious countermeasure would be to disallow all legacy algorithms and to use
only state-of-the-art cryptosystems. Unfortunately, this countermeasure would
also destroy interoperability for all parties that are only capable of running older
algorithms. This is a real issue: For example, the attack on XML Encryption
from Section 4.4 showed the insecurity of CBC in XML Encryption. There-
fore, GCM is now available as an additional option in the specification. Even
though the attack was published almost one year ago (and was disclosed to
vendors and developers several months earlier), users applying important Web

17In practice one could instead use the more elaborate attack techniques from Section 4.5 to
determine whether a given ciphertext is PKCS#1 v1.5 valid.

18java.security.KeyPairGenerator.
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Services frameworks like Apache Axis2 [Apa13a] or SAML-based Single Sign-
On [CKPM05] frameworks like Shibboleth [Shi13] cannot adapt GCM as the
platforms these frameworks are running on do not support GCM.
In the case of XML Encryption and Web Services one may also apply WS-

Security Policy [LK07]. This specification allows the definition of policies forcing
usage of specific algorithms in client-server communication. However, it is still
questionable how strictly these policy restrictions are implemented. We present
some details about the implementation of this specification in Apache CXF in
Section 4.6.6.3.

4.6.6.2 Key Separation

4.6.6.2.1 Symmetric Algorithms. The key separation countermeasure pro-
posed in Section 4.6.3.2 is simple and effective. As the JWE standard is still in
a draft version, we strongly recommend to consider application of this principle
in the final version of JWE.

4.6.6.2.2 Asymmetric Algorithms. The key separation principle can also
prevent BC attacks on public-key schemes like PKCS#1 v2.0. Unfortunately, it
seems that the importance of this principle is not well-understood in practice.
For instance, the WS-Security Policy standard [LK07] explicitly mentions in
Section 7.5 that it is possible to use the same RSA key pair for encryption and
signature processing. Moreover, some providers suggest their users to use the
same RSA key pair for different cryptographic algorithms [Fus12, Pin12].

4.6.6.3 Communication with Developers

We discussed our attacks with developers of several frameworks. In this section,
we summarize some approaches that developers followed to counter them.
The most recent draft of XML Encryption which includes AES-GCM is not

widely adopted yet (note that the first public draft version dates to March
2012). The only framework we are aware of that currently supports this version
is Apache CXF [Apa13b]. It utilizes the tested Apache WSS4J library [Apa12b].

4.6.6.3.1 Apache CXF and WSS4J. One possibility to restrict the list of
algorithms that can be used by Web Services is provided by the WS-Security
Policy standard [LK07]. This standard allows the server to define specific al-
gorithms that clients must use. Apache CXF supports the WS-Security Policy
standard and correctly checks the algorithms used in the encrypted XML mes-
sages. However, the specific design of the Apache CXF framework means that
algorithms used for data decryption are checked after the message is decrypted.
More precisely, the WS-Security Policy module checking the algorithms used
in the XML processing pipe (as described in Section 2.8), is placed after the
XML Encryption processing module. This means the attacker is able to force
the server to decrypt arbitrary data with arbitrary cryptographic algorithms,
which in turn allows to use the server as an plaintext/ciphertext validity oracle,
as required for our attacks.
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As a response to our attacks, the Apache CXF developers redesigned Apache
WSS4J and Apache CXF implementations to check the used security algorithms
before ciphertexts are decrypted.

4.6.6.3.2 Ping Identity. Ping Identity [Ide13] provides its customers with
products acting as an Identity Provider as well as a Service Provider. Both
products enable users to apply XML Encryption.
In its documentation, Ping Identity suggested that its users could use the

same asymmetric key pair for signature as well as encryption processing [Pin12].
We notified the framework developers. The Ping Identity website was updated
immediately and the suggestion removed. Moreover, we cooperated with the
developers and evaluated XML Encryption processing in their Service Provider
and Identity Provider implementations. We found that our BC attacks were
applicable to the Service Provider implementation in all the provided settings.
The BC attacks against the Identity Provider implementation could be executed
for specific settings where XML Signatures are not applied.19

The Ping Identity developers changed their implementation such that only
signed XML ciphertexts will be decrypted. Furthermore, the RSA-PKCS#1
v1.5 algorithm will be disabled by default for message creators (senders). For
interoperability reasons receivers will still need to support RSA-PKCS#1 v1.5.
Even though the latter still enables BC attacks, this is a step towards phasing
out RSA-PKCS#1 v1.5.

