
New Modular Compilers for Authenticated Key
Exchange

Yong Li1?, Sven Schäge2??, Zheng Yang1, Christoph Bader1, and Jörg
Schwenk1

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{yong.li,christoph.bader,joerg.schwenk}@rub.de

2 University College London, United Kingdom
s.schage@ucl.ac.uk

3 Chongqing University of Technology
zheng.yang@rub.de

Abstract. We present two new compilers that generically turn passively
secure key exchange protocols (KE) into authenticated key exchange pro-
tocols (AKE) where security also holds in the presence of active adver-
saries. Security is shown in a very strong security model where the adver-
sary is also allowed to i) reveal state information of the protocol partici-
pants and ii) launch theoretically and practically important PKI-related
attacks that model important classes of unknown-key share attacks. Al-
though the security model is much stronger, our compilers are more
efficient than previous results with respect to many important metrics
like the additional number of protocol messages and moves, the addi-
tional computational resources required by the compiler or the number
of additional primitives applied. Moreover, we advertise a mechanism for
implicit key confirmation. From a practical point of view, the solution is
simple and efficient enough for authenticated key exchange. In contrast
to previous results, another interesting aspect that we do not require that
key computed by the key exchange protocol is handed over to the com-
piler what helps to avoid additional and costly modifications of existing
KE-based systems.

Keywords: Key Exchange, Authenticated Key Exchange, Security Model

1 Introduction

Authenticated key exchange (AKE) protocols are among the most important
building blocks of secure network protocols. They allow a party A to i) authen-
ticate a communication partner B and ii) securely establish a common session
key with B. In many existing systems both of these tasks are addressed by a
single protocol. This can yield very efficient solutions. However, there are several

? supported by secure eMobility grant number 01ME12025.
?? supported by EPSRC grant number EP/G013829/1.

scenarios where these two tasks are actually addressed by separate protocols. For
example in typical browser-based applications, the user relies on TLS to exchange
a session key k with an authenticated server. The user, on the other hand, of-
ten uses a simple username/password combination which is encrypted with k to
authenticate himself. In this paper, we consider generic and very efficient con-
structions that securely combine authentication protocols (AP) and passively
secure key exchange protocols (KE) to yield authenticated key exchange.

While combined solutions may be more efficient in general, there are several
advantages for the modular design of AKE systems. One is flexibility as one can
resort to a rich collection of existing authentication and key exchange protocols
that can be combined to yield new AKE systems which are specifically crafted to
fit a certain application scenario. The second reason is applicability, as a generic
compiler (ideally) does not require any modifications in existing implementa-
tions of the input protocols (which are often costly or error-prone in practice).
Instead, security can be established by simply ‘adding’ the implementation of
the compiler to the system. Third, a generic compiler can considerably simplify
the security analysis, as only the input protocols have to be analysed to meet
their respective security requirements. Security of the entire AKE protocol fol-
lows from the security proof of the compiler. This greatly pays off in the setting
of key exchange protocols, as here, we usually only require the underlying key
exchange protocol to be passively secure (which is a comparably simple secu-
rity notion) while the output protocol must be secure even under active attacks
(where the adversary is granted several additional attack capabilities). Finally,
generic compilers may help to lower the assumptions on practical security pro-
tocols which have not been designed with provable security in mind and where a
proof of AKE is not known. If such protocols are used in higher-level systems it is
typically simply assumed that they constitute secure AKE systems. If we apply
a generic compiler to such a protocol we can relax the security assumption to
only requiring that the protocol is secure in the presence of passive adversaries.

1.1 Contribution

We present two very efficient compilers that construct secure AKE systems from
authentication protocols (AP) and passively secure key exchange protocols (KE).
To the best of our knowledge, they are the first such compilers that are efficient
and truly generic, i.e. they do not require any modifications in the underlying
AP and KE protocols. Thus, they are easily applicable to existing systems, what
makes them very useful in practice. For example, imagine a wide-spread net-
work software which internally consists of an initial key exchange protocol call
that computes a session key k. Next, the software directly applies a symmetric
primitive which uses k as the corresponding key. By design, the application does
not provide any mechanism to output the security-critical session key to any
other software. An ideal compiler should treat the entire network application as
black-box except for the fact that the key exchange protocol is an interactive
protocol and any party in the network can obtain the transcript of the protocol
execution. Previous compilers require costly modifications on the key exchange

protocol such that either the messages have to be modified or the secret session
key k also has to be output to the compiler. A new session key is computed using
e.g. the requested key derivation function (KDF), i.e. the compilers require the
session key of the underlying key exchange KE protocol as input. We stress that
in some scenarios it is very difficult or impossible (for example because the net-
work application is closed-source) to realize these modifications. Our compilers,
in contrast, avoid such problems as they only require the public transcript of the
key exchange protocol but not the secret session key from the passively secure
KE protocol as input. Our compilers are very efficient but restrict the class of
KE protocols to those which do not rely on long-term keys. We have chosen
to restrict our attention to this class of key exchange protocols because they
i) allow for efficient protocols with very high security guarantees (like forward
secrecy) and ii) they can efficiently be recognized. Let us elaborate on this. As
a consequence of our restriction long-term keys are only used in the authentica-
tion protocol, whereas in the KE protocol, all values are freshly drawn in each
new communication session. We stress that important key exchange mechanisms
like ephemeral Diffie-Hellman key exchange fall into this class.1 Our restriction
is useful to design protocols with forward secrecy, which states that even after
the compromise of long-term keys previously executed sessions remain secure.
The same restriction (that requires the KE protocol without long-term key) 2

is made on the KE protocols which are used in the recent compiler by Jager,
Kohlar, Schäge, and Schwenk (JKSS) [8]. The well-known compiler by Katz and
Yung (KY) uses a slightly different approach by directly requiring that the input
protocol provides forward secrecy [11].

We present two compilers each of which relies on a different authentication
mechanism. Our first compiler is very efficient. It relies on signature schemes
and only requires two additional moves in which signatures are exchanged. The
second compiler relies on public key encryption systems, one-time message au-
thentication schemes, and collision resistant hash functions. Although the first
compiler is more efficient, the second compiler accounts for scenarios where the
parties do not have (certified) signature keys but only encryption keys. This can
often occur in practice. For example, the most efficient (for the client) and most
wide-spread key exchange mechanism in TLS is RSA key transport. Here the
server certificate only contains an RSA encryption key. The latter can be ex-
tended to symmetric-based authentication systems in which the communication
parties have secure pre-shared keys.

In this paper, we focus on practicality and efficiency of our solutions. We
stress that we could generalize our compiler in a straight-forward way to also

1 Also, we can still use long-term key based key exchange mechanisms like encrypted
key transport with a slight loss of efficiency: we just require that the long-term keys
are drawn freshly in each session and then are exchanged with the communication
partner as a first move in the protocol execution. This at most adds two additional
moves to the key exchange protocol.

2 The restriction is implicit in [8]. An explicit statement can be found in the full
version of the paper [9].

work with a general class of authentication protocols. The JKSS compiler has
made a first step in that direction by proposing an abstract class of authentica-
tion schemes called tag-based authentication scheme (TBAS) that can be used in
the JKSS compiler. However, the encryption-based authentication mechanism of
our second compiler is not covered by this abstract description. This is mainly
because the TBAS definition of the JKSS does not account for verifiers with
secret state information. In terms of efficiency, the recent JKSS compiler is less
efficient than any of our compilers as it additionally requires two random nonces,
two MAC values to be exchanged (it’s too costly for data transmission) and an
additional computation of the new session key for authenticated key exchange.
All our solutions work in the standard model, i.e. without assuming random
oracles.

