
Your Cloud in my Company:
Modern Rights Management Services Revisited

Martin Grothe, Paul Rösler, Johanna Jupke, Jan Kaiser, Christian Mainka and Jörg Schwenk
Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany

{martin.grothe, paul.roesler, johanna.jupke, jan.kaiser-e5q, christian.mainka, joerg.schwenk}@rub.de

Abstract—We provide a security analysis of modern En-
terprise Rights Management (ERM) solutions and reveal
security threats. We first take a look on Microsoft Azure,
and discuss severe attack surfaces that companies enabling
Azure in their own trusted infrastructure have to take care of.
In addition, we analyze Tresorit, one of the most frequently
used End-to-End encrypted cloud storage systems. Tresorit
can use Azure and its Rights Management Services (RMS)
module as an additional security layer: a user should be able
to either trust Tresorit or Azure. Our systematic evaluation
reveals a serious breach to their security architecture: we
show that the whole security of Tresorit RMS relies on
Tresorit being trusted, independent of trusting Azure.1

Keywords-ERM, AD, RMS, Cloud, Azure, Tresorit

I. INTRODUCTION

Information security is one of the key challenges when
it comes to protecting a company’s assets [2], [12], [4],
[6]. Rights management is one widely used technique to
address this challenge [3], [38], [29]. Currently there are
different approaches realizing rights management in soft-
ware, depending on the area of application. For example,
a publishing house can protect their ebooks with Digital
Rights Management (DRM). The same principle is valid
for music and video files [5], [11], [37]. Apart from the
consumer area, there is Enterprise Rights Management
(ERM) used by companies in business environments [7],
[28]. For example, banks, law firms and automotive make
use of Microsoft Rights Management Services (RMS).
RMS can be used to restrict reading, writing, or printing
permissions of office documents, texts or binary files. In
recent years, companies also tended to outsource their
locally hosted systems into modern cloud environments.
This has obvious performance, scalability and availability
advantages by reducing costs for the outsourcing company.

In this paper, we give an answer to the following
research question: which security threats can occur, when
combining cloud systems with ERM?

We therefore take a look at Microsoft Azure RMS [39],
one of the most prominent and wide-used RMS cloud
systems. We describe the structure of Azure RMS and how
it technically protects a file. By this means, we identify
an obvious, but serious security threat: since Microsoft
controls the Azure servers, and RMS uses a certificate
chain to protect files, whereat the certificates are generated

1This is the full version of our paper published at the 2016 11th
International Conference on Availability, Reliability and Security (ARES
2016).

by Azure, Microsoft is able to decrypt all RMS protected
files, stored on Azure storage space.

Due to this threat, we go one step further and investigate
Tresorit, a widely used cloud storage provider [42]. Be-
sides end-to-end encryption, Tresorit is the only available
solution in the Google Play Store supporting RMS. To
conduct this, Tresorit uses a two layer approach: while the
file is protected with Azure RMS, the file is additionally
encrypted with Tresorit’s end-to-end encryption.

The analysis of Tresorit is a complicated task, since
Tresorit does neither provide its source code nor gives
detailed protocol descriptions [36]. We therefore created
a test setup and extracted the Tresorit protocol step-by-
step via traffic analysis and process monitoring. Since the
Tresorit servers communicate with Azure servers in the
background (Server-to-Server communication), our test
setup cannot cover this traffic, which makes the analy-
sis more difficult. We estimated this communication by
observing the traffic that we could see and communicated
our results with the Tresorit developers, who confirmed
our results. After reconstructing the protocol in detail, we
found a major security breach in Tresorit: We show that
the Tresorit servers can get access to content keys held by
Microsoft. This was explicitly excluded by the authors of
Tresorit whitepaper [41]. We contacted the developers and
they acknowledged our work.

Our Contribution. We make the following contributions.
I We give an overview on modern rights management

systems and their requirements.

I We analyze Microsoft Azure and show how it uses
RMS to protect files.

I We identify security threats that appear when a
company decides to use modern Rights Management
Services in a cloud.

I We analyze Tresorit and their RMS implementation.

I Our analysis reveals a serious security threat in
Tresorit (VI-C) that breaks the concept described in
Tresorit’s whitepaper [41].

Our results were responsibly disclosed with the devel-
opers. They updated their whitepaper and removed the
statement that Tresorit cannot read RMS protected files.

II. MODERN RIGHTS MANAGEMENT SYSTEMS

Currently there are different solutions available to man-
age rights on digital contents. They are categorized by



their area of application: DRM and ERM.

Digital Rights Management. Control over digital content
in the consumer area is commonly known as DRM and is
pushed along by the music and movie industry. The idea
behind DRM is to sell and enforce usage rights for digital
contents. A practical example for this is Amazon Kindle
with its e-book reader with an integrated DRM system.
Kindle readers have their own e-book format, which is
only readable with Kindle software and only authorized
users are permitted to read a book.

Enterprise Rights Management. In the business area,
ERM is used to manage the access of company’s employ-
ees to files that must be kept internal to protect intellectual
property. Therefore these access rights are set by the
author. For example, a certain user is maybe allowed to
view a file, but has no rights to copy the content or to
print it. Once set, the access rights must be independent
from the physical and logical location of the file, so that
no unauthorized user can access the content. Thus the goal
of using ERM is that companies can protect confidential
files and control their usage in many details.

