
On the Classification of APN Functions

up to Dimension Five

Marcus Brinkmann1 and Gregor Leander2⋆

1 Ruhr-Universität Bochum, Germany
2 University of Toulon, France

Abstract. We classify the APN functions in dimension 4 and 5 up to
affine and CCZ equivalence using backtrack programming and give a par-
tial model for the complexity of such a search. In particular, we demon-
strate that up to dimension 5 any APN function is CCZ equivalent to a
power function, while it is well known that in dimension 4 and 5 there ex-
ist APN functions which are not extended affine equivalent to any power
function. We further calculate the total number of APN functions up to
dimension 5 and present a new CCZ equivalence class of APN functions
in dimension 6.

1 Introduction

In this paper we deal with binary almost perfect nonlinear (APN) functions. A
function s : Fn

2 → Fn
2 is APN if for every non-zero c ∈ Fn

2 and every a ∈ Fn
2 the

equation s(x) + s(x + c) = a has at most two solutions. APN functions play a
central role in providing resistance against differential attacks on block ciphers.
They were introduced by Nyberg [1] and have since been studied extensively.

The APN property is invariant under affine transformations: Let α, β : Fn
2 →

Fn
2 be affine bijections and γ : Fn

2 → Fn
2 be any affine function, then with

t = α ◦ s ◦ β + γ (1)

the function t is APN if and only if s is APN, and t is said to be extended affine
(EA) equivalent to s. If γ ≡ 0, t is said to be affine equivalent to s and t is a
bijection if and only if s is. Also, if s is an APN bijection, the inverse s−1 is
APN.

In [2], a more general equivalence relation was introduced that includes EA
equivalence as a special case. Let G(s) := {(x, s(x)) | x ∈ Fn

2} ⊆ Fn
2 × Fn

2 be
the graph of the function s. Then a function t is CCZ equivalent to s if G(t)
is affine equivalent to G(s) in Fn

2 × Fn
2 , that is if there exists an affine bijection

λ ∈ F2n
2 such that G(t) = λ(G(s)). Note that in this case λ ≡ (λ1, λ2) for two

affine functions λ1, λ2 from F2n
2 to Fn

2 where λ1(x, s(x)) is a bijection. It was
proven in [2] that this equivalence relation stabilises the APN property.

Until recently, all known APN functions happened to be equivalent to power
functions on F2n and it was an open question if that was true for all APN

⋆ Reseach of G. Leander sponsored by a DAAD postdoctoral fellowship.

https://doi.org/10.1007/s10623-008-9194-6
The original publication is available at www.springerlink.com.
Errata: The new APN function we found is not quadratic after all.
Please see Edel, Pott: “A new almost perfect nonlinear function which is not quadratic” (2009), http://dx.doi.org/10.3934/amc.2009.3.59

functions. In [5], infinite classes of APN functions were constructed that are EA
inequivalent, but CCZ equivalent, to any power function. Then Edel, Kyureghyan
and Pott [3] constructed a quadratic function from F10

2 to itself that they showed
to be CCZ inequivalent to any power function, and shortly afterwards an infinite
class of such functions was found [4].

This suggests that looking at power functions only reveals the tip of the
iceberg of all APN functions. Therefore in this work we take the orthogonal
approach: Rather than looking for infinite classes of APN functions, we exhaus-
tively enumerate all APN functions up to affine, EA and CCZ equivalence for
n ≤ 5, thereby providing a solid factual basis for APN related research.

We accomplish this using backtrack programming with isomorph rejection,
that is by subdividing the set of all functions into increasingly finer subsets which
contain all functions coinciding on increasingly larger subsets of their domain,
and rejecting subsets that do not contain a canonical representative of the desired
equivalence class. This is possible because the APN and canonicity properties
can be tested efficiently even on functions which are only locally determinate.

We demonstrate that the known classes of APN functions in [5] already
contain all APN functions in dimensions 4 and 5. For n = 4, there are two EA
equivalence classes, one of which is not EA equivalent to a power function. But
all APN functions for n = 4 are pairwise CCZ equivalent. For n = 5, there are
seven EA equivalence classes, two of which are not EA equivalent to any power
function. Furthermore, all APN functions for n = 5 are equivalent to one of
three CCZ equivalence classes, each containing power functions. Thus, we show
that all CCZ equivalence classes in dimension n < 6 contain power functions,
while in dimension 6 there exist APN functions not CCZ equivalent to any power
function, see [6]. We also give a new example for such a function in Sect. 7.

All computations were performed on a Pentium 4 processor with 2.8 GHz.
The results for n = 4 are immediate, and the case n = 5 takes about three weeks.

In this paper, we first introduce functions that are indeterminate on a part of
their domain and use them to define backtrack programming formally (Sect. 2).
We analyse 2-dimensional affine subspaces in an arbitrary subset of Fn

2 (Sect. 8),
which allows us to define and analyse a filter predicate for APN functions
(Sect. 3). The main part of the paper describes how these techniques can be
extended to cover affine, EA and CCZ equivalence (Sect. 4 and 5). We conclude
by deriving further results, such as the total number of APN functions (Sect. 6)
and the start of a classification in dimension 6.

In the text, we identify vectors a ∈ Fn
2 with binary numbers

∑
i ai2

i ∈
[0; 2n − 1] ⊂ N0. It is well known that functions from Fn

2 to itself can be seen as
polynomials on F2n ; the algebraic degree is EA (but not CCZ) invariant.

2 Templates and Backtrack Programming

In this section, we define a convenient notation for functions which are not de-
terminate on the whole domain Fn

2 . Such functions occur in the formal definition
of backtrack programming and later-on in algorithms using backtrack.

Templates: Let F̃n
2 := Fn

2 ⊎ {⋄} be the set Fn
2 extended by the indeterminate

value ⋄. Then we call s̃ : F̃n
2 → F̃n

2 a function template if s̃(⋄) = ⋄. The degree
deg s̃ := #s̃−1(Fn

2) is defined as the number of determinate positions and the
co-degree codeg s̃ = 2n − deg s̃ as the number of indeterminate positions in
Fn

2 . The template s̃ is said to be fully determinate if codeg s̃ = 0. The fully
indeterminate template is ⋄̃ ≡ ⋄ with deg ⋄̃ = 0. We identify s̃ with the set of
functions s : Fn

2 → Fn
2 that coincide with s̃ where it is determinate and write

s ∈ s̃.
We define a one-step refinement of s̃ on i as the template t̃ = 3i7→t̃(i)s̃ that

is determinate in one indeterminate position i of s̃ and coincides with s̃ on all
other positions, increasing the degree by one.