4.6.6.3.3 Shibboleth. Shibboleth [Shi13] is a SAML-based framework sup-
porting federated identity management deployments. Decryption of XML mes-
sages is supported only in the Service Provider implementation. XML Encryp-
tion is enabled by default in the Shibboleth deployments.
After we communicated the attacks to the framework developers, they decided

to blacklist RSA-PKCS#1 v1.5 by default in the newest Service Provider version
(Shibboleth 2.5.0).

4.7 Summary of Countermeasures and Best Practices

In the following we summarize best practices to counter attacks described in
this section. The presented countermeasures are of general use and work for
any application in general scenarios. We stress that other countermeasures
are most likely to fail in specific scenarios. More information can be found in
previous Sections 4.4.5, 4.5.4, and 4.6.6.

Key Separation. An application using different security primitives should
always apply proper key separation (see Section 4.6.6.2). This principle should
be applied even if the application exclusively applies provably secure ciphers.
Namely, it is possible that a security library leaks a side-channel information

19The attacks against the Identity Provider are significant, since they allow an attacker to
forge Identity Provider signatures for arbitrary SAML tokens when the same key pair for
signature and encryption processing is used.
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making the provably secure cipher vulnerable, or that a cipher becomes vulner-
able to a new practical attack. This would influence cryptographic algorithms
using the same key.
The key separation principle should be applied for public key as well as sym-

metric key algorithms:

1. Implementations using public key algorithms should always use distinct
public key pairs for distinct public key algorithms. For example, if an
implementation uses PKCS#1 v1.5 and PKCS#1 v2.0 encryption algo-
rithms, and PKCS#1 v1.5 signatures, the implementation should force
the user to generate three distinct RSA key pairs, each for a different
algorithm.

2. Implementations using symmetric keys should not use the same key ma-
terial for different algorithms, even if serving the same purpose. Key
derivation based on a single key and the algorithm identifier can be used
to accomplish this. For example, if the implementation uses CBC, GCM,
and HMAC, it could derive distinct keys for these algorithms from a given
master key k using a cryptographic hash function hash:

kCBC = hash(k||”CBC”)

kGCM = hash(k||”GCM”)

kHMAC = hash(k||”HMAC”).

We encourage developers to enforce these principles directly in their libraries so
that the library users are forced to apply them.

Thwarting Adaptive Chosen-Ciphertext Attacks. We propose two gen-
eral ways to protect implementations against the described adaptive chosen-
ciphertext attacks:

1. The first possible countermeasure is to restrict usage to secure algorithms
(i.e. authenticated encryption schemes). Application of this countermea-
sure could cause interoperability problems for all parties that are only
capable of running older algorithms. However, in specific scenarios this is
applicable. The countermeasure could be applied in different ways. Web
Services servers can be configured to accept only specific algorithms via
WS-Security Policy documents. Other applications can be extended with
specific configuration files to blacklist insecure algorithms. It is important
that by application of this countermeasure, documents containing inse-
cure algorithms are rejected without further processing (the application
must not attempt to decrypt the ciphertext encrypted with an insecure
algorithm).

2. It is also possible to maintain applications that support PKCS#1 v1.5 and
CBC. In that case, the developers should apply specific countermeasures:

• CBC ciphertexts should be decrypted only if they are authenticated
(e.g., in XML messages by XML Signatures). Unauthenticated CBC
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ciphertexts should be rejected without further processing. This can
be achieved by implementing specific measures directly in the security
libraries (see Section 4.4.5.3).20

• PKCS#1 v1.5 encrypted messages should be decrypted and their
format should be verified. If a decrypted message is not PKCS#1
v1.5 conformant or if the unwrapped key is of invalid length, the
implementation should use a new random key (see Section 4.5.4.2).
We stress that this countermeasure does not work if the application
accepts unauthenticated CBC ciphertexts.