In this paper, we concentrate on ERM and Microsoft’s
cloud implementation of it, called Azure RMS.

III. ERM CHARACTERISTICS

ERM systems have to fulfill special requirements. We
therefore divide ERM characteristics into the following
categories. They are mostly equivalent to the features of
DRM systems described in previous works [3], [27], [30],
but adopted to the requirements of ERM and more recent
technologies.

Availability. The availability of ERM protection consists
of basically two aspects: (1.) protected data can be ac-
cessed for a specific amount of time, while the user is
offline. This usually means, that on a first use, the user
must receive some cryptographic keys from a trusted
keyserver, which is either on the Internet or part of the
company’s network. Later on, the user can work with a
file independent of that server. (2.) Protected files must be
accessible from different devices, for example, laptops,
tablets and smartphones. Recent ERM implementations
offer browser-based access.

Full Rights Control. The author of a protected file must
have full rights control. This includes: (1.) control of
access and usage of it – the author can grant and revoke
rights. (2.) Changing access rights must be possible after
the first distribution. (3.) In addition to the author’s control,
it must be possible to transfer rights directly or through
a Trusted Third Party (TTP), for example, by a company
authority.

Confidentiality and Integrity. ERM protected files must
be confidential and unmodifiable. (1.) This must be in-
dependent of the files distribution. For example, files
transferred via email must be protected as well as files
exchanged via mass storages. (2.) The protection of files
is persistent. This especially means, that a protected file

leaving a company (e.g. via email) must still be protected
and only authorized users must be able to use it.

IV. MICROSOFT AZURE

Microsoft Azure is a modular cloud platform system
and can be separated into three categories: Cloud Services,
Virtual Machines, and App-Services. Cloud Services pro-
vide special purpose virtual machines, which can be used
to build scalable web services. In contrast to normal
virtual machines, these special VMs are maintained by Mi-
crosoft. The category Virtual Machines is comparable with
standard services. A user rents storage, virtual machines,
installs custom software on them and links these virtual
machines via virtual networks. The App-Services are used
to export application logic, resources and instances into the
cloud. Besides these three categories, Microsoft Azure has
a large pool of services it provides [15]. For this paper,
the most relevant service is Azure RMS.

A. Azure RMS

Azure Rights Management Services is part of Azure
Active Directory and enables its users to share files, for
example, Office documents, with other users and preserve
the control over the content and its distribution. In compar-
ison to the classical Active Directory Rights Management
Services (ADRMS), Azure RMS client software is avail-
able on all modern platforms (Android, iOS, Linux, Mac
OS, Windows) [16]. Therefore, protected content can be
consumed on mobile devices, laptops and computers.
These devices need Azure RMS client software, for exam-
ple, RMS plugin for MS Office, to consume protected files.
In short, the user needs 3 clicks to set permissions (e.g.,
view, edit, print, etc) for a *.docx file. Subsequently the file
can be distributed to other users, via email, cloud storage
or USB stick. Before another user can open the file, he
has to authenticate to Azure. This is automatically done
if the user has already supplied Office (e.g., Microsoft
Word) with his account credentials. Otherwise the user
can create an Azure account or use the Single Sign On
protocol with an identity provider of his choice (e.g.,
Google, Facebook, Yahoo, etc.) [20]. Afterwards Azure
RMS performs the authorization process. In case the user
is allowed to access the document, the RMS plugin gets
the necessary information from the Azure RMS and the
document is opened by the Office application. [17]

B. Azure RMS in detail

The protection mechanism of Azure RMS relies on a
public key infrastructure (PKI), symmetric cryptography
and application level rights enforcement. To get a valid
client certificate for the PKI, a user has to authenticate
to the Azure AD. There are different ways, how a user
can authenticate to an Azure AD, depending on the
Single Sign-On protocol used and the identity provider.
In case the authentication procedure finishes successfully,
the Azure AD server forwards the user to the Azure
RMS instance. This instance issues a client certificate
(Rights Account Certificate (RAC)) for the users client
software, for example, Office RMS plugin. The certificate



consists of a private-, a public key and a signature from
the Azure RMS instance. Once issued, the client software
uses the client certificate to authenticate to the Azure
RMS instance. When this initial procedure is finished, a
document can be protected via Azure RMS. [17]

Creating protected documents. We describe this process,
using the example of Microsoft Word with an installed
RMS plugin. The structure of a protected Office Word
document is shown in Figure 1.

Figure 1. Azure RMS protected Word file.

(1.) The RMS plugin generates a random, symmetric
AES content key. This key is used to encrypt the original
(unprotected) content, for instance, the Word document.
(2.) Afterwards two licenses are created by the RMS
plugin: the first one is for the author of the file. The
second one is the so-called Publishing License (PL), that
is used by all other users. The PL stores a list of specific
users, groups, their corresponding rights (policy) and the
symmetric content key. The PL is intended for the Azure
RMS instance, which is responsible for creating licenses
for every other user or group specified by the author. To
ensure that the policy in the PL is authentic, a signature
with the private key of the Rights Account Certificate
(client certificate) is created over the policy. In addition,
the policy and the symmetric content key in the PL are
both encrypted with the public key of the Azure RMS
instance. (3.) The encrypted original document (Step 1),
the encrypted content key and the signed and encrypted
policy (Step 2) are stored in one file: the protected
document.