If there exists a number k such that the set of determinate positions of s̃
is [0; k − 1] then we say that s̃ is a left-refined template, which can be written
as a series of k left-refinements s̃ = 3

ℓ
k−17→s̃(k−1) · · ·3

ℓ
07→s̃(0)⋄̃. The set of all

templates that are the result of any number of left-refinements of s̃ is notated
by 3

ℓ
∗s̃.

A template s̃A is said to be affine if it is affine on the restriction to its
determinate positions that must form an affine subspace of Fn

2 . Any refinement
t̃ = 3k 7→t̃(k)s̃A induces a unique affine refinement t̃A = 3

A
k 7→t̃(k)

s̃A which is

determinate on the affine subspace spanned by the determinate positions of t̃.

Backtrack Programming: Let the result ρ be a predicate on F(Fn
2 , Fn

2), the set
of all functions from Fn

2 to Fn
2 . Then (ρ, φ) is a backtrack problem [7] if the filter

φ is a predicate on 3
ℓ
∗⋄̃ satisfying for all s ∈ F(Fn

2 , Fn
2):

ρ(s) ⇐⇒
(
φ(s̃) for all s̃ ∈ 3

ℓ
∗⋄̃ such that s ∈ s̃

)
(2)

A backtrack problem induces an ordered tree of order and height 2n in a
natural way: The nodes are the left-refined templates in 3

ℓ
∗⋄̃ with the root

node ⋄̃. The edges from s̃ to t̃ are the one-step left-refinements t̃ = 3
ℓ
d 7→t̃(d)

s̃

where d is the depth of node s̃. The result predicate ρ labels all leaves of the
tree with a boolean value. With (2), the filter predicate φ labels all nodes of the
tree such that a path from the root to a leaf is labeled with true at every node
if and only if the leaf is labeled true by ρ.

The solution of a backtrack problem is the set of all s ∈ F(Fn
2 , Fn

2) for which
ρ(s) = true. It is enumerated by a pre-order search through the tree, skipping
all subtrees with a root labeled false by φ. Pruning these subtrees from the tree,
we get the active search tree T . The filter φ determines the size and structure
of T and ultimatively the time complexity of the backtrack search [8].

In Algorithm 1 and 2, we use a stateful filter as an optimisation: Let Σ be a
set of states with false ∈ Σ, and let S⋄ ∈ Σ be the initial state. A stateful filter
is a function φ : Σ × Fn

2 → Σ such that with Sφ(s̃) := φs̃(deg s̃−1) · · ·φs̃(0)S⋄̃ the

induced filter φ̂ := (Sφ(s̃) 6= false) satisfies (2). Evaluation of a stateful filter
at node s̃ can make use of any results obtained from the evaluation of the filter
at ancestor nodes that are passed through with the state.

3 APN Functions

The APN property is closely related to 2-dimensional affine subspaces of Fn
2 . Let

A(M), M ⊆ Fn
2 arbitrary, be the set of all 2-dimensional affine subspaces in M .

Then it is easy to verify that A(M) consists of the sets {t, u, v, w} ⊆ M of four
pairwise different vectors with t + u + v + w = 0.

The next Lemma proves a characterisation of APN functions that was pro-
posed in [9]. We will reinterpret it as a sufficiently local condition for use in a
backtrack problem (APN, φAPN).

Lemma 1. Let s ∈ F(Fn
2 , Fn

2). Then s is APN if and only if for all {t, u, v, w} ∈
A(Fn

2) it holds that s(t) + s(u) + s(v) + s(w) 6= 0.

Proof. “⇒”: Assume that s is APN and {t, u, v, w} ∈ A(Fn
2). Let c := t+u, then

we have s(t) + s(t + c) 6= s(v) + s(v + c) because v 6= t, v 6= u = t + c and s is
APN.

“⇐”: Assume we have x, y, c, a ∈ Fn
2 , c 6= 0, such that s(x) + s(x + c) =

s(y)+s(y + c) = a. Then s(x)+s(y)+s(x+ c)+s(y + c) = 0 and x, y, x+ c, y + c
can not be pairwise different. But c 6= 0 so we find either y = x or y = x+ c. ⊓⊔

The filter φAPN can fail a left-refined template s̃ if s̃(t)+s̃(u)+s̃(v)+s̃(w) = 0
for {t, u, v, w} ∈ A([0; deg s̃ − 1]) with t = deg s̃ − 1. With the definition in
Prop. 11, there are ∆(deg s̃) such 2-dimensional affine subspaces, each providing
an opportunity for a conflict in the APN condition by not satisfying s̃(t) 6=
s̃(u) + s̃(v) + s̃(w). We will further show in Sect. 8 that this is the maximum
number of opportunities for conflicts we can achieve in any template of the same
degree. Of course, those inequations may not all be different, but under the
hypothesis that those possible conflicts are all independent probability events,
we propose the following model:

Proposition 2. The modeled probability that φAPN fails a template s̃ ∈ 3
ℓ
∗⋄̃ is:

P (deg s̃) = 1 −

(
2n − 1

2n

)∆(deg s̃)

(3)

Proof. The probability that one of ∆(deg s̃) independent conflicts does not occur
is (2n − 1)/2n. ⊓⊔

The expected value of actual conflicts can be measured by a method de-
scribed by Knuth [8]. Figure 1 gives a comparison with the model for n = 6. We
can now appreciate how difficult it is to find APN functions: Because ∆(k) is
approximately quadratic (see (22)), the probability for φAPN to fail a template
of degree k approaches certainty very quickly.

Although the product
∏k

i=1 2n(1 − P (k)) gives an estimate for the number
of nodes at depth k in the active search tree, errors propagate multiplicatively,
and the estimate is not usable for k ' 2n−1. In particular, the estimated number
of APN functions in the case k = 2n is unreliable: For n = 4 (resp. n = 5), this
is 102 (resp. 108) times the actual number of APN functions in that dimension.

0 8 16 32 64

0

16

32

48

64

Fig. 1. Actual number of conflicts for n = 6 over depth k. The modeled estimates
2n · P (k) are given by crosses and the measured estimates by dots.