Technical Contribution. Our efficiency improvements rely on the following tech-
niques. First, we do not use explicit key confirmation to thwart unknown-key
share attacks. Instead we use a form of implicit key confirmation where we in-
clude the identities of the partners in the messages that are authenticated. At
the same time, this helps to also counter strong attacks that an adversary might
launch with the help of the extended attack capabilities (state reveals and PKI-
based attacks) of our strong security model. In terms of efficiency, this helps us
to save the exchange of two MAC values (as compared to the JKSS compiler).
As our second efficiency improvement, we formally show that for security we do
not have to exchange uniformly random nonces after the key exchange protocol
as in the JKSS compiler. In the JKSS compiler these nonces are solely used to
make every session’s transcript unique. We can prove that instead it is sufficient
to use the public ephemeral keys which are exchanged in the key exchange pro-
tocol. Technically, we show that if a key exchange protocol that does not rely on
long-term keys is passively secure, then with negligible probability there are no
collisions among the ephemeral public keys. This is sufficient to show that even
in the presence of active attackers each transcript is unique as long as one party
is uncorrupted. Finally, our efficient compilers only require the public transcript
of the key exchange protocol, denoted here as KE, but not the secret key kKE
from KE as input. Our approach helps us to save the additional computation
of a new session key for authenticated key exchange (as compared to previous
compiler). In other words, our compilers require no cryptographic session key
generator other than KE itself.

1.2 The Security Model

Our proofs of our compilers hold in two very strong security models respec-
tively. These models rely on the concept of indistinguishability of session keys
which first emerged in the seminal work of Bellare and Rogaway [2] and later
extended by [6,18] to the public key setting. However, our model substantially
extends these models. In contrast to previous works, we explicitly model the
revelation of state information of sessions (via a RevealState query) and strong

and practical PKI-based attacks (via a RegCorruptParty query) like the pub-
lic key substitution attack (PKS) [4,16] or the duplicate-signature key selection
(DSKS) attack [16,12]. We believe that the revelation of state information is
much more realistic than (just) the revelation of keys. To model strong and
practical PKI-related attacks we use the RegCorruptParty query into our models
that allows attackers to register adversarially chosen public keys and identities.
Observe that the adversary does not have to know the corresponding secret key.
In practice, most certification authorities (CAs) do not require the registrant to
deliver proofs of knowledge of the secret key. Using RegCorruptParty query the
adversary may easily register a public key which has already been registered by
another honest user U . Since the public keys are equal, all the signatures that
are produced by U can be re-used by the adversary. Such attacks can have seri-
ous security effects [4,16,12]. Our model also formalizes perfect forward secrecy.
Forward secrecy is a very strong form of security which guarantees that past
sessions remain secure even if the long-term keys get exposed in later sessions.
We use a formal definition of forward secrecy that is adopted from [10].

1.3 Related Work

In 1998, Bellare, Canetti and Krawczyk (BCK) were the first to consider a
modular way for the development of AKE [1]. They propose to first design a
protocol in the authenticated link model, an idealized model where the links
between parties are always authenticated. Then they systematically transform
the protocol into a protocol which is also secure in the unauthenticated link
model, in which the adversary has control over all the message flows in the
network, by applying a so-called authenticator. Basically, for every message A
needs to transmit to B there will be some additional communication with B in
which B sends a random nonce to A and A responds with an application of an
authentication mechanism on this nonce (in a challenge-response like fashion).
For example, when instantiated with a signature scheme or with a combination of
an encryption system and a message authentication code, the authenticator adds
another two messages to every message sent in the original protocol. Altogether,
this amounts for a 200% increase in the number of moves of the protocol and
the number of messages sent. Also, because of the (asymmetric) authentication
mechanism every party needs considerable additional resources to compute and
verify authenticators.

In 2003, Katz and Yung presented a generic compiler for group key agree-
ment [11]. The KY compiler first adds an initial round to a passively secure group
key exchange protocol where each party chooses a random nonce and broadcasts
it to its communication partner. In the next step, the compiler basically adds to
every message of the original protocol a signature which is also computed over
all the random values that have been computed in the first phase. Their idea
can be understood as a generalization of the the BCK compiler to the group key
exchange setting where they take a passively secure group key agreement pro-
tocol and turn it into an actively secure one. When restricted to the two-party

case, this compiler is much more efficient in terms of protocol moves, in con-
trast to the BCK compiler, each message sent does not need to be authenticated
interactively. The KY compiler only accounts for a single round that is added
to the input protocol. However, the compiler still modifies each message sent in
the protocol by basically adding a signature to that message. As before, this ap-
proach amounts for a huge decrease in efficiency due to the additional signature
generation and verification operations each user has to execute. Additionally KY
show that the famous group key exchange protocol by Burmester-Desmedt [5]
fulfills their notion of passive security. (In the two party case, however, it basi-
cally reduces to the standard ephemeral Diffie-Hellman key exchange protocol).
The KY compiler outputs protocols which guarantee forward secrecy. However,
it does require that the input group key protocols already provide forward se-
crecy. This assumption is similar to our (and the JKSS) assumption on the KE
protocol to not rely on long-term keys. Our restriction is, in some sense rougher
than that of KY but it allows for a very simple verification by inspection. We
stress that we could adapt the KY definition and yield a slightly more general
result. We think, however, that in scenarios where a complex, practical protocol
is given it might be hard to inspect if the KY compiler is applicable at all. This
would make the compiler less useful when we apply it to relax the security as-
sumptions on a particular key exchange mechanism (from AKE to KE security).
Intuitively, our approach implies forward-secrecy because if all values which are
used to generate the session keys are freshly computed in each session of the
passively secure key exchange protocol then the keys computed in the different
sessions are independent. This intuition is formalized in the security proofs of
the subsequent sections. In 2010 Jager et al. presented the first compiler which
accounts only for a constant number of additional messages (which is indepen-
dent of the KE protocol) to be exchanged [8], denoted here as JKSS compiler. In
terms of efficiency, this compiler is closest to our results. Basically, the compiler,
after executing the KE protocol, makes A and B additionally exchange 1) ran-
dom nonces, 2) signatures over these nonces and the KE transcript and 3) two
MAC values (using a MAC-key Kmac generated using

the session key from the passively secure KE protocol) which have been com-
puted over all the previous messages. As mentioned above this compiler is less
efficient than our solution. At the same time all of the above compilers do neither
consider state reveals nor PKI-related attacks in their security analysis.

2 Security Assumptions

3 Preliminaries and Definitions

Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. We write a
$← S

to denote the action of sampling a uniformly random element a from a set S.
Let ‘||’ denote the operation concatenating two binary strings. Let IDS denote
an identity space associated with security parameter κ.

3.1 Key Exchange Protocols

A two party key-exchange (KE) protocol is a protocol that enables those two
parties to compute a shared secret key. In the following, we formally provide
a very technical definition of KE which is more detailed than in most other
works. This is solely for the purpose of deriving a technical result on general KE
protocols without long-term keys. In other words, we require that every secret
keys used to generate the session keys must be chosen freshly in each session.
For simplicity we first focus on the practically most important class of two-move
key exchange protocols. We stress that our definitions and results can easily be
generalized to y-move key exchange protocols as sketched below.

A key exchange scheme KE = (KE.Setup,KE.EKGen,KE.SKGen) consists of
three algorithms which may be called by a party ID ∈ IDS in each session.
Let MKE be the message space and ESK be the space for ephemeral secret key
and EPK be the space for ephemeral public key. Let T be the transcript of all
messages exchanged in a KE protocol instance (see Figure 1).

– pmske ← KE.Setup(1κ): This probabilistic polynomial time algorithm takes
as input the security parameter κ and outputs a set of system parameters
pmske. The parameters pmske might be implicitly used by other algorithms
for simplicity.

– (eskID, epkID,mID)
$← KE.EKGen(pmske, in): The probabilistic polynomial

time algorithm takes as input the system parameters pmske and message
in ∈ MKE and outputs an ephemeral key pair (eskID, epkID), where eskID ∈
ESK and epkID ∈ EPK, and a message mID ∈ MKE that requires to be
sent in a protocol move. The execution of this algorithm might be deter-
mined by the input message (in) which could be any information including
for example identities of session participants, ephemeral public key or just

empty string ∅. If mID = ∅, for simplicity we may write (eskID, epkID)
$←

KE.EKGen(pmske, in).
– k ← KE.SKGen(eskID, T): The session key generator is a deterministic poly-

nomial time algorithm which takes as input eskID of a session participant
ID and transcript T of all messages exchanged in this session, and outputs a
session key k.