In general, access rights for documents can be assigned
by using templates, which are predefined policies or by
creating a custom policy with individual access rights for
groups and users. Groups can be created via the Azure
AD to assign specific access rights to all its users at once.

Accessing protected documents. Once a protected doc-
ument is received by a user, the client software starts the
consuming process. This process is shown in Figure 2. We
assume, that the user already authenticated to the Azure
AD and the RAC is already stored on the client device.

(1.) The client software sends the PL, that is contained
in the protected file, as well as the RAC, of the user,
to the Azure RMS instance. (2.) Azure RMS decrypts
those elements with its private key of the Server Licensor
Certificate (SLC). (3.) A list of access rights for the
requesting user is created by the Azure RMS instance,
according to the policy. (4.) The content key is extracted
from the decrypt policy. (5.) A Use License (UL) is created
from the content key and the access right list. The UL

Figure 2. Accessing a protected Word file.

is encrypt with RAC public key of the requesting user.
(6.) Afterwards the UL is sent to the Azure RMS client.
(7.) The client software decrypts the UL with the private
key of the user’s RAC. (8.) The protected document is
decrypted with the symmetric content key from the UL.
(9.) The opening software (e.g., Microsoft Word) gets the
decrypted document with a list of rights from the RMS
plugin. The listed rights are enforced by Word [40].

C. Security Threats

Despite the fact, that Microsoft uses open standards
and techniques in Azure, there is currently one strong
limitation: Azure runs only on servers of Microsofts data
centers. All Services, like Azure RMS, run on Microsoft
servers, resulting in trust threats we need to address.
With Azure Pack, Microsoft provides a collection of Azure
technologies that can be installed on-premise, but they
include just a few services and not Azure RMS. [23]

1) Trust Threats: We define trust threats as possible
scenarios, in which authentication processes are manipu-
lated and customer data are misused. For that we clarify
a trust model.

Suppose a company that is using Azure. In this
model, Microsoft is considered the attacker, independently
of the aspect, whether the company using Azure trusts
or mistrusts Microsoft. The attacked company uses a
local Active Directory (AD), which is integrated in an
existing Azure instance. We will answer the following
questions:
(1.) How is the access to cloud data defined by Microsoft?
(2.) In which way has Microsoft access to stored data?
(3.) Does Microsoft has access to certificates, licenses or

keys of Azure RMS?
(4.) Can Microsoft restore deleted data from the cloud?
(1.) How is the access to cloud data defined by Mi-
crosoft? Microsoft defines a special privacy and secu-
rity statement for online data. The stored data is split



in customer data, administrator data, payment data, and
support data. Customer data includes every type of data
(sound, text, images, or software) which is stored, used,
or processed in the cloud or within cloud applications.
Administrator data, payment data, and support data in-
cludes contact and financial data for the correspondence
between Microsoft and the customer.
In general, Microsoft verbalizes the statement "You own
your data" to indicate that they do not access that data.
Also, they do not mine customer data or use it for
advertising. In the former case of a government or law
enforcement request, Microsoft had to disclose data. [19]
(2.) In which way has Microsoft access to stored data?
Microsoft itself asserts that customer data is only used
for providing chosen services as well as troubleshooting,
service improvement and personalized customer experi-
ences. A Microsoft support member is only able to access
the stored customer-related data for a defined time and
task. In case the company mistrusts Microsoft, the data
should only be stored encrypted in the cloud [19]. Due
to the fact that Microsoft provides the data for services
and performs troubleshooting, Microsoft must have access
to customer data. In these cases Microsoft refers to the
EU Model Clauses and the ISO/IEC 27018 standard [18]
Assuming that Microsoft is the attacker and ignores their
privacy statements, all data, which is stored or processed
in the cloud, as well as application data can be accessed
by Microsoft.
(3.) Does Microsoft has access to certificates, licenses
or keys of Azure RMS? Microsoft uses different servers
to store certificates and licenses [13], [14]. These servers
are controlled by Microsoft. Further Microsoft issues,
by default, all certificates and licenses used by Azure
RMS. Thus, Microsoft controls the access to protected
files and is able to grant itself rights for any file. In
general, certificates, licenses, and private keys are defined
as access control data and as this, stored encrypted in the
cloud [19], [24]. Microsoft offers a protection mechanism
named Azure Key Vault, which is an advancement of
Bring your own key technology, used for the first time
in Azure RMS. This technique helps against key stealing
by intruders, due to the fact, that the keys are stored in
Hardware Security Modules (HSMs). However, HSMs do
not protect against using the keys for decryption, signing
or encryption as insider [22], [21]. A customer cannot
distinguish, whether the access to a HSM is triggered by
a legitimate Azure RMS request or a Microsoft employee.
(4.) Can Microsoft restore deleted data from the cloud?
According to Microsoft, every data which is deleted by
the cloud option "delete" cannot be retrieved. As a re-
sult of this delete procedure, the pointer to the stored
document in the data storage is cleared. Thus, no real
delete operation is triggered and a recovery of the data is
possible. Further an Azure administrator is able to read all
"free" blocks of Azure storage. This includes previously
stored and deleted data as well. Through this way a user-
data association is not possible, but deleted data can be
retrieved. If a Microsoft employee gets access to a fitting

task, he is also able to retrieve data. [43]
2) Active Directory modification attack: With the col-

lected information, we try to design a possible attack
scenario. In case a company uses Azure RMS with an
own on-premise AD server, the Azure AD and the on-
premise AD get synced side-to-side. Thus, Microsoft can
add, modify or delete user information in the Azure
AD instance and wait for the synchronization process.
Resulting in a modification of the on-premise AD and in
a compromise of company infrastructure.