Algorithm 1 The stateful filter φAPN for APN functions with Σ := (F(Fn
2 \

{0} × Fn
2 , {⋄,true}) × F(F̃n

2 , F̃n
2)) ∪ {false}, S⋄̃ := (⋄̃, ⋄̃).

function φAPN(b, (f̃ , s̃))
var t← deg s̃ ⊲ Depth of recursion - 1
s̃← 3

ℓ
deg s̃7→bs̃

for all x ∈ [0; t− 1] do

var c← t⊕ x

var a← s̃(x)⊕ s̃(t) ⊲ t = x⊕ c

if f̃(c, a) = true then return false ⊲ Table conflict
f̃ ← 3(c,a) 7→truef̃ ⊲ Table update

return (f̃ , s̃)

Algorithm 1 implements the stateful filter φAPN. Iterating over the 2-dimen-
sional affine subspaces in {t, u, v, w} ∈ A([0; deg s̃ − 1]) with t = deg s̃ − 1 has
quadratic time complexity in deg s̃. Our approach has linear time complexity
in deg s̃ by trading time for space. The solved equations s̃(t) + s̃(t + c) = a,
where c is chosen such that t + c < t, are stored as part of the state in a
table f̃ indexed by (c, a) ∈ Fn

2 × Fn
2 with values in {true, ⋄}. A backtrack

occurs when it is attempted to set a table entry to true a second time. This
approach is beneficial because a single read/store operation gives information
about several potential conflicts that do not occur. We assert the correctness
of Algorithm 1: If a backtrack occurs, no function in s̃ is APN by means of
s̃(t)+ s̃(t+ c)+ s̃(t′)+ s̃(t′ + c) = a+a = 0, where {t′ + c, t′, t+ c, t} ∈ A([0; t]) is
a 2-dimensional affine subspace. On the other hand, if a function s is not APN,
we have s(t)+ s(t+(t+u)) = s(v)+ s(v +(t+u)) for some 2-dimensional affine
subspace A = {t, u, v, t + u + v}, and a backtrack will occur at depth max A + 1
or earlier.

Table 1. Canonical APN permutations in F(F5
2, F5

2) up to to affine equivalence. The
algebraic degree and equivalences to power functions are also shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ◦ Aff.

1 0 1 2 4 3 6 8 16 5 10 15 27 19 29 31 20 7 18 25 21 12 14 24 28 26 11 23 13 30 9 17 22 4 x15

2 0 1 2 4 3 8 13 16 5 11 21 31 23 15 19 30 6 28 29 9 24 27 14 18 10 17 12 26 7 25 20 22 3 x11

3 0 1 2 4 3 8 13 16 5 17 28 27 30 14 24 10 6 19 11 20 31 29 12 21 18 26 15 25 7 22 23 9 3 x7

4 0 1 2 4 3 8 16 28 5 10 25 17 18 23 31 29 6 20 13 24 19 11 9 22 27 7 14 21 26 12 30 15 2 x3

5 0 1 2 4 3 8 16 28 5 10 26 18 17 20 31 29 6 21 24 12 22 15 25 7 14 19 13 23 9 30 27 11 2 x5

4 Affine Equivalence

We apply the Faradžev-Read[7,10] method of isomorph rejection based on the
definition of a canonical representative in each equivalence class that is extremal
in that class under some order, plus an efficient canonicity test on templates.

Define a total order on the functions s ∈ F(Fn
2 , Fn

2) by the lexicographic order
of their lookup tables. We extend that to a partial order on all function templates
s̃ by letting s̃ < t̃ if and only if s < t for all s ∈ s̃ and t ∈ t̃. In any equivalence
class of F(Fn

2 , Fn
2), we define the canonical element to be the lexicographically

smallest in the set, and we denote the set of canonical representatives by R≃.
A backtrack problem (ρ, φ) can be restricted to canonical representatives by

using the result predicate ρ(s) ∧ (s ∈ R≃) and the filter φ ∧ φ≃, where the
canonicity filter φ≃ never fails templates containing canonical representatives:

s̃ ∩ R≃ 6= ∅ =⇒ φ≃(s̃) = true (4)

This is a necessary but not sufficient condition for a canonicity filter. If equiv-
alence holds, the canonicity filter is perfect. A sufficient condition is that the
canonicity filter is perfect on fully determinate templates and commonly it is
considerably weakened on indeterminate templates for efficiency.

We focus first on affine equivalence of APN bijections in F(Fn
2 , Fn

2). We im-
plemented a canonicity filter φ≃A for affine equivalence, generalising a technique
described in [11] to indeterminate templates and to functions that may not be
bijective. For our filter it holds that φ≃A(s̃) = false if and only if there exist
affine bijections α, β such that βs̃α < s̃. A perfect filter would check this inequa-
tion for each function in s̃ separately. By making α and β dependent only on s̃
we weaken the filter, thereby decreasing specificity but increasing efficiency.

The APN filter and affine canonicity filter tend to fail different function
templates, this means that they complement each other very well. We find:

Theorem 3. There are no APN permutations in F(F4
2, F

4
2).

There are 5 APN permutations in F(F5
2, F

5
2) up to affine equivalence, all of

those affine equivalent to power functions, see Table 1. No. 1 is equivalent to its
inverse, and no. 2 (resp. 3) is equivalent to the inverse of no. 4 (resp. 5).

For dimension 4, this was already established in [9]. For dimension 5, we
have shown that no further classes of APN functions exist than those of the
well-known power functions.

Table 2. Canonical APN functions in F(F4
2, F

4
2) up to EA equivalence. The algebraic

degree, equivalences to power functions, and CCZ equivalences are also shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ◦ EA CCZ

1 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13 2 x3 can.
2 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12 3 cf. [5] 1

We now turn to arbitrary APN functions in F(Fn
2 , Fn

2) and EA equivalence.
Let BA := {0, 20, 21, . . . , 2n−1} be the affine standard basis of Fn

2 . Note that
every function s is EA equivalent to a function t ≤ s which vanishes on BA by
letting t := s + γ, where γ is affine and coincides with s on BA. Thus, all EA
canonical representatives vanish on BA. It also follows that φ≃A satisfies (4) for
an EA canonicity filter on such functions:

Proposition 4. Let the template s̃ vanish on its determinate positions of BA.
If φ≃A(s̃) = false then there exist affine bijections α, β and an affine function γ
such that t̃ := βs̃α+γ (with ⋄+x = ⋄ for all x ∈ Fn

2) vanishes on its determinate
positions of BA and t̃ < s̃.