Correctness. We say a correct key exchange protocol without long-term key if
for any protocol instance with session key generated as k := KE.SKGen(eskID, T)
it holds that eskID is generated freshly by KE.EKGen in corresponding protocol
instance. That is, each party computes each session key using only ephemeral
secret key which is freshly generated by KE.EKGen in corresponding protocol
instance. We consider key exchange protocols with perfect correctness that is

Pr


KE.SKGen(eskID1

, T) = KE.SKGen(eskID2
, T);

(eskID1 , epkID1 ,mID1)
$← KE.EKGen(pmske, in1),

(eskID2
, epkID2

,mID2
)

$← KE.EKGen(pmske, in2),
(mID1

,mID2
) ∈ T.

 = 1.

ID1 ID2

(eskID1 , epkID1 ,mID1)
$←

KE.EKGen(pmske, in1)
(eskID2 , epkID2 ,mID2)

$←
KE.EKGen(pmske, in2)

−
mID1

−−−−−−−−−−−→
←−

mID2

−−−−−−−−−−−
T = mID1 ||mID2 T = mID1 ||mID2

accept
k := KE.SKGen(eskID1 , T)

accept
k := KE.SKGen(eskID2 , T)

Fig. 1. General Two-move KE Protocol

We observe that in a passively secure key exchange protocol where we do not
rely on long-term keys it is necessary that the values epkID1

and epkID2
are non-

empty and ‘meaningful’. This is because both parties have to keep the session key
secret from a curious adversary. For example in ephemeral Diffie-Hellman key
exchange (EDH) [7], the KE.EKGen is executed without any additional message,
i.e. in1 = in2 = ∅, and the generated messages such that mID1

= epkID1
and

mID2
= epkID2

. In some KE protocols, the KE algorithms of the initiator ID1 can
be very different from those of the responder ID2 like for example in encrypted
key transport with freshly chosen key material (FEKT), in which case we could
instantiate those messages in Figure 1 as: in1 = ∅, in2 = mID1 = epkID1 . We stress
that the key pairs (eskID1

, epkID1
) and (eskID2

, epkID2
) may have distinct forms

depending on specific KE protocol, which are also determined by the forms of
messages (in1, in2) while running KE.EKGen.

In case both parties ‘contribute’ values which are used to computed the
session key, i.e. k 6= eskID2 and k 6= eskID1 , this is very obvious as the contribution
of ID1 has to be transmitted to ID2 and vice versa. However, if only one party
IDc ∈ {ID1, ID2} decides on the session key eskIDc = k, then k has to securely be
transferred to the other party (ID′c) via some form of encryption of k. In order
to guarantee that only the single party ID′c can decrypt the session key, the
encryptor has to encrypt the session key exclusively for ID′c using an ephemeral
public key of ID′c. As we do not rely on long-term keys, ID′c has to generate this
key freshly and send it to IDc as epkID′c in the first move of the key exchange

protocol, resulting in ID′c = ID1 and IDc = ID2.

In order to model passive attacks we define an Execute(ID1, ID2) query. The
adversary can use the query to perform passive attacks in which the attacker
initiates and eavesdrops on honest executions between parties ID1 and ID2. Note
that each identity should be uniquely chosen from the identity space IDS. By
using this query the adversary can obtain the transcripts that were exchanged
during the honest execution of the protocol. For each Execute(ID1, ID2) query,
an instance of KE protocol is executed between ID1 and ID2. After simulation

this query returns the transcript T of all messages exchanged in corresponding
protocol instance and a session key3.

Definition 1. We say that a correct key-exchange protocol KE is (t, εKE) pas-
sively secure if for all probabilistic polynomial-time (PPT) adversary A holds that
|[EXPpsKE,A(κ) = 1]−1/2| ≤ εKE for some negligible function εKE(κ) in the security

parameter κ in the following experiment EXPpsKE,A(1κ): On input security param-
eter 1κ, the security experiment is proceeded as a game between a challenger C
and an adversary A based on a key exchange protocol KE, where the following
steps are performed:

1. C generates a set of identities {ID1, . . . , ID`} for potential protocol partic-
ipants where ` ∈ N. A is given all identities as input and is allowed to
interact with C via making Execute(IDi, IDj) query at most d times for each
party where d ∈ N and i, j ∈ [`]. As response, C returns (T,K0) to A.

2. At some point, A outputs a special symbol > and a fresh protocol test instance
and sends them to C. Given > and test instance, C runs a new protocol
instance and outputs the transcript T ∗ and the session key K∗0 . Then, C
samples K∗1 uniformly at random from the key space of the protocol, and
tosses a fair coin b ∈ {0, 1}. Then C returns (T ∗,K∗b) to A. After that A
may continually perform Execute(IDi, IDj) queries. Finally, A may terminate
with returning a bit b′ as output.

3. At the end of the experiment, 1 is returned if b′ = b; Otherwise 0 is returned.

In the following, we formally show that for every passively secure key exchange
protocol after polynomially calls to KE.EKGen there cannot be any collisions
among the ephemeral public keys generated by certain type of KE.EKGen. This
lemma will be useful in the security proofs of our compilers to show that a
compiler does not have to exchange additional random values after the KE run to
guarantee that the transcripts which are authenticated with the authentication
mechanism are unique. We can therefore discard the random values which are
used in the JKSS compiler. Please note that for a two-move and two-party (ID1

and ID2) KE-protocol there exist at most two types of KE.EKGen algorithms
which may be determined by input messages in1 and in2. We here explicitly
classify the algorithm KE.EKGen into two types denoted by KE.EKGenID1 for
party ID1 and KE.EKGenID2

for party ID2. While considering the collisions among
ephemeral keys, let Coll denote the event that: after a polynomial number q times
execution of KE.EKGen algorithm there exist at least two ephemeral public keys
epk and epk′ generated by the ephemeral key generator KE.EKGen are identical,
where the number q is determined by time t. Let probability εcoll denote the event
Coll occurred within time t. We say all ephemeral keys generated by KE.EKGen
are (q, t, εcoll)-distinct if those ephemeral keys are generated by KE.EKGen after q
times execution of KE.EKGen algorithm within time t and there exists no collision
among those ephemeral keys except for probability εcoll. For space reasons we
only provide a sketch of the proof.

3 The attacker is also allowed to get the ephemeral keys by calling Execute-query.

Lemma 1. Assume KE is a (t, εKE)-passively secure protocol without long-term
key as defined above. Then all ephemeral public keys generated by KE.EKGen in
the runs of KE are (q, t, εcoll)-distinct such that εcoll ≤ q · εKE.

Proof. We first consider the case that the ephemeral keys are generated by differ-
ent types of ephemeral key generators, i.e. KE.EKGenID1

6= KE.EKGenID2
. Obvi-

ously, in this case there is no collision between ephemeral keys epkID1 and epkID2 ,
because those keys are assumed to be generated from different key spaces, so we
only need to evaluate the collision probability among ephemeral keys generated
by the same type of ephemeral key generators, i.e. KE.EKGenID1

= KE.EKGenID2
.

For this case, we assume that with non-negligible probability εcoll there will be a
collision among the epkID1

after q protocol runs, or a collision among the epkID2

after q protocol runs. According to the protocol specification the epkID1 values
are computed by randomized runs of KE.EKGenID1 while the epkID2 values have
been computed by randomized runs of KE.EKGenID2

. In particular, the compu-
tation of the epkID1

and epkID2
are deterministic in system parameters pmske,

message in1 (resp. in2) and the internal random coins ω ID1
used by ID1 and ωID2

used by ID2. The ωID1 and ωID2 are drawn uniformly random and in particular
independently.

Let epk∗ID1
and epk∗ID2

be the ephemeral public keys that are exchanged in the
test session and given, together with the challenge key k∗b and transcript T ∗, to
the adversary. Let esk∗ID1

and esk∗ID2
be the corresponding ephemeral secret keys.