3) Impersonification attack: Since Microsoft has access
to customer and authorization data, this information can
be used for further attacks, such as impersonification of
an employee of a company, which uses Azure services.
As a result, an attacker would get detailed information
and could try to infect the infrastructure with malware. It
just needs one fraudulent Microsoft administrator and a
company using Azure RMS.

V. TRESORIT

Tresorit is a cloud storage alternative to Dropbox that
focuses on security. It implements client side encryption
for all stored files and claims that the company behind
Tresorit has no possibility to read the plaintext of protected
files.

A. Tresorit End-to-End Encryption

With the Tresorit client software a registered user of
Tresorit has to create an account with the help of the
client software. He afterwards can create a so-called tresor,
which can be seen as a protected folder: all files within this
folder are end-to-end encrypted with AES256 in Cipher-
Feedback Mode. The encrypted files are sent to the storage
server and afterwards synchronized across all Tresorit
devices (Desktop and/or mobile) owned by the user.

Tresorit additionally offers sharing of a tresor with other
Tresorit users. This feature allows collaborative working
with Tresorit users. Due to the nature of end-to-end
encryption, all users must be able to decrypt the files
within the tresor in order to read or edit them. For this
reason, Tresorit implements a key management that we
have analyzed and describe in the following.

All file keys within a tresor are encrypted with one AES-
256 bit tresor key. The tresor key is encrypted with the
public key (RSA-2048 bit) of the user. Since the private
key of the user is distributed to all of his devices, the files
can be decrypted on these devices.

Sharing is a Threat. As previously described [44],
Tresorit is the only Certification Authority (CA) of its
system, due to this fact Tresorit can obtain the key of a
shared tresor by performing a Man in the Middle (MitM)
attack during the sharing process. Since the whole sharing
process is untransparently conducted by the client software
by requesting the user certificate of the receiving user
and requesting an Access Control List (ACL) update, this
process requires trust in: (1.) the client software, (2.) the
Tresorit CA and (3.) the server which enforces the ACL
permissions. The process of sharing a tresor between user



A and B is divided into 8 steps: (1.) The owner of the
tresor (user A) requests the certificate of user B. All
certificates are issued by Tresorit and contain the public
key of the corresponding user. (2.) The client sends an
invitation to the Tresorit storage server. It includes the
asymmetric encrypted key for the shared tresor, whereat
the public key of the user B is used. This asymmetric
encrypted tresor key is stored in a file, the so called
group key file. For every invited Tresorit user, an additional
encrypted tresor key is stored in this file. Thus, no group
key agreement for the encryption of the tresor key is
required. (3.) Finally, the Tresorit storage server adjusts
the server-side controlled access control permissions, so
that the user B can download the shared files from the
server (and later decrypt them). (4.) Afterwards user B is
notified on the invitation. (5.) User B can download the
group key file, (6.) decrypt the tresor key with his private
key, (7.) download the tresor from the storage server and
(8.) decrypt the files in the tresor with the tresor key.

B. Security Threat

The previously described security design has a major
pitfall [44]: As soon as a tresor is shared with another
user, Tresorit is able to get in possession of the respective
decrypted files.

Therefore, Tresorit has to perform the following 3 steps:
(1.) when a user A wants to share access to a tresor with
user B, Tresorit has to respond with a certificate. Instead
of responding with the certificate belonging to the user
B, Tresorit generates a new asymmetric key pair, embeds
the public key into a certificate, and uses this certificate
for responding instead of the user B’s one. (2.) Once the
user A uploads the group key file, Tresorit can decrypt the
tresor key with the private key, generated together with the
public key for the certificate. Consequently Tresorit can
decrypt all files in the tresor. (3.) To conceal the attack,
Tresorit can replace the encrypted tresor key, in the group
key file, with the one that is correctly encrypted with the
user B’s public key.

Neither the owner (user A) nor the invited user (B)
could detect the attack because Tresorit does not provide
any key verification (Proof-of-Possession). Please note,
the certificate structure of Tresorit is more complex than
described here, but the main problem behind it is that all
certificates are issued by one of the Tresorit CAs.2

To address the problem of a monolithic CA, Tresorit
RMS can be used.

VI. TRESORIT RMS

Tresorit RMS or Tresorit DRM, how the developer call
it, protects files with two layers: (1.) The inner layer is
the RMS protection, which is directly applied to the file.
(2.) The outer layer is the Tresorit end-to-end encryption
which is wrapped around the RMS protected file.

The inner RMS protection is provided by Microsoft
Azure RMS. As such, Tresorit RMS makes use of the same

2Contrary to the description of Wilson and Ateniese all Tresorit CA
certificates are currently issued by one Tresorit root CA.

licenses/certificate system, AD groups, and servers as
described before. Thus, it is independent of Tresorit’s CA
architecture. The outer layer is the previously described
Tresorit end-to-end encryption and therefore has the same
security threat. The combination of both layers should –
according to the Tresorit whitepaper [41] – result in a
higher security level, because files are protected by two
independent systems.3 This means, that a user must either
trust Tresorit or Azure.