The filter φ≃A is not perfect on the leave nodes (with regards to EA equiv-
alence) and thus not an EA canonicity filter, but an implementation of such a
filter is not efficient enough to be used in a backtrack search in small dimen-
sions (see also Sect. 7). Thus, we used φ≃A anyway, thereby finding 16 (n = 4)
resp. 11768 (n = 5) candidates for EA canonical representatives, which were
further analysed using the techniques described in Sect. 5.3 We find:

Theorem 5. There are 2 APN functions in F(F4
2, F

4
2) up to EA equivalence,

see Table 2. One of those is EA equivalent to a power function.

There are 7 APN functions in F(F5
2, F

5
2) up to EA equivalence, see Table 3.

Five of those are EA equivalent to a power function.

Note that the three APN functions in Table 2 and 3 that are EA inequivalent
to any power function actually belong to the EA equivalence classes of the infinite
families of APN functions

s(x) = x2i+1 + (x2i

+ x + 1)tr(x2i+1) for n = 4, i = 1 (5)

s(x) = x2i+1 + (x2i

+ x)tr(x2i+1 + x) for n = 5, i = 1, 2 (6)

as given by Theorem 1 and 3 of [5]. Our contribution here is that there are no
further equivalence classes with APN functions in these dimensions.

3 After rejecting 14 (resp. 11760) non-canonical candidates with a weak EA canon-
icity test, we used that the algebraic degree is an EA invariant and examined the
canonicity of the remaining 2 (resp. 5) candidates by equivalence tests exploiting
self-equivalences (see Note 9).

Table 3. Canonical APN functions in F(F5
2, F

5
2) up to EA equivalence. The algebraic

degree, equivalences to power functions, and CCZ equivalences are also shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ◦ EA CCZ

1 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25 5 15 17 26 22 26 14 3 3 13 31 16 2 x5 can.
2 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25 5 15 17 26 27 23 3 14 14 0 18 29 2 x3 can.
3 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25 5 15 19 24 7 11 27 22 26 20 1 14 3 [5] 1
4 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25 5 15 19 24 10 6 22 27 23 25 12 3 3 [5] 2
5 0 0 0 1 0 2 4 8 0 3 6 12 7 16 25 23 0 7 3 22 28 19 9 0 19 8 15 28 21 9 29 2 4 x15 can.
6 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 5 12 27 20 6 31 16 7 31 8 22 9 26 17 11 3 x11 2
7 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 6 15 24 18 3 17 30 2 29 14 20 25 13 9 23 3 x7 1

5 CCZ Equivalence

Because CCZ equivalence requires that the graph of a function is mapped to a
graph, it does not seem feasible to write an efficient filter that operates on inde-
terminate templates. But EA equivalence implies CCZ equivalence, so we only
need to consider CCZ equivalences among EA canonical representatives, which
form our new candidate sets. We used three techniques: Invariants, canonicity
tests and equivalence tests.

We note that the equivalence test described below is barely efficient enough
to solve the classification problem in dimension 5. A much faster method is given
in [6] by reducing CCZ equivalence to equivalence of certain extended codes, a
problem for which more efficient algorithms are known. Our method is more
fundamental, and has the advantage that it allows for variations such as testing
for CCZ canonicity instead of equivalence, which can be useful to reduce the
candidate set in greater dimensions (see Sect. 7).

We further note that Theorem 6 below can readily be derived from Theorem 5
using various results in [5] and [12]. In this section we describe a systematic
approach to the classification problem, which works in principle for arbitrary
(not necessarily power) APN functions in any dimension and can be transfered
to other equivalence relations such as EA equivalence.

CCZ Invariants: The extended Walsh spectrum of s is the multi-set Ws :=
{|ws(a, b)| | a, b ∈ Fn

2 , b 6= 0} where ws(a, b) =
∑

x∈F
n
2
(−1)bs(x)+ax, and was

shown in [2] to be a CCZ invariant. For n = 4, both candidates have the
same Walsh spectrum. But for n = 5, the candidates with degree 2 and 3
have the Walsh spectrum (0; 527), (8; 496), (32; 1) given as (value; multiplicity),
while the candidate with degree 4 has the Walsh spectrum (0; 217), (4; 465),
(8; 310), (12; 31), (32; 1). Thus, the Walsh spectrum partitions the CCZ equiva-
lence classes in dimension 5 into two sets to be treated separately.

CCZ Canonicity: Clearly the smallest EA canonical representative in each parti-
tion with different invariants is also a CCZ canonical representative. We modified
Algorithm 2 below to determine CCZ canonicity of arbitrary functions s. The
modified algorithm finds any function t < s with t ≃CCZ s if such a function
exists, otherwise it fails. This algorithm allows to quickly eliminate no. 3 and 4

Algorithm 2 A filter φπ for use in a CCZ equivalence test s ≃CCZ t.

function φπ((d, λ̃, π̃), a)
if π̃(d) 6= ⋄ then return (d + 1, λ̃, π̃) ⊲ Verified previously.
if λ̃(a, s(a)) 6= ⋄ then return false ⊲ Position a already used.
if (d, t(d)) ∈ λ̃(F2n

2) then return false ⊲ Ensure bijectivy of λ̃.
if φ≃π ((d, π̃), a) = false then return false ⊲ Self-equivalences, see text.
π̃ ← 3d 7→aπ̃

var λ̃′ ← 3
A

(a,s(a)) 7→(d,t(d))λ̃

for all (x, s(x)) ∈ λ̃′−1(G(t)) \ λ̃−1(G(t)) do ⊲ Follow implications.
var (y, ty)← λ̃′(x, s(x))
if π̃(y) 6= ⋄ then return false ⊲ Ensure bijectivity of λ̃′

1(x, s(x)).
if ty 6= t(y) then return false ⊲ Ensure G(t) ⊇ λ̃′(G(s)) \ {⋄}.
if φ≃π ((y, π̃), ty) then return false ⊲ Self-equivalences, see text.
π̃ ← 3y 7→xπ̃

return (d + 1, λ̃′, π̃)

in Table 3. For the other candidates in dimension 5 it is too inefficient to be of
value. However, the canonicity test proved useful in dimension 6 and greater.