These keys have also been computed using KE.EKGen1 (resp. KE.EKGen2) with
random coin ωID1

(resp. ωID2
) and in1 (resp. in2). The adversary first guesses

whether the collision occurs among the epkID1 or the epkID2 with probability
≥ 1/2. In the first case, the adversary can re-run KE.EKGenID1 (q − 1) times
with ωID1,i and in1,i to output {eskID1,i, epkID1,i} for i ∈ [1; q − 1] in time less
than t. With the same probability εcoll it obtains two values epk′ID1

, epk′′ID1
among

the q values epk∗ID1
, epkID1,1, . . . , epkID1,(q−1) with epk′ID1

= epk′′ID1
. Since it holds

with probability ≥ 2/q that either epk′ID1
= epk∗ID1

or epk′′ID1
= epk∗ID1

. In this
case the adversary knows one pair (ωID1,i, in1,i) that maps to epk∗ID1

. Let esk′ID1
be

the corresponding ephemeral secret key. We now have to show that esk′ID1
helps

us to break the passive security. This simply follows from the determinism of
KE.SKGen and correctness of KE. Since we have perfect correctness the adversary
A can compute the session key k by using the ephemeral secret key esk′ID1

and
transcript T ∗. Next the adversary can compare whether k∗b = k and correctly
guess the value b. In case there is a collision among the epkID2 the situation is
similar. Hence, due to the security of KE protocol, we have that the probability
bound εcoll

q ≤ εKE.

3.2 General KE Protocols

The above definition of KE, the corresponding security definition, and the results
of the above lemma can easily be extended to y-move KE protocols. Concretely,
besides the KE.Setup and KE.SKGen algorithms, each party may run at most

dy/2e different types of KE.EKGen algorithms in each protocol instance depend-
ing on the input messages ini : 1 ≤ i ≤ y. Namely, each session participant
can call at most dy/2e of times of KE.EKGen algorithms during protocol execu-
tion. We let each invocation of algorithm KE.EKGen in i-move (1 ≤ i ≤ y) as
KE.EKGeni which is used to compute the message for i-move. Consequently, we
may have (for instance when y is even) a series of executions:{(eskID1,1,epkID1,1,

mID1,1)
$← KE.EKGen1(pmske, in1), (eskID2,2, epkID2,2,mID2,2)

$← KE.EKGen2(pmske,

in2), . . ., (eskID1,(y−1), epkID1,(y−1),mID1,(y−1))
$← KE.EKGen(y−1)(pms

ke, in(y−1)),

(eskID2,y, epkID2,y, mID2,y)
$← KE.EKGeny(pmske, iny)}. We could therefore ap-

ply the result of Lemma 1 to y-move KE protocols, namely with overwhelm-
ing probability there is for instance no collision among all epkIDb generated by
KE.EKGenIDb with b ∈ {1, 2}.

3.3 Digital Signature Schemes

A digital signature scheme Σ is defined by three PPT algorithms (SIG.Gen,
SIG.Sign, SIG.Vfy) with associated public/private key spaces {PK,SK}, message
space MSIG and signature space SSIG in the security parameter κ:

– (sk, pk)
$← SIG.Gen(1κ): this algorithm takes as input κ and outputs pk ∈ PK

and sk ∈ SK;
– σ

$← SIG.Sign(sk,m): this algorithm generates a signature σ ∈ SSIG for m ∈
MSIG using signing key sk;

– {0, 1} ← SIG.Vfy(pk,m, σ): this algorithm outputs 1 if σ is a valid signature
for m under key pk, and 0 otherwise.

Definition 2. We say that Σ is (q, t, εSIG)-secure against existential forgery
under adaptive chosen message attacks, if Pr[EXPEUF−CMA

Σ,A (κ) = 1] ≤ εSIG for
every PPT adversary A running in time at most t in the following experiment:

EXPEUF−CMA
Σ,A (κ)

(sk, vk)
$← SIG.Gen(1κ);

(σ∗,m∗)← ASIG(sk,·), which can make up to q queries to the signing oracle
SIG(sk, ·) with arbitrary m;
Output 1, if the following conditions are being held:
1. SIG.Vfy(pk,m∗, σ∗) = 1, and
2. m∗ is not among the previously submitted to SIG(sk, ·) oracle;
Output 0, otherwise;

where εSIG is a negligible function in κ, on input message m the oracle SIG(sk, ·)
returns signature σ ← SIG.Sign(sk,m) and the number of queries q is bound by
time t.

Definition 3 (Uniqueness). Let SIG = (SIG.Gen, SIG.Sign, SIG.Vfy) be a se-
cure signature scheme with the security requirements in the above security ex-
periment and let pk be the output of SIG.Gen algorithm. Let (m, σ) be a valid
signature pair by a signature function SIG.Sign. We say that SIG is ε-unique if the
probability that there exists a new signature σ′ 6= σ for which SIG.Vfy(vk,m, σ′)
= 1 is at most ε. For perfectly unique if ε = 0.

3.4 Collision-Resistant Hash Functions

Let CRHF : KCRHF×MCRHF → YCRHF be a family of keyed-hash functions, where
KCRHF is the key space, MCRHF is the message space and YCRHF is the hash
value space. The public key hkCRHF ∈ KCRHF defines a hash function, denoted
by CRHF(hkCRHF, ·), which is generated by a PPT algorithm CRHF.KG(1κ) on
input security parameter κ. On input a message m ∈MCRHF, CRHF(hkCRHF,m)
generates a hash value y ∈ YCRHF.

Definition 4. CRHF is called (tCRHF, εCRHF)-secure if all tCRHF-time adversaries
A have negligible advantage εCRHF = εCRHF(κ) with

Pr

hkCRHF ← CRHF.KG(1κ), (m,m′)← A(1κ, hkCRHF);
m 6= m′, (m,m′) ∈MCRHF,

CRHF(hkCRHF,m) = CRHF(hkCRHF,m
′)

 ≤ εCRHF,
where the probability is over the random coins of the adversary and CRHF.KG.
If the hash key hkCRHF is obvious from the context, we write CRHF(m) for
CRHF(hkCRHF,m).

A collision-resistant hash function CRHF is a deterministic algorithm which given
a key kCRHF ∈ KCRHF and a bit string x outputs a hash value y = CRHF(kCRHF, x)
in the hash space {0, 1}χ (with χ polynomial in κ). If kCRHF is clear from the
context we write CRHF(·) short for CRHF(kCRHF, ·).

Definition 5. We say that CRHF is a (t, ε)-secure collision-resistant hash func-

tion, if any t-time adversary A that is given kCRHF
$← KCRHF has an advantage of

at most ε to compute two inputs (x, x′) with x 6= x′ and CRHF(x) = CRHF(x′).

3.5 Public Key Encryption Schemes

In our second compiler we can use a public key scheme (PKE) that satisfies
security of indistinguishability under adaptive chosen-ciphertext attacks (IND-
CCA2). A PKE scheme consists of three polynomial time algorithms (PKE.KGen,
PKE.Enc, PKE.Dec) with the following semantics:

– (pk, sk)
$← PKE.KGen(1κ): is a probabilistic polynomial-time key generation

algorithm which on input the κ security parameter κ in unary outputs a pair
of encryption/decryption keys (pk, sk);

– C
$← PKE.Enc(pk,m): is a probabilistic polynomial-time encryption algo-

rithm which takes as inputs a public key pk and a message m ∈ MPKE,
outputs ciphertext C ∈ CPKE, where MPKE is a message space and CPKE is a
ciphertext space.

– m ← PKE.Dec(sk, C): is a deterministic polynomial-time decryption algo-
rithm which takes as input a key sk and a ciphertext C ∈ CPKE, and outputs
either a message m ∈MPKE or an error symbol ⊥.

Definition 6. We say that a public key encryption scheme PKE is (q, t, εPKE)-
secure against adaptive chosen-ciphertext attacks, if Pr[EXPind−cca2PKE,A (κ) = 1] ≤
1/2 + εPKE holds for all PPT adversaries A that make a polynomial number of
oracle queries q while running in time at most t in the following experiment:

EXPind−cca2PKE,A (κ)
(pk, sk)← PKE.KGen(1κ);
(m0,m1, st)← ADEC(sk,·)(pk), (m0,m1) ∈MPKE;

b
$← {0, 1}, (C∗)← PKE.Enc(pk,mb);

b′ ← ADEC(sk,·)(C∗, st);
if b = b′ then return 1, otherwise return 0;

where εPKE is a function in κ, and on input C the oracle DEC(sk, C) returns m←
PKE.Dec(sk, C) with the restriction that A is not allowed to query DEC(sk, ·) on
the challenge ciphertext C∗.

3.6 Message Authentication Code Schemes

We first recall the notions of general message authentication codes scheme.
A message authentication code MAC consists of three algorithms (MAC.KGen,
MAC.Tag, MAC.Vfy) with associated key space KMAC, message spaceMMAC and
tag space TMAC.