In the following, we show that this concept has a se-
curity breach and a user must trust Tresorit independently
of trusting Azure or not.

A. Test Setup

Since Tresorit does neither provides a detailed protocol
flow of its RMS module nor the source code, we recon-
structed the protocol scheme, by analyzing the Tresorit
client software in a test environment. We chose the Win-
dows client software, since it provides the most function-
ality in comparison to other client implementations. Three
types of traffic were monitored: Network traffic, access to
the Windows Registry and access to the local file system.
The communication to the Tresorit servers is protected
by Transport Layer Security (TLS) and the respective
CA certificates are pinned in the software, to prevent
MitM attacks on the network layer. For our analysis, the
Tresorit developers thankfully provided a modified client
version, which logs the whole plain network traffic, so that
we could eavesdrop and analyze each message between
the Tresorit client and the Tresorit servers. Despite this
logging, the provided software client behaves identically
to the original software. We collected the access data with
Process Monitor [25], Wireshark [1] and the modified
client version of Tresorit. We tested the functionality of
Tresorit (e.g., registration, uploading, sharing, revoking,
...) in a fix test sequence with and without integrated
Tresorit RMS. The collected data from the mentioned
sources were merged and filtered to obtain the protocol
related actions.

B. Tresorit RMS in detail

To understand the reason for the security breach three
workflows need to be understood: (1.) Initialization of
Tresorit RMS (2.) Creation of a protected tresor (3.) Mod-
ification of the access rights for a protected tresor. Due to
space limitations they are summarized in the following
and can be found with a detailed protocol graphic in the
full version of the paper.

During the registration at Tresorit, a new Azure AD
user is registered by the Tresorit servers. The respective
Azure credentials are stored on Tresorit servers and are
distributed to all client devices of this user. As soon
as a user protects a tresor and its including files with
RMS, these credentials are used to authenticate at the
Azure RMS servers. The client software of the author

3After our responsible disclosure to the developers of Tresorit, they
removed the statement that Tresorit is unable to decrypt Tresorit RMS
protected files.



only requests the creation of a PL for three AD groups
(manager, editor, reader) with the respective permissions
while the Tresorit servers create these groups with the
users, the owner permits to have access. As soon as the
author or a manager wants to update the permissions, only
the AD groups are adapted by the Tresorit servers.

Initialization of Tresorit RMS. In order to authenticate
at the Microsoft servers (1.) the Tresorit client software
requests the Azure credentials for the user during the
registration or login phase from the Tresorit RMS API.
(2.) These credentials are register at the AD server by the
Tresorit DRM server. (3.) Once the user agree to use the
Tresorit RMS in the client software, the Azure credentials
are stored in the Windows Registry where (4.) a Microsoft
RMS compatible software (e.g., Microsoft Office) can
fetch them.

Creation of a protected tresor. During the creation of a
Tresorit RMS protected tresor (1.) three new Azure AD
groups (see below) are created by the Tresorit DRM server
at the Azure AD server and (2.) their names are forwarded
to the client. (3.) As soon as a new file is stored in the
Tresorit RMS protected tresor, the client authenticates at
the Azure AD server. This server grants a token for the
communication with the Azure RMS server. (4.) Next
the client requests a PL for the three Azure AD groups
with the following permissions: Readers can read the files,
editors can read and edit the files and managers can read,
edit, extract4 and print the files. Furthermore managers can
share and revoke the permissions of other users. (5.) The
Azure RMS server responses the PL together with the
RMS file key. (6.) The Tresorit RMS module uses this
file key to encrypt the stored tresor and appends the PL to
it. (7.) Finally the tresor is Tresorit end-to-end encrypted
and uploaded to the Tresorit storage server.

Modification of the access rights for a protected tresor.
To modify the permissions an owner or manager conducts
a permission update as it is proceeded without the Tresorit
RMS protection, except the last step: (1.) The client sends
an invitation or removal to the Tresorit storage server
including the updated group key file, in case access to the
file is either initially granted or fully revoked. (2.) The
Tresorit storage server applies the permissions regarding
the access control and forwards them to the Tresorit RMS
server. (3.) The Tresorit RMS server adds or removes the
invited or removed user at the Azure AD server to or from
the respective AD group.

The receiving Tresorit client requests the permissions
from the Tresorit storage server. When a file is opened
with an RMS compatible software, the Azure AD server is
requested for the group membership and the RMS software
enforce the permissions.

Protected File. As illustrated in Figure 3 and described
previously the protected file is encrypted twice. The sym-
metric file key of the RMS encryption is stored in the PL,

4Managers can create a local copy of the file while editors can only
modify the respective file.

Figure 3. Included parties of the Tresorit RMS workflow and their
relations. The protocol messages are extracted from our traffic analysis.
Dashed lines indicate traffic that was not seen in our test setup (e.g.,
server to server communication). Thus, we guessed it and contacted the
Tresorit developers who confirmed our guesses.