CCZ Equivalence: Algorithm 2 implements an efficient test for CCZ equivalence
of functions s, t ∈ F(Fn

2 , Fn
2) using a backtrack problem (ρ, φ), where ρ(σ) if

and only if there exists an affine bijection λ = (λ1, λ2) with G(t) = λ(G(s))
such that π := λ1(x, s(x))−1 ≡ σ. The state is π̃, the search depth d, and the
affine injective4 template λ̃, with the initial state S⋄ := (0, ⋄̃, ⋄̃). The nodes in
the search tree correspond to left-refinements for π, such that at depth d it
holds that λ̃(G(s)) \ {⋄} = G(t̃|{x | t̃(x) 6= ⋄}) for a template t̃ ∋ t which is
determinate on all positions less than d.5 Due to affine refinements of λ̃, it may
be that t̃ is determinate on additional positions. The algorithm recursively finds
the preimage (a, s(a)) ∈ G(s) of a point (d, t(d)) ∈ G(t) with π(d) = a, while
ensuring affinity and injectivity of λ̃.

We optimize further using self-equivalences: Let Λt be the subgroup of affine
bijections λt which stabilise G(t). The orbit of λ under the action of Λt is the
set of all affine functions λ′ which map G(s) to G(t). The group Λt induces
a permutation subgroup Πt which acts on π. The orbit of π under Πt is the
set of all permutations π′ for which a λ′ exists with π′ = λ′

1(x, s(x))−1 and
G(t) = λ′(G(s)). This allows us to search only for the canonical representative in
the orbit of π by a stateful canonicity filter φ≃π

for π̃ that is usefully defined on
arbitrary (not just left-) refinements. Note that Πt can be found incrementally
using Algorithm 2 and canonicity filters derived from subgroups of Πt. We de-
scribe a different application of this technique in more detail when determining
the EA orbits of APN functions in Sect. 6.

4 A template is said to be injective if it is injective on the restriction to its determinate
positions.

5 This property explains the choice to refine π rather than π−1 = λ1(x, s(x)), and
allows to modify the algorithm to test for CCZ canonicity as described above.

To complete the classification for n = 5, we test the remaining three candi-
dates for canonicity after ordering them lexicographically: Beginning with the
smallest of the candidates, we test its CCZ equivalences against all known CCZ
canonical representatives in the same partition with respect to invariants. If the
candidate is not equivalent to any of those, it is itself a canonical representative
and we add it to the list of known ones to test against after developing an op-
timized equivalence test as described above. This naive approach at isomorph
rejection (cf. Sect. 4) is reasonable here because there is only a small number of
such canonical representatives. In fact we find:

Theorem 6. All APN functions in F(F4
2, F

4
2) are pairwise CCZ equivalent.

There are only three APN functions in F(F5
2, F

5
2) up to CCZ equivalence.

They are no. 1, 2, and 5 respectively in Table 3. Any APN function in F(F5
2, F

5
2)

is CCZ equivalent to a power function.

6 Total Number of APN Functions

We define G ⊂ F(Fn
2 , Fn

2)3 as the set of all (α, β, γ) ∈ G, where α is an affine
bijection, β is a linear bijection, and γ is an affine function. We define a group
structure on G by:

(α′, β′, γ′) · (α, β, γ) := (αα′, β′β, β′γα′ + γ′) (7)

1G := (id, id, 0) (8)

The group G acts on F(Fn
2 , Fn

2) by means of

(α, β, γ) · s = βsα + γ (9)

and the orbit Gs is exactly the EA equivalence class of s (the affine component of
β is subsumed by γ). We have |Gs| = |G|/|Gs| for the size of the EA equivalence
class of s, where Gs = {(α, β, γ) ∈ G | βsα + γ = s} is the stabiliser of s.

The order of G is easy to calculate, as the number of linear permutations is
well known (see sequence A002884 in [13]):

|G| = |Gα| · |Gβ | · |Gγ | =

(
2n ·

n−1∏

i=0

(2n − 2i)

)
·

(
n−1∏

i=0

(2n − 2i)

)
· (2n)n+1 (10)

To determine the order of Gs, we first show that for the specific APN functions
we are considering, it is sufficient to look at the α component of elements in Gs.

Lemma 7. Let s ∈ F(Fn
2 , Fn

2) such that s(Fn
2) contains a linear basis and s−1(0)

an affine basis of Fn
2 . If (α, β, γ) ∈ Gs, then β and γ are uniquely determined

by α, that is, if also (α, β′, γ′) ∈ Gs, then already β ≡ β′ and γ ≡ γ′.

Proof. We have for all x ∈ Fn
2 :

β(sα(x)) + γ(x) = β′(sα(x)) + γ′(x) (11)

Evaluating (11) on (sα)−1(0) gives γ ≡ γ′ on an affine span of Fn
2 , and thus by

affinity of γ and γ′ on all of Fn
2 . Canceling γ gives β ≡ β′ on the linear span that

is the image of s, and thus by linearity of β and β′ on all of Fn
2 . ⊓⊔

Corollary 8. Let s ∈ F(Fn
2 , Fn

2) be APN and an EA canonical representative.
If (α, β, γ) ∈ Gs, then β and γ are uniquely determined by α.

Proof. Because s is APN, it has non-null non-linearity [14].
Assume that y ∈ Span(s(Fn

2))⊥, then the canonical inner product 〈y, s(x)〉 is
0 for all x, and thus y = 0 because of the non-null non-linearity of s. It follows
that the image of s spans the whole of Fn

2 . Because s is EA canonical, the set
s−1(0) contains the affine standard basis BA (see note before Prop. 4). ⊓⊔

Thus, to calculate the order of Gs, we only need to find the subgroup H ⊂
F(Fn

2 , Fn
2) of all α for which β and γ exist such that (α, β, γ) ∈ Gs. Algo-

rithm 3 constructs a canonical set of generators for H iteratively: Let Hk =
〈h1, . . . , hk−1〉 ⊆ H be the subgroup generated by h1, . . . , hk−1 at step k of the
iteration. Then Hk acts on H from the left, and the orbits induce an equivalence
relation on H for which we can define the canonical representatives minimal un-
der lexicographical order. We define the next canonical generator as the smallest
canonical representative that is not the identity:

hk := minH \ Hk (12)

This element can be found by a backtrack search for (α, β, γ) ∈ Gs, again gen-
eralising the technique described in [11] to non-bijective functions and to EA
equivalence rather than just affine equivalence. In this backtrack search, α̃ is
affinely left-refined, while β̃ and γ̃ are affinely refined in parallel with α̃ such
that β̃sα̃ + γ̃ has the same degree as α̃ and contains s.