– KMAC
$← MAC.KGen(1κ): The probabilistic key-generation algorithm takes

as input a security parameter κ and outputs a secret key KMAC ∈ KMAC.
– ttag ← MAC.Tag(KMAC,m): The algorithm MAC.Tag takes as input a secret

key KMAC ∈ KMAC and a message m ∈MMAC and outputs an authentication
tag ttag ∈ TMAC.

– b ∈ {0, 1} ← MAC.Vfy(KMAC,m, ttag): The deterministic verification al-
gorithm MAC.Vfy takes as input a secret key KMAC ∈ KMAC, a message
m ∈ MMAC and a tag ttag ∈ TMAC and outputs b = 1 if it accepts. Oth-
erwise, it returns b = 0.

Definition 7. We say that a message authentication code scheme MAC is (q, t,
εMAC)-secure against forgeries under adaptive chosen-message attacks, if prob-
ability bound Pr[EXPMAC,A(κ) = 1] ≤ εMAC holds for every PPT adversary A
running in time at most t in the following experiment:

EXPMAC,A(κ)

K
$← MAC.KGen(1κ);

(m∗, t∗tag)← AMAC(K,·), which can make up to q queries to oracleMAC(K, ·);
Output 1, if it holds that
1. 1 = MAC.Vfy(KMAC,m

∗, t∗tag);
2. A didn’t submit m∗ to MAC(K, ·) oracle;
Output 0, otherwise;

where εMAC = εMAC(κ) is a negligible function in the security parameter κ, on
input message m the oracle MAC(K,m) returns tag ttag ← MAC.Tag(K,m)
and the number of queries q is bound by time t.

Definition 8 (Uniqueness). Let MAC = (MAC.KGen, MAC.Tag, MAC.Vfy)
be a secure MAC scheme with the security requirements in the above security
experiment and let KMAC be the output of MAC.KGen algorithm. Let (m, ttag) be
a valid tag pair by tagging algorithm MAC.Tag. We say that MAC is ε-unique if
the probability that there exists a new authentication tag t′tag 6= ttag for which
MAC.Vfy(KMAC,m, t

′
tag) = 1 is at most ε. For perfectly unique if ε = 0.

One-time message authentication code schemes We consider one-time message
authentication code scheme OTMAC=(OTMAC.KGen, OTMAC.Tag, OTMAC.Vfy)
to be three algorithms with associated key spaceKOTMAC, message spaceMOTMAC

and tag space TOTMAC, where those algorithms have the same semantics as the
regular MAC=(MAC.KGen, MAC.Tag, MAC.Vfy).

Definition 9. We say that a one-time message authentication scheme OTMAC
is (t, εOTMAC)-secure, if OTMAC is a (1, t, εOTMAC)-secure message authentication
code scheme in the sense of Definition 7.

4 Security Model

In this section we present a formal security model for a two-party PKI-based
authenticated key-exchange (AKE) protocol. We follow the important line of
research that was initiated by Bellare and Rogaway [2], and later modified and
extended in [6,13,15]. In these models the adversary is provided with an execution
environment, which emulates the real-world capabilities of an active adversary.

Execution Environment. Let K ∈ {0, 1}κ be the key space of session keys, and
{PK,SK} ∈ {0, 1}κ be key spaces of long-term public/private keys respectively.
Fix a set of honest parties {P1, . . . , P`} ∈ {0, 1}κ for ` ∈ N, where each honest
party Pi ∈ {P1, . . . , P`} is a potential protocol participant and has a pair of long-
term public/private key (pki, ski) ∈ (PK,SK) that corresponds to its identity i.
In order to formalize several sequential and parallel executions of the protocol,
each party Pi is characterized by a polynomial number of oracles {πsi } where
s ∈ [d] is an index for a range such that d ∈ N. An oracle πsi represents a process
in which the party Pi executes the s-th protocol instance with access to the long-
term key pair (pki, ski) of party Pi and to all public keys of the other parties.
Moreover, we assume each oracle πsi maintains a list of independent internal
state variables as described in Table 1.

The internal state of each oracle πsi is initialized as (PIDsi , Φ
s
i , K

s
i , STA

s
i , T

s
i)

= (∅, ∅, ∅, ∅, ∅), where ∅ denotes the empty string. We assume that the session
key is assigned to the variable Ksi such that Ksi 6= ∅ iff each oracle completes the
execution with an internal state Φsi = accept.

Adversary Model. An active adversary A is able to interact with the execution
environment by issuing the following queries:

Variable Decryption

PIDsi records the identity j ∈ {1, . . . , `} of intended communication partner Pj
Φsi denotes Φsi ∈ {accept, reject}
Ksi records the session key Ks

i ∈ K
STAsi records some secret states used to compute the session key Ksi
Tsi records all messages sent and received in the order of appearance by oracle πsi

Table 1. Internal States of Oracles

– Send(πsi ,m): A can use this query to send any message m of his own choice
to oracle πsi . The oracle will respond according to the protocol specification
and depending on its internal state. If m consists of a special symbol >
(m = >), then πsi will respond with the first protocol message.

– Corrupt(Pi): Oracle π1
i responds with the long-term private key ski of party

Pi. If Corrupt(Pi) is the τ -th query issued by A, then we say that Pi is
τ -corrupted. For parties that are not corrupted we define τ :=∞.

– RegCorruptParty(pkc, Pc): This query allows A to register a new party Pc
(` < c < N), with a static public key pkc on behalf of Pc. If the same party
Pc is already registered (either via RegCorruptParty-query or r ∈ [`]), a failure
symbol ⊥ is returned to A. Otherwise, Pc is registered, the pair (Pc, pkc) is
distributed to all other parties, and a symbol of success M is returned. This
query formalizes a malicious insider setting which can be used to model un-
known key share (UKS) attacks and other chosen public key attacks [4,18,17].
We here formalize the arbitrary key registration policy via this query. Parties
established by this query are called corrupted or adversary-controlled.

– Reveal(πsi): Oracle πsi responds to this query with the contents of variable
Ksi to A. This query models the attacks that loss of a session key should not
be damaging to other sessions.4

– RevealState(πsi): Oracle πsi responds with the contents of the secret state
stored in variable STAsi .

– Test(πsi): This query may only be asked once throughout the game. Oracle
πsi handles this query as follows: if the oracle has state Φsi 6= accept, then
it returns some failure symbol ⊥. Otherwise it flips a fair coin b, samples a

random element k0
$← K, sets k1 = Ksi to the ‘real’ session key, and returns

kb.

Security Definitions. We model the partnership of two oracles via the concept of
matching conversations which was first introduced by Bellare and Rogaway [2]
and later refined in [10,14]. Let T si denote the transcript of messages sent and
received by oracle πsi . We assume that messages in a transcript T si are represented
as binary strings. Let |T si | denote the number of the messages in the transcript
T si . Assume there are two transcripts T si and T tj , where w := |T si | and n := |T tj |.
We say that T si is a prefix of T tj if 0 < w ≤ n and the first w messages in
transcripts T si and T tj are pairwise equivalent as binary strings.

4 Note that we have Ksi 6= ∅ if and only if Φsi = accept.

Definition 10 (Matching Conversations). We say that πsi has a matching
conversation to oracle πtj, if

– πsi has sent the last message(s) and T tj is a prefix of T si , or
– πtj has sent the last message(s) and T si is a prefix of T tj .

We say that two oracles πsi and πtj have matching conversations if πsi has a
matching conversation to process πtj or vice versa.

Definition 11 (Correctness). We say that a two-party AKE protocol, Σ, is
correct if for any two oracles, πsi and πtj, that have matching conversations it

holds that Φsi = Φtj = accept, PIDsi = j and PIDtj = i and Ksi = Ktj.

Definition 12 (Security Game). We formally consider a security experiment
that is played between an adversary A and a challenger C. The challenger C
implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the
game, long-term public/private key pairs (pki, ski) for each honest entity i are
generated by C. The adversary receives public keys pk1, . . . , pk` as input. Now
the adversary may start issuing Send, RevealState, Corrupt, RegCorruptParty and
Reveal queries, as well as one Test query at some point of the game. Finally, the
adversary outputs a bit b′ and terminates.