4.8 Conclusion

In this chapter we showed different ways to break confidentiality of encrypted
XML messages. We first presented applications of Bleichenbacher’s attack and
a novel adaptive chosen-ciphertext attack on XML Encryption. We showed how
specific properties of XML Encryption and behavior of Web Services servers can
improve the attacks.
In case of the attacks on CBC, we showed a general attack that exploits

properties of the encoding of encrypted data in combination with the inevitable
response behavior of a server. We extended the ideas of Vaudenay [Vau02] and
related work [BU02, PY04, YPM05, RD10, Mit05] by making the observation
that character encoding patterns can lead to successful attacks even if padding
oracles are not available. Interestingly, the encoding patterns speed up the
original attack.
By investigating Bleichenbacher’s attack, we found new side-channels allowing

the execution of the attack. Our attacks exploit timing behavior of the server
and combination of PKCS#1 v1.5 with CBC.
We used the attacks against PKCS#1 v1.5 and CBC as the basis for explo-

ration of backwards compatibility attacks. The backwards compatibility attacks
show that the mere presence of these insecure options (e.g. PKCS#1 v1.5 and
CBC) can adversely affect the security of state-of-the-art algorithms (such as
AES GCM or RSA-OAEP), which would otherwise be invulnerable to adaptive
chosen-ciphertext attacks. Thus, our work makes another case for using en-
cryption schemes secure against chosen-ciphertext attacks and for application
of proper key separation.
We applied all the attacks practically against different common frameworks

adopting XML Encryption and JSON Web Encryption. However, our attack
ideas are generic and can probably be applied to other specifications as well.

20Note that application of public key signatures as a countermeasure does not work if an
attacker is registered as a valid Web Service client able to sign XML requests. In that
case, he can take a message signed by a different client, remove the original signature,
adapt the ciphertext and sign the message with his own key.
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This work presented several critical vulnerabilities in XML Security interfaces
of different frameworks and systems.

General Research Impact. We showed various practical classical and novel
XSW attacks. The attacks prove that the complexity of XML Security interfaces
creates a large seedbed of potential vulnerabilities. These vulnerabilities show
that, in order to construct secure systems, it is not sufficient to rely solely
on strong cryptography. It is furthermore inevitable to analyze the interaction
between cryptographic primitives and application logic thoroughly. Based on our
collection of different practical attacks, we summarized requirements for XSW
attacks, and designed an XSW library which systematically constructs new XSW
attack vectors.
We furthermore presented several adaptive chosen-ciphertext attacks on XML

Encryption. From a scientific point of view, the attacks are interesting due
to novel side-channels and properties they exploit: character encoding errors,
timing differences measurable over network, or combinations of weaknesses in
different encryption schemes. These side-channels confirm that a system should
not rely on legacy cryptographic algorithms with ad-hoc countermeasures. Even
if the system is secure today, it does not mean it will stay secure in the future.
There is still a possibility that future research discovers new side-channels or
more performant attacks. These attacks can then affect security of the whole
system, including other cryptographic schemes the system uses. Thereby, our
research motivates the application of provably secure cryptographic schemes and
proper key separation.

Practical Research Impact. Our work influenced many frameworks and
systems, which were updated in order to prevent the presented attacks. In many
cases, we closely cooperated with the developers responsible for the affected
systems. Moreover, the newest version of the XML Encryption recommendation
was extended with a description of specific countermeasures that prevent our
attacks.
During this research, I cooperated with the W3C XML Security Working

Group to define practical countermeasures, and with several developers who also
deployed specific countermeasures to our attacks in these systems and frame-
works: Amazon Web Services (AWS) [AWS13], Apache Axis2 [Apa13a], Apache
CXF [Apa13b], Eucalyptus [Euc13], IBM Datapower [IBM13],
JBossWS [JBo13], OpenAthens [Edu13], OpenSAML [Ope13b], Ping
Identity [Ide13], Salesforce [Sal13], SAP [SAP13], and WSO2 [WSO13].

Future Work. We learned that the areas of theoretical cryptography and
practical security are separated by a huge research gap. This provides possibil-
ities for new attacks and researches. Combination of these two areas should be
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followed more closely by theoretical researchers as well as practical developers.
This is the way for establishing a good base for secure cryptographic systems
and frameworks.
We applied the presented attacks to specifications of the XML (and partly

JSON) family. The attacks are however of general importance and most likely
applicable to other systems as well. Research on practical cryptographic attacks
is needed to motivate practitioners to remove insecure cryptographic algorithms
from their systems and specifications.
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