The pre-order search and a stateless canonicity filter for α̃ ensure (12): The
filter φk

s fails α̃ if it is identical to id or if there exists an element h ∈ Hk for
which hα̃ < α̃. Thus, hk ∈ H \ Hk because otherwise with h−1

k ∈ Hk we have
h−1

k hk = id < hk and hk would be excluded by the filter. Specifically, the filter
can be constructed from the generators h1, . . . , hk−1 by examining the orbits
Ok

xx for x ∈ Fn
2 under the action of those generators Ok

x ⊆ Hk that stabilise all
elements y < x. The canonicity requirement is then that α̃(x) = min α̃(Ok

xx) \ ⋄
for all determinate positions x of α̃. A specific example is given in Note 9.

Algorithm 3 terminates when the strictly monotonic inclusion chain Hk (

Hk+1 reaches H .
Given the generators h1, . . . , hk, the order of H can be calculated, for ex-

ample using a computer algebra system such as Magma [15]. The orders of the
stabilisers in dimension 4 are 5760 and 384. In dimension 5, the orders are 4960,
4960, 160, 160, 155, 155, and 155. Table 4 summarizes the results.

We conclude this section with a remark on how to use the stabiliser group
to optimise arbitrary EA equivalence tests, as used in Sect. 4.

Note 9. We can exploit knowledge of the group H in a backtrack search for EA
equivalence of s and an arbitrary function t. Clearly, H acts from the left on the

Table 4. Number of APN functions in F(Fn
2 , Fn

2) absolute and as percentage of the
total number (2n)2

n

of vectorial boolean functions.

n #APN %

1 4 100
2 192 75
3 688128 ≈ 4.1
4 18940805775360 ≈ 1.0 · 10−4

5 110823678910407691468800 ≈ 7.6 · 10−24

set of all α for which exist β and γ such that βsα + γ = t. The orbits induce an
equivalence relation, and we can define canonical representatives minimal under
lexicographical order. The filter φs fails α̃ if h ∈ H exists for which hα̃ < α̃.

As an example, consider the function t that is no. 1 in Table 3. The group
H is generated by:

h1=(0)(1)(2 17 25 22 28)(3 16 24 23 29)(4 21 12 26 6)(5 20 13 27 7)(8 15 10 30 19)(9 14 11 31 18) (13)

h2=(0)(1 2 10 13 4)(3 8 7 9 5)(6 11 15 14 12)(16 27 20 26 22)(17 25 30 23 18)(19)(21 24 28 29 31) (14)

h3=(0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15)(16 17)(18 19)(20 21)(22 23)(24 25)(26 27)(28 29)(30 31) (15)

This leads to the following canonicity filter for α̃:

function φs((d, α̃), a)
if (d = 0 and a 6= 0) or (d = 1 and a 6= 1) then return false

if α̃(2) 6= ⋄ and d = 17, 22, 25 or 28 and a < α̃(2) then return false

return true

7 Dimension 6

The techniques described in this paper are sufficient to classify all APN func-
tions in dimension 4 and 5, but are not sufficient to treat greater dimensions.
Nevertheless, they are applicable and can lead to partial results. As an example,
we start a classification of APN functions in dimension 6.

Although we said earlier that the EA canonicity filter is not efficient enough
to be used in a backtrack search for small dimensions, a weak version of it pays

Algorithm 3 Finding the generators h1, . . . , hk of H .

var h array[]
var k← 1
var H ′ ← 〈id〉
while H ′ 6= H do

Determine φk
s based on H ′ = 〈h1, . . . , hk−1〉.

hk ← min H \H ′ ⊲ Using backtrack search, see text.
k ← k + 1
H ′ ← 〈h1, . . . , hk−1〉.

Table 5. The first 14 canonical APN functions in F(F6
2, F

6
2) up to CCZ equivalence. All

shown functions coincide on the first 33 positions, which are given first. The Γ -rank,
the automorphism group of the corresponding extended code, and CCZ equivalence to
the known APN functions are also shown.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
s(x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13 0 8 16 25 5 15 17 26 32 44 54 59 45 35 63 48 0

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
1 16 24 9 32 50 60 47 41 61 55 34 1 23 27 12 15 23 7 30 42 48 38 61 6 26 8 21 43 53 33 62
2 16 24 9 37 55 57 42 5 17 27 14 40 62 50 37 3 27 11 18 35 57 47 52 38 58 40 53 14 16 4 27
3 16 24 9 37 55 57 42 5 17 27 14 40 62 50 37 27 3 19 10 59 33 55 44 62 34 48 45 22 8 28 3
4 16 26 11 32 50 62 45 33 53 61 40 9 31 17 6 35 59 41 48 6 28 8 19 34 62 46 51 15 17 7 24
5 16 26 11 32 50 62 45 43 63 55 34 3 21 27 12 15 23 5 28 42 48 36 63 4 24 8 21 41 55 33 62
6 16 26 11 33 51 63 44 51 39 47 58 26 12 2 21 39 63 45 52 3 25 13 22 52 40 56 37 24 6 16 15
7 16 26 11 36 54 58 41 18 6 14 27 62 40 38 49 28 4 22 15 61 39 51 40 46 50 34 63 7 25 15 16
8 16 26 11 36 54 58 41 33 53 61 40 13 27 21 2 39 63 45 52 6 28 8 19 38 58 42 55 15 17 7 24
9 16 26 11 36 54 58 41 51 39 47 58 31 9 7 16 39 63 45 52 6 28 8 19 52 40 56 37 29 3 21 10
10 16 26 11 46 60 48 35 27 15 7 18 61 43 37 50 25 1 19 10 50 40 60 39 34 62 46 51 1 31 9 22
11 16 26 11 53 39 43 56 39 51 59 46 26 12 2 21 62 38 52 45 14 20 0 27 57 37 53 40 1 31 9 22
12 16 26 11 53 39 43 56 43 63 55 34 22 0 14 25 50 42 56 33 2 24 12 23 57 37 53 40 1 31 9 22
13 16 26 36 34 48 60 0 45 57 49 11 7 17 31 39 43 28 14 23 12 57 45 54 38 21 5 24 9 56 46 49
14 16 32 49 61 47 25 10 27 15 61 40 46 56 12 27 62 38 14 23 6 28 50 41 5 25 51 46 53 43 7 24

(More CCZ equivalence classes may exist.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Γ -rank 1172 1146 1102 1168 1170 1170 1170 1172 1174 1166 1170 1166 1300 1158

|Aut(gC(s))| 26 26327 27337 26 26 26 26 26 26 277 265 267 23 265
CCZ eq. 11 [6] 2 [6] x3 6 [6] 8 [6] 10 [6] 9 [6] 12 [6] 13 [6] 5 [6] 7 [6] 4 [6] new 3 [6]

off in greater dimensions. The weak EA canonicity filter fails s̃ if no α, β, γ can
be found in a short time such that βs̃α + γ < γ. This filter can be strengthened
again by running it several times with different choices for the initial guess α(0),
thereby adding a limited breadth-first search stragey to the mix.