For the security definition, we need the notion of freshness of oracles.

Definition 13 (Freshness). Let πsi be an accepting oracle held by a party Pi
with intended partner Pj. Meanwhile, let πtj be an oracle (if it exists), such that
πsi and πtj have matching conversations. Then the oracle πsi is said to be τ0-fresh
when the adversary A issues its τ0-th query and none of the following conditions
holds:

– Pi or Pj has been established by the adversary A via the RegCorruptParty
query,

– Pi is τi-corrupted with τi ≤ τ0 and Pj is τj-corrupted with τj ≤ τ0,
– A has either made a RevealState(πsi) query or a RevealState(πtj) query (if πtj

exists),
– A has either made a query Reveal(πsi) query or a Reveal(πtj) query (if πtj

exists).

Definition 14. We say that a two-party AKE protocol Σ is (t, ε)-secure, if for
all adversaries A running the AKE security game within time t while having
some negligible probability ε = ε(κ), it holds that:

1. When A terminates, there exists no τ0-fresh oracle πsi (except with probability
ε), such that
– πsi has internal states Ω = accept and Ψ = j, and
– there is no unique oracle πtj such that πsi and πtj have matching conver-

sations.
Otherwise, we say that πsi accepts maliciously.

2. When A returns b′ such that

– A has issued a Test-query to oracle πsi , and
– the oracle πsi is τ0-fresh throughout the security game,

then the probability that b′ equals the bit b sampled by the Test-query is
bounded by

|Pr[b = b′]− 1/2| ≤ ε.

5 Authenticated Key Exchange Compile from Signature

In this section we present an efficient generic compiler that turns passively secure
KE protocols as defined to AKE protocols fulfilling the security guarantees as
specified in Section 4.

5.1 Protocol Description

The compiler takes as input the following building blocks: a passively secure key
exchange protocol KE and a digital signature scheme SIG = (SIG.Gen, SIG.Sign,
SIG.Vfy). Each party A is assumed to possess a pair of long-term keys generated

as (skA, pkA)
$← SIG.Gen(1κ). In the sequel, we will use the superscript ‘A’ to

highlight the message recorded at party A (resp. party B).

A

(pkA, skA)
$← SIG.Gen(1κ)

B

(pkB , skB)
$← SIG.Gen(1κ)

←−
KE

−−−−−−−−−−−−→
obtain k and set
TA1 := TAKE||A||B

obtain k and set
TB1 := TBKE||A||B

σA := SIG.Sign(skA, “1”||TA1) σB := SIG.Sign(skB , “2”||TB1)

−
σA

−−−−−−−−−−−−→
←−

σB
−−−−−−−−−−−−

accept if
SIG.Vfy(pkB , “2”||TA1 , σ

A
B) =

1

accept if
SIG.Vfy(pkA, “1”||TB1 , σ

B
A) =

1

Fig. 2. AKE Protocol from Signature

Protocol Execution: The compiled protocol between two parties A and B
proceeds as follows, which is also informally depicted in Figure 2.

1. First, A and B run the key exchange protocol KE. They obtain the secure
key k from the key exchange phase (as the session key of AKE) and record
the transcript as TAKE and TBKE, where TDKE consists of the list of all messages
sent and received by party D ∈ {A,B}.

2. A sets TA1 := TAKE || A || B, computes σA := SIG.Sign(skA, “1” || TA1) and
sends σA to B. Meanwhile, B sets TB1 := TBKE || A || B, computes σB :=
SIG.Sign(skB , “2” || TA1) and sends σB to A.

3. Upon receiving signature on each side, A accepts if and only if SIG.Vfy(pkB ,
“2” || TA1 , σAB)=1. B accepts if and only if SIG.Vfy(pkA,“1” || TB1 ,σBA)=1.

Session States: In the following we assume that the ephemeral secret vector
esk used in each KE protocol instance will be stored in the variable STA. This is
consistent with the usual distinction (made formal by providing different types
of queries) between the compromise of long-term keys via the Corrupt query on
the one hand and the session keys via the Reveal query on the other hand.

5.2 Security Analysis

Theorem 1. Assume that the KE protocol without long-term key is (t, εKE)-
passively secure (with respect to Definition 1), and the signature scheme SIG is
unique and (qsig, t, εSIG)-secure (with respect to Definition 3.3), then the above
protocol is a (t′, ε)-secure AKE protocol in the sense of Definition 14 with t′ ≈ t,
and qsig ≥ d, and it holds that

ε ≤ 2` · εSIG + d`(d`+ 2) · εKE.

We prove Theorem 1 in two stages. First, we show that the AKE protocol is a
secure authentication protocol except for probability εauth, that is, the protocol
fulfills security property 1.) of the AKE definition. In the next step, we show
that the session key of the AKE protocol is secure except for probability εind in
the sense of the Property 2.) of the AKE definition. We require that qsig ≥ d,
since we may need to correctly simulate all signatures for the d oracles of the
party that is attacked in the security game. Then we have the overall probability
ε that an adversary breaking the protocol is at most ε ≤ εauth + εind. To prove
the following lemmas, we proceed in games as in [19,3].

Lemma 2. For any adversary A running in time t′ ≈ t, the probability that
there exists an oracle πsi that accepts maliciously in the sense of Definition 14 is
at most

εauth ≤ d` · εKE + ` · εSIG,

where all quantities are as the same as stated in the Theorem 1.

Proof. Let break
(1)
δ be the event that there exists a τ and a τ -fresh oracle πs

∗

i

that has internal state Φ = accept and PIDsi = j, but there is no unique oracle
πtj such that πsi and πtj have matching conversations, in Game δ.

Game 0. This is the original security game. We have that

Pr[break
(1)
0] = εauth.

Game 1. In this game, the challenger proceeds exactly like the challenger in
Game 0, except that we add an abortion rule. The challenger raises event aborteph
and aborts, if during the simulation an ephemeral key epksi is computed by an
oracle πsi but it has been sampled by another oracle πwu before with the same
type of ephemeral key generator. From the result of Lemma 1, we know that the
collision probability among ephemeral keys is related to the polynomial number

of execution of KE.EKGen and the probability εKE. Since there are d` oracles
at all each of which would execute one general KE.EKGen, therefore the event
aborteph occurs with probability Pr[aborteph] ≤ d` · εKE. We have that

Pr[break
(1)
0] ≤ Pr[break

(1)
1] + d` · εKE.

Game 2. This game proceeds exactly as before, but the challenger raises event
abortsig and aborts if the following condition holds:

– there exists a τ -fresh oracle πsi that has PIDsi = j and T i,s1 = T i,sKE ||IDi||IDj
and Φsi = accept,

– there is no unique oracle πtj which has the transcript T j,t1 = T j,tKE ||IDi||IDj
such that T i,s1 = T j,t1 ,

– the signature received by πsi that is computed over “1”||T i,s1 (resp. “2”||T i,s1)
and verified correctly under the long-term public key pkIDj .

We have
Pr[break

(1)
1] ≤ Pr[break

(1)
2] + Pr[abortsig].

If the event abortsig happens with non-negligible probability, then we could con-
struct a signature forger F as follows. The forger F receives a public key pk∗ as
input, and runs the adversary A as a subroutine simulating the challenger for A.

It first guesses an index θ
$← [`] pointing to the public key for which the adver-

sary is able to forge, and sets pkIDθ = pk∗. Next F generates all other long-term
public/secret keys honestly like the challenger in the previous game. Then the
F proceeds as the challenger in Game 2, except that it uses its chosen-message
oracle to generate a signature under pkIDθ for the oracles of party IDθ.

When abortsig is raised, this means the adversary A has forged a signature on
behalf of an uncorrupted party IDj . If the simulator guessed the party IDj the
adversary attacked (such that θ = j) correctly, which happens with probability
1/`, then the F can use the signature received by πsi to break the EUF-CMA
security of the underlying signature scheme with success probability εSIG. The

event abortsig happens with the probability
Pr[abortsig]

` ≤ εSIG. Therefore we have

Pr[break
(1)
1] ≤ Pr[break

(1)
2] + ` · εSIG.