Figure 4. Protected file with applied Tresorit end-to-end encryption
and Tresorit RMS protection: the protected RMS file (see Figure 1) is
encrypted with a Tresorit file key, which is encrypted for the private
Tresorit keys of the permitted users.

as outlined in section IV-B. The file key of the Tresorit
end-to-end encryption is encrypted with the tresor key,
which is encrypted with the public keys of all permitted
Tresorit users. The encrypted file keys are attached to the
respective encrypted files, which are stored on the server
with the group key file. The Azure credentials of the
users are stored on the Tresorit RMS server, on the Azure
authentication server and locally as it can be seen in ??.

C. Tresorit RMS Security Breach

As Tresorit RMS provides a two layer protection, which
encryption procedures are independent, we consider the
providers of Tresorit and Azure RMS servers to be "honest
but curious". Thus, all requested actions are performed
correctly, but they can use all remotely stored data to
gain protected information [10]. Therefore we assume,
that either Tresorit or Azure RMS needs to be trusted
to reach confidentiality. Further, we mistrust the CA of
Tresorit, as in the recent approach of Wilson et. al. [44].
This seems to result in a weak attack, but for a client-
side encrypted software it is legit to assume, that some
parts of the infrastructure provider cannot be trusted. It
is also confirmed in the Tresorit whitepaper: "even if



Figure 5. Stored information for Tresorit RMS and their location.

Tresorit has access to Tresorit RMS protected files" it
would be "unable to decrypt the (protected) content"5.
All information regarding the permission management of
Tresorit RMS is received from and stored on the Tresorit
(storage and RMS) server. The group encryption key file
is stored on the Tresorit storage server and the access
permission information is stored on the Tresorit RMS
server. Partial permission information in the form of AD
group membership and the corresponding rights for a
tresor are stored on the Azure AD server and the Azure
RMS server. The Azure credentials are stored on the Azure
AD server and on the Tresorit RMS server.

Tresorit RMS attack. In short, the attack needs a privi-
leged Tresorit employee M and a user A, who shares his
files with another user B.

The following steps are needed in order to perform a
successful attack: (1.) A privileged employee M creates a
public/private key pair and issues an additional certificate,
containing the created public key, for an existing user B.
As result, M can impersonate B. (2.) When user A wants to
share a tresor with B, he requests B’s certificate. (3.) The
CA will send the new by M issued certificate to A. (4.) As
part of the sharing process (section VI-B) A will add the
asymmetric encrypted content key for the tresor to the
group key file. The asymmetric encryption key A used for
the encryption of the content key, is the public key from
the certificate he got from the CA. (5.) Now M can use
his previously created private key and decrypt the content
key from the group key file. (6.) Afterwards, the content
key can be used to remove the end-to-end encryption.
(7.) The resulting document is still protected by Azure
RMS. M now has two opportunities: a) He copies the
Azure credentials of user A, stored in plaintext on Tresorit
RMS server. Then he uses them in the corresponding
Azure capable RMS software, like MS Word and removes
the Azure RMS protection. b) He uses his privileges to add
himself to the Azure RMS reader, editor or manager group
for the end-to-end decrypted tresor. Regardless which way
is used by M, both protection layers are removed by the
attack and the whole content of the previously protected
tresor is readable. M could further encrypt and forward

5From the Tresorit RMS white paper, it was updated after we disclosed
our findings: https://tresorit.com/files/tresorit-drm-whitepaper.pdf

the file to B in order to cover his tracks.

Responsible Disclosure. The Tresorit developers ac-
knowledged and confirmed the results of our analysis,
which we responsibly disclosed. They announced to adapt
the design, so that customers can use their own AD
instance. Depending on the implementation this could lead
to the expected split of trust.

Recommendations. In general, if a system pursues to
reach confidentiality with limited need of trust in the
provider, all permission management, including crypto-
graphic operations, should be conducted on the client ma-
chine. For Tresorit we propose the following: by shifting
the registration of new Azure AD accounts and the update
of permission information for tresors to the client software,
the trust relation to Tresorit and Azure could be split effec-
tively. Since the Azure instance is currently administered
by Tresorit it would not enhance the security level, but
this shift would enable the usage of separated Azure AD
and Azure RMS instances. Thereby the providers of the
Tresorit and Azure servers could be fully parted.

Tresorit could also implement the import of own user
keys or a feature to verify contact keys to decrease the
requirement of trust in the software.

VII. RELATED WORK

During our research, we saw different names used for
the topic Access Rights Management, such as Rights
Management Services, Enterprise Rights Management, In-
formation Rights Management (IRM) and Enterprise Dig-
ital Rights Management (EDRM). Due to their close
relationship we see them as synonyms. This also applies
for the related work paper discussed in the following. For
the paper we conducted different analyses related to the
topic. We categorized them as follow: (1.) theoretic and
practical research on AD and ERM, (2.) risk assessment
of cloud computing in general and specifically of Azure
and (3.) analyses of secure cloud storage implementations.