We searched for lexicographically small functions in dimension 6 using this
weak EA canonicity filter in addition to the affine canonicity filter. The result-
ing candidates were tested for CCZ canonicity as described in Sect. 5, using
equivalence of the extended codes as equivalence test [6]. We found canonical
representatives of 14 CCZ equivalence classes, given in Table 5. This list includes
the class containing the APN power functions and the classes listed in [6]. It also
contains a new CCZ equivalence class that was previously unknown.

All these classes contain quadratic functions. We also took samples from
other parts of the search space, but no more CCZ equivalence classes were found
this way. However, it must be said that we only examined a tiny fraction of the
active search tree.

8 Affine Subspaces in Fn

2
of Dimension 2

The total number of 2-dimensional affine subspaces #A(Fn
2) can be calculated

directly or by using gaussian binomials6 and is
(
2n

3

)
/4. For arbitrary subsets

6 See also sequence A016290 in [13].

M this is more delicate. We first calculate this number for the subsets M =
[0; k − 1] ⊆ Fn

2 with 0 ≤ k ≤ 2n and then show that this constitutes an upper
bound (used in Prop. 2).

The affine hyperplanes of Fn
2 are the sets Ha

λ = {b | 〈a, b〉 = λ} with a ∈
Fn

2 \ {0} and λ ∈ F2, where 〈 , 〉 is the canonical inner product. The hyperplanes
Ha

0 and Ha
1 partition Fn

2 , which leads to the following Decomposition Lemma
used in the proofs of Prop. 11 and Prop. 12:

Lemma 10. Let M ⊆ Fn
2 and a ∈ Fn

2 \{0}. Then A(M) can be decomposed into
three disjoint subsets; with A+ := {A ∈ A(M) | #(A ∩ Ha

0) = 2}:

A(M) = A(M ∩ Ha
0) ⊎ A(M ∩ Ha

1) ⊎ A+ (16)

Proof. “⊆”: Let A = {t, u, v, w} ∈ A(M), then t + u + v + w = 0 ∈ Ha
0 . It holds

that Ha
0 + Ha

0 = Ha
0 , Ha

0 + Ha
1 = Ha

1 and Ha
1 + Ha

1 = Ha
0 , so the number of

elements in A ∩ Ha
1 must be even and thus 0, 2 or 4. This means that A is in

A(M ∩ Ha
0), A+ or A(M ∩ Ha

1) respectively. ⊓⊔

Proposition 11. Define A(j) := #A([0; j − 1]) and ∆(0) := 0, ∆(j + 1) :=
A(j + 1) − A(j) with j ∈ N0. Let k ∈ N0 such that 2 ≤ k ≤ 2n and i ∈ N0 such
that 2i ≤ k − 1 < 2i+1. Then the recurrence relations for A(j) and ∆(j) are:

A(k) = A(2i) + A(k − 2i) +

(
k − 2i

2

)
· 2i−1 (17)

∆(k) = ∆(k − 2i) + (k − 2i − 1) · 2i−1 (18)

Proof. We only show the relation for ∆(k) by induction over k, the other follows

directly by A(k) =
∑k

j=0 ∆(j). Clearly ∆(2) = ∆(1) + 0 = 0. Let now the

relation be true for j < k. By the Decomposition Lemma 10 for a = 2i we have:

A([0; k − 1]) = A([0; 2i − 1]) ⊎ A([2i; k − 1]) ⊎ A+ (19)

Note that ∆(k) is the number of subspaces in A([0; k − 1]) which contain the
point t := k − 1. The first term on the right hand side of (19) contributes none
of those and the second term contributes ∆(k − 2i) by means of the bijection
j 7→ j ⊕ 2i. This leaves A+: Choose any u ∈ [2i; k − 2], v ∈ [0; 2i − 1], then
{t, u, v, t + u + v} ∈ A+. But choosing v′ = t + u + v yields the same solution,
so we have to divide by 2. On the other hand, if {t, u, v, w} ∈ A+, let without

loss of generality v, w ∈ H2i

0 and thus u ∈ [2i; k − 2], because u ∈ H2i

1 \ {t}. ⊓⊔

The integer sequences A(i) and ∆(i) are, starting with i = 1:

A(i) :0, 0, 0, 1, 1, 3, 7, 14, 14, 18, 26, 39, 55, 77, 105, 140, . . . (20)

∆(i) :0, 0, 0, 1, 0, 2, 4, 7, 0, 4, 8, 13, 16, 22, 28, 35, . . . (21)

The values A(2k) are underlined and correspond to the number of two-dimensional
affine subspaces in Fk

2 . The following equations are easy to verify and show that

∆(2k) is quadratic7 and ∆(2k + j) is linear in 2k for 0 < j < 2k.

∆(2k) =
1

6

(
2k −

3

2

)2

−
1

24
(22)

∆(2k + j) = ∆(j) +
1

2
(j − 1) · 2k (23)

This is analogous to the fact that the sum
∑k+j

i=j i grows linearly with j but
quadratic with k, even if the analytical treatment of the recurrence relation for
∆ is more complicated. It seems the growth of ∆ is well approximated by (22).

The number of affine subspaces of an arbitrary set M ⊆ Fn
2 can be smaller

than A(#M), for example it is zero if M is a basis. The following proposition
shows that it can never be greater. Thus, A(#M) constitutes an exact upper
bound on #A(M) and we establish that left-refined templates in 3

ℓ
∗⋄̃ are deter-

minate on a domain that contains a maximum number of 2-dimensional affine
subspaces compared to other templates with the same degree.

Proposition 12. Let M ⊆ Fn
2 be arbitrary. Then #A(M) ≤ A(#M).

Proof. The proof is by induction over #M . The claim is true for ∅ and {0}.
Assume it holds for all N ⊆ Fn

2 with #N < #M . We first demonstrate the
claim for sets that are saturated (see below), and then show that every set M
that is not saturated can be mapped to a saturated set M ′ of the same size for
which #A(M) ≤ #A(M ′) ≤ A(#M ′) = A(#M).