Note that the RegCorruptParty query does not affect security, since all registered
identities should be distinct to the identities of honest parties. So in Game 2 each
accepting oracle πsi has a unique ‘partner’ oracle πtj sharing the same transcript
T1. With respect to other queries, they will be simulated honestly as in the
previous game without any modification since those values are not used for

authentication. Therefore we have Pr[break
(1)
2] = 0. Sum up probabilities from

Game 0 to Game 2, we proved Lemma 2.

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that A
correctly answers the Test-query is at most 1/2 + εind with

εind ≤ ` · εSIG + d`(d`+ 1) · εKE,

where all quantities are as the same as stated in the Theorem 2.

Proof. Let break
(2)
δ denote the event that the A correctly guesses the bit b sam-

pled by the Test-query in Game δ, and Test(πs
∗

i) is the τ -th query of A, and
πs
∗

i is a τ -fresh oracle that is ∞-revealed throughout the security game. Let

Advδ := Pr[break
(2)
δ] − 1/2 denote the advantage of A in Game δ. Consider the

following sequence of games.

Game 0. This is the original security game. Thus we have that

Pr[break
(2)
0] = εind + 1/2 = Adv0 + 1/2.

Game 1. The challenger C in this game proceeds as before, which aborts if the
test oracle accepts without unique partner oracle. Thus we have

Adv0 ≤ Adv1 + εauth ≤ Adv1 + d` · εKE + ` · εSIG,

where εauth is an upper bound on the probability that there exists an oracle
that accepts without unique partner oracle in the sense of Definition 14 (cf.
Lemma 2). We have now excluded active adversaries between test oracle and its
partner oracle.

Game 2. This game proceeds exactly as the previous game but the challenger
aborts if it fails to guess the test oracle πs

∗

i and its partner oracle πt
∗

j such that

πs
∗

i and πt
∗

j have matching conversations. Since there are ` honest parties and d
oracles for each party, the probability that the adversary guesses correctly is at
least 1/(d`)2. Thus we have that

Adv1 ≤ (d`)2 · Adv2.

Game 3. Finally, we replace the key k∗ of the test oracle πs
∗

i and its partner

oracle πt
∗

j with the same random value k̃∗. If there exists an adversary A who
can distinguish this game from the previous game, then we use it to construct an
algorithm B to break the passive security of key exchange protocol KE as follows.
Assuming that the adversary B interacts with the challenger CKE via Execute
query which simulates the passive security game as in the security definition of
key exchange. More specifically, B simulates the challenger in this game for A
which is illustrated as follows:

– At the beginning of the game, B implements the collection of oracles {πsi :
i ∈ [`], s ∈ [d]}. All long-term public/private key pairs (pkIDi , skIDi) for each
honest entity i are generated honestly. The adversary A receives the public
keys pkID1

, . . . , pkID` as input.
– Meanwhile, B generates a random ephemeral key vector epksi and corre-

sponding ephemeral secret vector esksi for each oracle πsi as described in the
protocol specification and answers all oracle queries honestly except for the
test oracle and its partner oracle.

– As for the correctly guessed test oracle πs
∗

i and its partner oracle πt
∗

j , B
queries CKE for executing a test protocol instance and obtains (Kb, T) from

CKE. B simulates the test oracles using the transcript T and giving A Kb in
return. A may keep asking oracle queries. Meanwhile, if the ephemeral keys
of the test oracle and its partner oracle have been sampled by B before it
can trivially win the KE game and halts.

– Eventually, B returns the bit b′ obtained from A to CKE.

The simulation of B is perfect since B can always correctly answer all queries from
A. In particular for those RevealState queries, B can answer them using those
ephemeral secret keys esksi chosen by himself. If A is able to correctly answer
the bit b of Test-query with non-negligible probability, so does the adversary B
(which breaks the passive security of the KE protocol). Exploiting the security
of key exchange protocol, we obtain that

Adv2 ≤ Adv3 + εKE.

In this game, the response to the Test query always consists of a uniformly
random key, which is independent to the bit b flipped in the Test query. Thus
we have Adv3 = 0. Lemma 3 is proved by putting together of probabilities from
Game 0 to Game 3.

6 Authenticated Key Exchange Compile from Public
Key Encryption

In this section we present a public key encryption based AKE compiler that turns
passively secure key exchange protocols as defined to AKE protocols fulfilling the
security guarantees as specified in Section 4.

6.1 Protocol Description

The compiler takes the following building blocks as input: a passively secure
key exchange protocol KE, a public encryption scheme PKE, a collision resistant
hash function CRHF and a one-time message authentication scheme OTMAC.5

Protocol Execution: The compiled protocol between two parties A and B
proceeds as follows, which is also depicted in Figure 3.

1. First, A and B run the key exchange protocol KE, then both parties obtain
the key k from the key exchange phase (as the session key of AKE protocol)
and record the transcripts as TAKE and TBKE, where TDKE consists of the list of
all messages sent and received by party D ∈ {A,B}.

5 During the initialization phase, the hash key is generated as hkCRHF
$← CRHF.KG(1κ).

Each party A is assumed to possess a pair of long-term private and public keys

generated as (skA, pkA)
$← PKE.KGen(1κ).

A

(pkA, skA)
$← PKE.KGen(1κ)

B

(pkB , skB)
$← PKE.KGen(1κ)

←−
KE

−−−−−−−−−−−−→
obtain k and set
TA1 := TAKE||A||B

obtain k and set
TB1 := TBKE||A||B

NA := CRHF(TA1)
KA ← OTMAC.KGen(1κ)

NB := CRHF(TB1)
KB ← OTMAC.KGen(1κ)

CA
$←

PKE.Enc(pkB , KA||NA)
CB

$←
PKE.Enc(pkA, KB ||NB)

−
CA

−−−−−−−−−−−−→
KB
A ||N

B
A :=

PKE.Dec(skB , C
B
A)

reject if NBA 6= NB
TB2 := TB1 ||C

B
A ||CB ,

RB := CRHF(TB2)
MB :=

OTMAC.Tag(KB
A , “2”||RB)

←−
CB ,MB

−−−−−−−−−−−−
TA2 := TA1 ||CA||C

A
B ,

RA := CRHF(TA2)
reject if MA

B 6=
OTMAC.Tag(KA, “2”||RA)

KA
B ||N

A
B :=

PKE.Dec(skA, C
A
B)

reject if NA 6= NAB
MA :=

OTMAC.Tag(KA
B , “1”||RA)

accept

−
MA

−−−−−−−−−−−−→
accept if MB

A =
OTMAC.Tag(KB , “1”||RB)

Fig. 3. AKE Compiler from PKE and OTMAC

2. A sets the transcript TA1 := TAKE || A || B and computes NA := CRHF(TA1).

Then, it runs KA
$← OTMAC.KGen(1κ) and computes a ciphertext CA

$←
PKE.Enc(pkB , KA || NA) under B’s public key pkB and transmits CA to B.
Meanwhile, B sets TB1 := TBKE || A || B and computes NB := CRHF(TB1).

It runs KB
$← OTMAC.KGen(1κ) and computes CB

$← PKE.Enc(pkA, KB ||
NB) under A’s public key pkA.

3. Upon receiving the ciphertext CBA , B sets TB2 := TB1 || CBA || CB and com-
putes RB := CRHF(TB2). It decrypts CBA (i.e. KB

A || NB
A := PKE.Dec(skB ,

CBA)). Then B checks whether NB
A = NB . If the check is not passed, then

B rejects. Otherwise, it computes MB := OTMAC.Tag(KB
A , “2” || RB) and

transmits (MB , CB) to A.

4. Upon receiving messages (MA
B , CAB), A sets TA2 := TA1 || CA || CAB and

computes RA := CRHF(TA2). A rejects if MA
B 6= OTMAC.Tag(KA,“2” || RA).

Then it decrypts the ciphertext CAB (i.e. KA
B || NA

B := PKE.Dec(skB , CAB))
and checks whether NA = NA

B . If the check is not passed, then A rejects.
Otherwise, A computes MA := OTMAC.Tag(KA

B , “1” || RA), and sends MA

to B. Finally, A accepts the session.

5. Upon receivingMB
A ,B accepts if and only ifMB

A = OTMAC.Tag(KB , “1”||RB).

Session States: We assume the ephemeral secret vector esk used in each KE
protocol instance and the random key KA and KB used by PKE.Enc will be
stored in the variable STA.