Yu and Chiueh proposed a Display-Only File Server
[45]. Therefore, they describe requirements to ERM sys-
tems and summarized three specific ERM implementa-

Figure 6. Simplified distribution of user certificates and credentials of
Tresorit and Tresorit RMS.



tions. (1.) Microsoft RMS, (2.) Liquid Machines which
was afterwards bought by Check Point [31] and (3.) Au-
thentica’s PageRecall which was afterwards bought by
EMC [32]. They argue that the effectiveness of an ERM
system bases on the security of the client software, which
enforces the permissions. Further, they assumed that as
soon as a protected document is opened by a permitted
attacker the content can be extracted, since the protection
is processed on the client. Concluding they proposed an
ERM, which shifts all processes to the trusted server and
only sends the current document state in the form a picture
to the client. The trusted server processes document mod-
ification requests and responses with the "display image"
of the information. Thus plaintext data is not revealed at
the client.

Schrittwieser et. al. [35] describe techniques and guide-
lines how Enterprise Rights Management Services, such as
RMS and Adobe LiveCycle Rights Management, can be
analyzed from the viewpoint of a digital forensic scientist.
They state out that the protection of RMS on a client
computer is vulnerable, in case an attacker has access to
the memory of the computer.

More advanced attacks on Microsoft RMS in Azure and
AD have been shown by Grothe et al [9].

Borgmann et al. examined the security mechanisms of
several cloud storage services [26]. Therefore, they gave
an overview on requirements of users, legal regulations
regarding security and state of the art technical security
measurements. Among others also end-to-end encrypted
cloud storage services like Wuala [33] which bases on
Cryptree [8] and TeamDrive [34] are analyzed. As it is
conducted for this paper, they observed the network traffic
to verify the documented security measurements.

Wuala [8] and Tresorit were also analyzed concerning
a MitM attack caused by sharing of files [44]. Wilson and
Ateniese observed network traffic and disassembled the
client software to review the certification of client keys. As
mentioned before, they determined that the central CA of
the respective cloud storage provider enables the provider
to forge client certificates to obtain protected information
during the sharing process.

VIII. CONCLUSION

The protection of data in terms of information security
is a major challenge for modern companies. In case
their information, for instance, their files, are accessible
from outside, they have to be protected. This is true for
consumable files, for example, ebooks and music files, but
also for the business area, in case files are accidentally
sent to unauthorized people via email or if files are lost
on portable storage devices.

In this paper, we shed a light on the use-case, if a
company uses a professional RMS system and integrates
this services into their workflow. Besides highlighting the
threat that comes by integrating another company’s cloud
solution, we analyzed Tresorit and its DRM module in
detail. Tresorit and Tresorit RMS provide confidential-
ity under the assumption that Tresorit acts "honest but

curious" and Tresorit originally claims that they cannot
read the content of Tresorit RMS protected files. Due to
our systematically in-depth analysis of the Tresorit RMS
protocol, we showed, that this is not true.

In summary, our work shows that security in the context
of data migration to the cloud is a non-trivial task. Even
the strong combination of end-to-end protection with
Microsoft’s RMS protection can result in unauthorized
access. Trust is an important aspect for modern Rights
Management Services and must be considered wisely. In
case a cloud provided does not reveal its protocols or
their client software source code, users are bound to their
claims. Thus, an independent investigation of pentesters
or researchers is necessary to introspect them.

ACKNOWLEDGEMENTS

The research was supported by the German Ministry of
research and Education (BMBF) as part of the VERTRAG
research project.

REFERENCES

[1] Ahmad, A., Maynard, S.B., Shanks, G.: A case analysis
of information systems and security incident responses.
International Journal of Information Management 35(6),
717–723 (2015)

[2] Arnab, A., Hutchison, A.: Digital rights management-an
overview of current challenges and solutions. In: Proceed-
ings of Information Security South Africa (ISSA) Confer-
ence 2004. Citeseer (2004)

[3] Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Winandy,
M., Husseiki, R., Stüble, C.: Flexible and secure enterprise
rights management based on trusted virtual domains. In:
Proceedings of the 3rd ACM workshop on Scalable trusted
computing. pp. 71–80. ACM (2008)

[4] Grolimund, D., Meisser, L., Schmid, S., Wattenhofer, R.:
Cryptree: A folder tree structure for cryptographic file
systems. In: Reliable Distributed Systems, 2006. SRDS’06.
25th IEEE Symposium on. pp. 189–198. IEEE (2006)

[5] Grothe, M., Mainka, C., Rösler, P., Schwenk, J.: How
to break microsoft rights management services. In: 10th
USENIX Workshop on Offensive Technologies (WOOT 16)
(2016)

[6] István Lám, Szilveszter Szebeni, Levente Buttyán.: Treso-
rium: cryptographic file system for dynamic groups over
untrusted cloud storage. In: 41st International Conference
on Parallel Processing Workshops. pp. 296–303 (2012)

[7] Labuschagne, L., Eloff, J.H.: Electronic commerce: The
information-security challenge. Information Management
& Computer Security 8(3), 154–157 (2000)

[8] Microsoft: How does Azure RMS work? (Online:
05. 03. 2016), https://technet.microsoft.com/en-us/library/
jj585026.aspx#BKMK_HowRMSworks

[9] Microsoft: Microsoft Trust Center // Privacy // You own
your data (Online: 15. 02. 2016), https://www.microsoft.
com/en-us/TrustCenter/Privacy/You-own-your-data