Let M ⊆ Fn
2 be a set. The gaps of M is the set G(M) := N0 \ M , and the

minimal gap is g := g(M) := minG(M) ≤ 2n. The set M is saturated if M = ∅,
or M = {0}, or minG(M) ≥ 2j with j = ⌊log2 max M⌋ ∈ N0.

Assume M ⊆ Fn
2 is saturated, M 6= ∅, M 6= {0}, and let j := ⌊log2 maxM⌋ ∈

N0. Then applying the Decomposition Lemma 10 for a = 2j yields

#A(M) = A(2j) + #A(M \ [0; 2j − 1]) +

(
#M − 2j

2

)
· 2j−1 ≤ A(#M) (24)

using M ∩ H2j

0 = H2j

0 and #A(H2j

0) = A(2j) for the first two terms. This
leaves A+: Let t := maxM . Choose any u ∈ M ∩ [2j ; t − 1], v ∈ [0; 2j − 1],
then {t, u, v, t ⊕ u ⊕ v} ∈ A+. This gives (k − 2j − 1) · 2j, but choosing v′ =
t ⊕ u ⊕ v yields the same solution, so we have to divide by 2. On the other
hand, if {t, u, v, w} ∈ A+, let without loss of generality v, w ∈ H2j

0 and thus

u ∈ M ∩ [2j; t − 2], because u ∈ H2j

1 \ {t}.
Now assume M is not saturated. Let i be the largest integer such that 2i ≤ g

if g > 0 and let i := −1 if g = 0. Then m := max M ≥ 2i+1 because M is not
saturated, and there exists an integer j with j > i and 2j ≤ m < 2j+1. Without
loss of generality, assume that g + 2j ∈ M , else replace M with its image under
the affine bijection that maps 2j to m ⊕ g and is invariant on all other powers
of 2, leaving g, i and j invariant.

7 See also sequence A006095 in [13].

Define the set of sinkable elements S := {s ∈ G(M) ∩ H2j

0 | s + 2j ∈ M}.
We have g ∈ S. Let σ be the permutation on Fn

2 which swaps each element
s ∈ S with s +2j and does not effect any other element. It is clear that σ(M) =
S ⊎ M \ (S + 2j), and thus #M = #σ(M) and g(M ′) > g(M).

To show that #A(M) ≤ #A(σ(M)) we construct an injective mapping
sA : A(M) → A(σ(M)). By requiring that sA leaves the values of A ∈ A(M)
invariant modulo 2j, it suffices to show that sA is injective on the subsets
At,u,v,w(M) := {{t′, u′, v′, w′} ∈ A(M) | t ≡ t′, u ≡ u′, v ≡ v′, w ≡ w′

(mod 2j)} with t, u, v, w ∈ [0; 2j − 1] (not necessarily pairwise different).
To differentiate between the possible cases, we characterize a position t < 2j

by its signature, letting sig t := if t /∈ M and t + 2j /∈ M , sig t := if t ∈ M
and t + 2j /∈ M , sig t := if t /∈ M and t + 2j ∈ M (a sinkable element), and
sig t := if t ∈ M and t + 2j ∈ M . Now we can define sA on the sets At,u,v,w

based on the multi-set sig {t, u, v, w}.

– If S∩{t, u, v, w} has even cardinality (i. e. 0, 2 or 4) then let sA | At,u,v,w be
the concatenation of all transpositions (x, x + 2j) where x ∈ S ∩ {t, u, v, w}.

– Otherwise, if ∈ sig {t, u, v, w} then take y := max{x ∈ {t, u, v, w} |
sig (x) = } and let sA | At,u,v,w be the concatenation of the transposi-
tion (y, y + 2j) with all transpositions (x, x + 2j) where x ∈ S ∩ {t, u, v, w}.

– In all other cases the set At,u,v,w is actually empty, because a 2-dimensional

affine subspace in it would necessarily have an odd number of points in H2j

1 ,
a contradiction.

All these restrictions of sA are permutations generated by an even number
of transpositions (x, x + 2j), x ∈ {t, u, v, w} with sig x ∈ { , }, thereby injec-
tively mapping the 2-dimensional affine subspaces in At,u,v,w(M) to those in
At,u,v,w(σ(M)). Thus we have that sA : A(M) → A(σ(M)) is well-defined and
injective on its whole domain.

The minimal gap of σ(M) is strictly greater than that of M , while maxσ(M)
is bounded by 2j+1. Replacing M with σ(M) and repeating the process, σ(M)
will eventually be saturated without decreasing the number of 2-dimensional
affine subspaces. ⊓⊔

9 Acknowledgments

We thank the reviewers for their constructive criticism which helped to improve
the quality of the publication.

References

1. Nyberg, K.: Differentially uniform mappings for cryptography. In: EUROCRYPT
’93. (1994) 55–64

2. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15 (1998)
125–156

3. Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent
to a power mapping. In: IEEE Transactions on Information Theory. Volume 52.
(2006) 744–747

4. Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic
APN functions which are not equivalent to power mappings. In: IEEE International
Symposium on Information Theory. (2006) 2637–2641

5. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. In: IEEE Transactions on Information Theory. Volume 52.
(2006) 1141–1152

6. Dillon, J.F.: APN polynomials and related codes. Banff International Research
Station workshop on Polynomials over Finite Fields and Applications (Nov. 2006)

7. Faradžev, I.A.: Constructive enumeration of combinatorial objects. In: Problèmes
Combinatoires et Théorie des Graphes. Volume 260., Coloques internationaux
C.N.R.S. (1978) 131–135

8. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
Computation 29 (1975) 121–136

9. dong Hou, X.: Affinity of permutations of Fn
2 . In: Proc. of the Workshop on Coding

and Cryptography. (2003) 273–280
10. Read, R.C.: Every one a winner. Annals of Discrete Mathematics 2 (1978) 107–120
11. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanalysis:

Linear and affine equivalence algorithms. In: EUROCRYPT. (2003) 33–50
12. Budaghyan, L., Carlet, C., Leander, G.: A class of quadratic apn binomials in-

equivalent to power functions. (2006)
13. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://www.

research.att.com/~njas/sequences/ (2007)
14. Carlet, C. personal communication (2007)
15. http://magma.maths.usyd.edu.au/magma/ (2007)