6.2 Security Analysis

In this section, we present our results for the PKE-based compiler.

Theorem 2. Assume that the KE protocol without long-term key is (t, εKE)-
secure (with respect to Definition 1), the public key encryption scheme PKE
is (qpke, t, εPKE)-secure (IND-CCA2) (with respect to Definition 3.5), the hash
function CRHF is (t, εCRHF)-secure (with respect to Definition 3.4), and the one-
time authentication code scheme OTMAC is unique and (t, εOTMAC)-secure (with
respect to Definition 3.6). Then the above protocol is a (t′, ε)-secure AKE protocol
in the sense of Definition 14 with t′ ≈ t and qpke ≥ d and holds that

ε ≤ 2εCRHF + d` · (2` · εPKE + 2εOTMAC + 2εKE) + (d`)2 · εKE.

We prove the theorem 2 with two lemmas, similar to the proof of Theorem 1.
For space reasons we only provide a sketch of the proof.

Lemma 4. For any adversary A running in time t′ ≈ t, the probability that
there exists an oracle πsi that accepts maliciously in the sense of Definition 14 is
at most

εauth ≤ εCRHF + d` · (εKE + ` · εPKE + εOTMAC),

where all quantities are as the same as stated in the Theorem 2.

Proof. The proof proceeds in a sequence of games.

Game 0. This is the original security game. Thus we have that

Pr[break
(1)
0] = εauth.

Game 1. In this game, the challenger proceeds exactly like the challenger in
Game 0, except that we add an abortion rule. The challenger raises event aborteph
and aborts, if two oracles output the same ephemeral keys. Thus, the event
aborteph occurs with probability Pr[aborteph] ≤ d`εKE in terms of Lemma 1. We
have that

Pr[break
(1)
0] ≤ Pr[break

(1)
1] + d` · εKE.

Game 2. This game proceeds as the previous game, but we add an abort
condition abortcr that the challenger aborts if there are two distinct inputs to
the CRHF that map to the same output value. Obviously the Pr[abortcr] ≤ εCRHF
in each case, according to the security property of hash functions. Thus we have

Pr[break
(1)
1] ≤ Pr[break

(1)
2] + εCRHF.

Game 3. This game proceeds exactly as before, but the challenger aborts if it
fails to guess the first fresh oracle πs

∗

i which accepts without matching conver-
sation, where i ∈ [`] and s∗ ∈ [d]. Thus we have that

Pr[break
(1)
2] ≤ d` · Pr[break

(1)
3].

Game 4. This game proceeds exactly as before, but we replace the key Ks∗

i

that is used to verify the hash value Ms∗

j with a random key K̃s∗

i . We apply

the same modification to the oracle πt
∗

j which shares the same transcript T1

with oracle πs
∗

i , and use K̃s∗

i to compute the confirmation hash value for such
oracle πt

∗

j . Since IDj is uncorrupted and there is no collision among the hashed
transcripts (due to the previous games), any A that distinguishes this game from
the previous game can be used to break the security of the PKE scheme. Due to
the security of the PKE scheme, the advantage of A in distinguishing between
this game and the previous game is bound by εPKE. Thus we have that

Pr[break
(1)
3] ≤ Pr[break

(1)
4] + ` · εPKE.

Game 5. This game proceeds exactly like the previous game except that the
challenger aborts if the fresh oracle πs

∗

i accepts a confirmation message Ms∗

j but
it has not been sent by any oracle of its intended partner IDj . In this game, the
fresh oracle πs

∗

i accepts if and only if it has a unique partner oracle. Thus no

adversary can break the authentication property, and we have Pr[break
(1)
5] = 0.

Please note that the key K̃s∗

i of the OTMAC in computation of πs
∗

i is a random
value which is independent of the ciphertext Cs

∗

i and only would be used once

at most to authenticate the transcript T i,s
∗

2 . Applying the security of OTMAC
we have that

Pr[break
(1)
4] ≤ Pr[break

(1)
5] + εOTMAC.

We could obtain the overall advantage of adversary showed in Lemma 4 via
collecting the probabilities from Game 0 to Game 5.

Lemma 5. For any adversary A running in time t′ ≈ t, the probability that A
correctly answers the Test-query is at most 1/2 + εind with

εind ≤ εCRHF + d` · (εKE + ` · εPKE + εOTMAC) + (d`)2 · εKE,

where all quantities are as the same as stated in the Theorem 2.

Proof. The proof proceeds in a sequence of games.

Game 0. This is the original security game. Thus we have that

Pr[break
(2)
0] = εind + 1/2 = Adv0 + 1/2.

Game 1. The challenger in this game proceeds as before, but it aborts if the
test oracle accepts without unique partner oracle. Applying the security of au-
thentication property of this protocol, we thus have

Adv0 ≤ Adv1 + εauth ≤ Adv1 + εCRHF + d` · (εKE + ` · εPKE + εOTMAC).

Game 2. This game is similar to the previous game. However, the challenger C
now guesses the partner oracle πt

∗

j that stays fresh and participates with πs
∗

i in
the test session. C aborts if its guess is not correct. Thus we have

Adv1 ≤ (d`)2Adv2.

Game 3. Finally, we replace the session key k∗ of the test oracle πs
∗

i and

its partner oracle πt
∗

j with the random value k̃∗. Applying the security of key
exchange protocol, we obtain that

Adv2 ≤ Adv3 + εKE.

In this game, the response to the Test query consists always of a uniformly
random key, the view of the adversaryA is statically independent of the challenge
bit b sampled in the Test query. Thus we have Adv3 = 0. Finally, we obtained
the advantage of A shown in Lemma 5 by putting together all probabilities from
Game 0 to Game 3.

7 Conclusions

In this paper we have presented two efficient compilers for building AKE pro-
tocols from passively secure KE protocols. Our compilers are secure in a very
strong security model that allows for state reveals and PKI-related attacks. At
the same time they are more efficient than all previous solutions. A practical
benefit of our compilers is that they do not require the key generated in the
underlying KE protocol as input. This makes them also applicable to existing
systems without requiring any modification. All our solutions work in the stan-
dard model, i.e. without random oracles.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract). In
STOC, pages 419–428, 1998.

2. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer
Science, pages 232–249. Springer, 1993.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

4. Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the
station-to-station (sts) protocol. In Hideki Imai and Yuliang Zheng, editors, Pub-
lic Key Cryptography, volume 1560 of Lecture Notes in Computer Science, pages
154–170. Springer, 1999.

5. Mike Burmester and Yvo Desmedt. A secure and efficient conference key distri-
bution system (extended abstract). In Alfredo De Santis, editor, EUROCRYPT,
volume 950 of Lecture Notes in Computer Science, pages 275–286. Springer, 1994.

6. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT, volume
2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

7. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

8. Tibor Jager, Florian Kohlar, Sven Schaege, and Joerg Schwenk. Generic compilers
for authenticated key exchange. In Masayuki Abe, editor, ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 232–249. Springer, 2010.

9. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic compilers
for authenticated key exchange (full version). IACR Cryptology ePrint Archive,
2010:621, 2010.

10. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of
tls-dhe in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 273–293.
Springer, 2012.

11. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. J. Cryptology, 20(1):85–113, 2007.

12. Neal Koblitz and Alfred Menezes. Another look at security definitions. IACR
Cryptology ePrint Archive, 2011:343, 2011.

13. Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In Vic-
tor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 546–566. Springer, 2005.

14. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
tls protocol: A systematic analysis. In CRYPTO (1), pages 429–448, 2013.

15. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec, volume 4784 of Lecture Notes in Computer Science, pages 1–16. Springer,
2007.

16. Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user
setting. Des. Codes Cryptography, 33(3):261–274, 2004.

17. Alfred Menezes and Berkant Ustaoglu. Comparing the pre- and post-specified peer
models for key agreement. IJACT, 1(3):236–250, 2009.

18. Tatsuaki Okamoto. Authenticated key exchange and key encapsulation in the
standard model. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture
Notes in Computer Science, pages 474–484. Springer, 2007.

19. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

http://eprint.iacr.org/

	New Modular Compilers for Authenticated Key Exchange
	Yong Li,Sven Schäge,Zheng Yang,Christoph Bader,Jörg Schwenk