[10] Microsoft: Windows Azure BYOK (Online: 05. 03. 2016),
https://technet.microsoft.com/en-us/library/dn440580.aspx

https://technet.microsoft.com/en-us/library/jj585026.aspx#BKMK_HowRMSworks
https://technet.microsoft.com/en-us/library/jj585026.aspx#BKMK_HowRMSworks
https://www.microsoft.com/en-us/TrustCenter/Privacy/You-own-your-data
https://www.microsoft.com/en-us/TrustCenter/Privacy/You-own-your-data
https://technet.microsoft.com/en-us/library/dn440580.aspx


[11] Microsoft: Windows Azure Key Vault (Online:
05. 03. 2016), https://azure.microsoft.com/en-
us/documentation/articles/key-vault-whatis/

[12] Microsoft: Protecting data in microsoft azure (Online:
05 03 2016 August 2014), http://download.microsoft.
com/download/0/D/D/0DD8FB12-6343-4A50-80B2-
545F2951D7AE/MicrosoftAzureDataProtection_Aug2014.
pdf

[13] Moritz Borgmann, Tobias Hahn, M.H.T.K.M.R.U.V.S.V.:
On the security of cloud storage services. Fraunhofer
Institute for Secure Information Technology SIT (2012)

[14] Mulligan, D.K., Han, J., Burstein, A.J.: How drm-based
content delivery systems disrupt expectations of personal
use. In: Proceedings of the 3rd ACM workshop on Digital
rights management. pp. 77–89. ACM (2003)

[15] Päivärinta, T., Munkvold, B.E.: Enterprise content manage-
ment: An integrated perspective on information manage-
ment. In: System Sciences, 2005. HICSS’05. Proceedings
of the 38th Annual Hawaii International Conference on. pp.
96–96. IEEE (2005)

[16] Park, J., Sandhu, R., Schifalacqua, J.: Security architectures
for controlled digital information dissemination. In: Com-
puter Security Applications, 2000. ACSAC’00. 16th Annual
Conference. pp. 224–233. IEEE (2000)

[17] Schrittwieser, S., Kieseberg, P., Weippl, E.: Digital foren-
sics for enterprise rights management systems. In: Proceed-
ings of the 14th International Conference on Information
Integration and Web-based Applications & Services. pp.
111–120. ACM (2012)

[18] Schryen, G., Kadura, R.: Open source vs. closed source
software: towards measuring security. In: Proceedings of
the 2009 ACM symposium on Applied Computing. pp.
2016–2023. ACM (2009)

[19] Shin, D., Kim, J., Shin, D.: A study on the digital right
management of MPEG-4 streams for digital video library.
Springer (2003)

[20] Singh, K., Panda, I., Gratia, R., Maharana, B., Nayak, D.K.:
Digital right management and its application to library and
information science. IJAR 1(12), 878–881 (2015)

[21] Talaat, S.: Azure rights management services. In: Pro
PowerShell for Microsoft Azure, pp. 163–177. Springer
(2015)

[22] TechNet: What is Azure Rights Management? (Online:
15. 02. 2016), https://technet.microsoft.com/en-us/library/
jj585026.aspx

[23] Tresorit: Tresorit DRM White Paper (2015), https://tresorit.
com/files/tresorit-drm-whitepaper.pdf

[24] Tresorit AG: End-to-End Encrypted Cloud Storage for
Businesses | Tresorit (Mar 2016), https://tresorit.com/

[25] Walter Myers III: Microsoft Azure Data Security
(Data Cleansing and Leakage) (Online: 15. 02. 2016),
blogs.msdn.com/b/walterm/archive/2012/02/01/windows-
azure-data-cleansing-and-leakage.aspx

[26] Wilson, D.C., Ateniese, G.: “to share or not to share” in
client-side encrypted clouds. In: Lecture Notes in Computer
Science Volume 8783. pp. 401–412 (2014)

[27] Yang Yu, T.c.C.: Enterprise digital rights management:
Solutions against information theft by insiders. In: Infor-
mation Management & Computer Security (2007)

https://azure.microsoft.com/en-us/documentation/articles/key-vault-whatis/
https://azure.microsoft.com/en-us/documentation/articles/key-vault-whatis/
http://download.microsoft.com/download/0/D/D/0DD8FB12-6343-4A50-80B2-545F2951D7AE/MicrosoftAzureDataProtection_Aug2014.pdf
http://download.microsoft.com/download/0/D/D/0DD8FB12-6343-4A50-80B2-545F2951D7AE/MicrosoftAzureDataProtection_Aug2014.pdf
http://download.microsoft.com/download/0/D/D/0DD8FB12-6343-4A50-80B2-545F2951D7AE/MicrosoftAzureDataProtection_Aug2014.pdf
http://download.microsoft.com/download/0/D/D/0DD8FB12-6343-4A50-80B2-545F2951D7AE/MicrosoftAzureDataProtection_Aug2014.pdf
https://technet.microsoft.com/en-us/library/jj585026.aspx
https://technet.microsoft.com/en-us/library/jj585026.aspx
https://tresorit.com/files/tresorit-drm-whitepaper.pdf
https://tresorit.com/files/tresorit-drm-whitepaper.pdf
https://tresorit.com/
blogs.msdn.com/b/walterm/archive/2012/02/01/windows-azure-data-cleansing-and-leakage.aspx
blogs.msdn.com/b/walterm/archive/2012/02/01/windows-azure-data-cleansing-and-leakage.aspx

